
Xspin/Project - Integrated Validation
Management for Xspin

Theo C. Ruys

Faculty of Computer Science, University of Twente.
P.O. Box 217, 7500 AE Enschede, The Netherlands.

ruys@cs.utwente.nl

Abstract. One of the difficulties of using model checkers “in the large”
is the management of all (generated) data during the validation trajec-
tory. It is important that the results obtained from the validation are
always reproducible. Without tool support, the quality of the validation
process depends on the accuracy of the persons who conduct the vali-
dation. This paper discusses Xspin/Project, an extension of Xspin, which
automatically controls and manages the validation trajectory when using
the model checker Spin.

1 Introduction

In the past years, we have been involved in several industrial projects concern-
ing the modelling and validation of (communication) protocols [4, 19]. In these
projects we used modelling languages and validation tools - like Promela and
Spin [7, 9] - to specify and verify the protocols and their properties. During each
of these projects we encountered the same practical problems of keeping track
of various sorts of information and data, particularly:

– many documents, which describe parts of the system, often originating from
different parties;

– many versions of the same document;
– many versions of validation models, not only revisions but also variants (dif-

ferent abstractions of the same system);
– validation data, including:

• simulation traces;
• directives and options to build particular verifiers;
• verification results;
• counterexamples; and
• notes and remarks on the validation runs.

The first two sources of information are mainly related to the modelling of a
system whereas the latter sources of information are prominent in the validation
phase of a system. We experienced that apart from the inherent state space
explosion of the model of the system under validation, the validation engineer



has to deal with the data and version explosion of the modelling phase and the
validation phase as well.

In [18] we suggested to use literate programming techniques [12] to tackle the
management problems in the modelling phase. We also suggested that Software
Configuration Management [1, 11] tools are probably needed to manage the val-
idation phase. This paper discusses Xspin/Project, an extension of Xspin, which
manages and controls the validation trajectory when using the model checker
Spin.

In Sect. 2 the management problems of the validation phase are discussed.
Section 3 describes Xspin/Project and the paper is concluded with Sect. 4.

In the literature on formal methods, the terms validation and verification do
not have a fixed meaning. In this paper both terms are used and the following
interpretations are distinguished:

– With verification we identify the verification process using a model checker
(e.g. Spin);

– We use the term validation to address the controlled, systematic analysis of
systems. With respect to Spin, validation includes both the simulation and
verification activities.

2 Validation Management

This section discusses the management of validation data. After briefly discussing
the management problems of the validation phase, the current management sup-
port within Xspin is discussed. Software Configuration Management systems are
proposed as the solution to the management problems.

2.1 Validation data

In current research on automatic verification tools, much effort is being put into
efficient verification algorithms whereas control and management issues are - at
best - supported in a limited way. As long as nasty errors are being exposed,
this may be satisfactory enough. However, when one is aiming at the systematic
verification of a system, one needs more than just a smart debugging tool.

One of the practical problems when using model checkers is the management
of all (generated) data during the validation trajectory. It is important that the
validation results obtained using a validation tool are always reproducible [8].
Without tool support, the validation engineer has to resort to general engineer-
ing practices and record all validation activities into a logbook. Consequently,
the quality of the validation process depends on the accuracy of the validation
engineer. This is clearly undesirable.

When an error is found in (one of) the model(s) of the system under val-
idation, the model(s) should of course be corrected. Furthermore, all models
which have been verified previously and which are affected by the error should
be re-verified. It is tedious and errorprone to re-validate all previous models and
properties manually. Both the logging and the re-verification activities should
be automated and - ideally - be integrated into the validation tool.



2.2 Current management support in Xspin

Since version 3.1.2, Xspin includes a “LTL Property Manager”, which stores the
following information on a LTL verification run into a single file with extension
.ltl:

– the never claim that is generated from the LTL property;
– definitions (#defines) of the propositions that are used in the LTL property

(and in the corresponding never claim);
– user provided notes; and
– the output of the verification run.

The .ltl file uses #ifdef constructs1 to isolate the Promela fragments from the
user provided notes and the verification results. Consequently, the file is liable
to being updated every time a verification run is executed: previous verification
results will be overwritten unless the user saves each verification run in a different
.ltl file.

Although the “LTL Property Manager” is clearly a step in the good direction
with respect to a controlled verification trajectory, some essential ingredients of
the verification run are not recorded:

– the options to come to the verification results:
• options to Spin to generate the pan verifier;
• options to the C compiler to compile the pan verifier; and
• options to the pan verifier to steer the verification run.

– the Promela model on which the verification was performed;
– the trace (trail) to the counterexample, in case the property was violated.

The last aspect becomes even more apparent when the property that is being
checked requires the existence of a counterexample to be satisfied. This is the
case for all existential LTL properties of the type “does there exist an execution
path where P becomes true?”. The reason for this is that when checking a LTL
property Q, Spin will implicitly check Q for all execution paths. Consequently,
a property like “does there exist an execution path where P becomes true” is
not expressible in LTL. Instead one has to resort to check that “for all execution
paths, P is always not true” (i.e. in LTL: 2!P ). If this transformed property
is not valid, Spin will find a counterexample showing the execution path where
P will become true. In this case the counterexample is the proof of the original
property.

Spin is appraised most for its model checking capabilities. Besides these ver-
ification features, Spin includes a very helpful simulator, that can be used for
debugging, sanity checks, rapid prototyping, simulation of generated counterex-
amples, etc. It is remarkable that Xspin has some limited support for verification
management but has none for simulation.
1 Promela source text is (by default) preprocessed by the standard C preprocessor,

named cpp, before being parsed by Spin itself. The #ifdef directive is normally used
for the conditional compilation of source text (i.e. C).



Although Xspin’s “LTL Property Manager” is more than other validation
tools have to offer, it is too primitive to use in an extensive validation project
spanning more than a few days. Within such projects, we experienced that the
validation process was seriously hampered by the fact that we had to record all
our validation activities with Spin by hand. Instead of concentrating on the vali-
dation process, we had to invent schemes to keep track of the various validation
models, the simulation traces, the verification results, etc. We also tried to use
literate techniques to structure the validation process [18], but had to conclude
that these techniques do not scale up for larger projects.

2.3 Software Configuration Management

The problems of managing the data that is generated during the validation phase
relate to the maintenance problems found in software engineering [17]. This is not
surprising as, in a sense, validation using a model checker involves the analysis of
many successive versions of the model of a system. To tackle these maintenance
problems within software engineering a lot of research has been carried out in
the area of so called “Software Configuration Management”.

Software Configuration Management (SCM) [1, 11] is the software engineer-
ing discipline of managing the evolution of large and complex software systems
[21]. From the IEEE Standard Glossary of Software Engineering Terminology
(Standard 729-1983 [10]):2

Software Configuration Management is the process of identifying and
defining the items in a system, controlling the release and change of
these items throughout the life-cycle, recording and reporting the sta-
tus of items and change requests, and verifying the completeness and
correctness of items.

The items that comprise all information produced as part of the software engi-
neering process are collectively called a software configuration. A general SCM
system has the following operational aspects to manage the software engineering
process [5, 10, 17]:

– Identification. An identification scheme reflects the structure of the product,
identifies components and their type, making them unique and accessible in
some form.

– Version control. Version control combines procedures and tools to manage
different versions of configuration objects that are created during the soft-
ware engineering process.

– Change control. Change control combines human procedures and automated
tools to provide a mechanism for the control of change.

2 SCM is a widely used term, with an equally wide range of meanings. See
http://www.enteract.com/˜bradapp/acme/scm-defs.html for an extensive list of alter-
native SCM definitions.



– Audit and review. Validating the completeness of a product and maintaining
consistency among the components by ensuring that the product is a well-
defined collection of components.

– Reporting. Recording and reporting the status of components and change
requests, and gathering vital statistics about components in the product.

Naturally, a SCM system should be supported by automated tools. Tools for ver-
sion control and build management are essential. Furthermore, SCM tools should
provide the developer with a “sandbox” environment: a consistent, flexible and
reproducible environment to compile, edit and debug software [13]. SCM tools
have greatly evolved over the last twenty years. Tools have gone from file oriented
versioning utilities to full blown repository-based systems that manage projects
and support team development environments, even across geographic locations.
In this paper, a discussion on particular SCM tools is clearly out of scope. The
interested reader, however, is invited to visit the “Configuration Management
Yellow Pages” page on Internet [22] or consult the Proceedings of the Annual
Workshops on Software Configuration Management. Conradi and Westfechtel [3]
give an extensive overview of the current state of art of SCM and SCM systems.

Definitions Below we define the conceptual framework for the rest of this paper,
borrowing terminology from the SCM community, in particular [3, 21].

– object. An object (or item) is any kind of identifiable entity put under SCM
control.

– version. A version represents a state of an evolving object.
– revision. A version intended to supersede its predecessor is called a revision

(historical versioning).
– variants. Versions intended to coexist are called variants (parallel version-

ing).
– configuration. A configuration is a consistent and complete version of a com-

posite object, i.e. a set of object versions and their relationships.
– product space. The product space is composed of the objects and their rela-

tionships. The product space is organized by relationships between objects,
e.g. composition relationships and (build) dependency relationships.

– version space. The version space is composed of the set of versions. The
version space is often organized into a version graph or version grid.

2.4 SCM and Xspin

It is clear that the functionality of SCM systems and tools can be of considerable
value to control and manage the validation phase. For the validation trajectory
using Xspin we are mainly interested in the identification of validation objects,
version control over these validation objects and reporting facilities on these
objects. The change control functionality and the support for audit and review
supported by SCM seem less applicable to validation.



During the validation phase, a validation object records the results of a val-
idation activity. For validation using Xspin, three validation objects can be dis-
tinguished: the Promela model, the property and the validation result. Of these
objects, several versions exist during the validation phase.

– Model M . M is the model of the system under validation. Mi denotes the i-th
version of model M . A version can either be a variant or a revision. Within
the validation framework, variants correspond to different abstractions of
the same model M , whereas revisions are different versions of the same
abstraction.

– Property φ. A property φ is a property which should hold for the model M
under verification.

– Validation results R. R is a set of validation results. The set Ri denotes the
set of validation results obtained by executing the validation tool on the
model Mi. An element from the set Ri is denoted by ri,j . Every element ri,j

contains the outcome (e.g. a file) of the j-th validation on Mi and additional
information that depends on the type of validation. For instance, when ri,j

corresponds to a simulation run, the simulation goal and observations on
the simulation should be added to ri,j . Whereas for a verification run, apart
from the verification goal (e.g. a LTL property), the directives and options
to obtain the verifier should be added to ri,j .

The versioned product space of the validation phase now consists of all versions
of all validation objects during the validation of the model M .

3 Xspin/Project

In this section the Xspin/Project tool is discussed. Xspin/Project is an extension
of Xspin using the version control system PRCS [15]. Xspin/Project controls and
manages the validation activities when using Xspin. First the choice for the
underlying version control system PRCS is motivated. Then the architecture
and the functionality of Xspin/Project are discussed.

3.1 PRCS

To integrate management facilities into a validation tool like Xspin, the func-
tionality of full-blown state-of-the-art SCM tools is not needed. For a controlled
and reproducible validation phase, version control and build-management are
most important. A file based version control tool like RCS [20] in combination
with a basic build-management tool like make [6] appeared to be sufficient for a
prototype version of Xspin/Project.

Concurrent Version System (CVS) [2] - the de-facto version control system
among free systems - seemed to be unnecessarily complex with respect to oper-
ation, administration and user interface to be easily integrated into Xspin. The
author was attracted by the simplicity of PRCS and decided to use this version
control system for a first prototype version of Xspin/Project.



PRCS - the Project Revision Control System [15] - is a version-control system
for collections of files with a simple operational model, a clean user interface and
high performance. PRCS is freely available from [14]. The current version of
PRCS is implemented using RCS [20] as its back-end storage mechanism.

PRCS has some additional features which makes it well suited for integration
into Xspin:

– Conceptually close to validation objects. PRCS defines a project version as
a labeled snapshot of a group of files, and provides operations on project
versions as a whole. Thus a project version naturally relates to a specific
validation model and all its validation results.

– Version naming scheme. PRCS’ version naming scheme (see below) corre-
sponds closely to the version concepts from the validation framework: ab-
straction and revisions of these abstractions.

– Simple operational model. In PRCS, each project version is identified by a
single distinguished file, the version descriptor; this file contains a description
of the files included in that particular version. Adding files (i.e. validation
results) only involves adding the filename to this version descriptor file.

Terminology A project in PRCS is a collection of (project) versions.3 A version
is a snapshot of a set of files arranged into a directory tree. Every version has a
name of the form m.n, where m is the major version name and n is the minor
version name. A major version name m is a string chosen by the user, whereas
the minor version name n is a positive integer, assigned consecutively by the
system. A PRCS repository contains a group of projects. Two basic operations
are available to save and load versions to and from the repository respectively:

– checkin: a complete version is put into the repository;
– checkout : reconstructs a complete version, identified by the project and ver-

sion name.

The PRCS concepts correspond nicely with the concepts from the validation
framework. A project corresponds with the complete validation trajectory of a
system. Each version of the project is a Promela model Mi together with its
validation results Ri. In a version m.n, the major version name m corresponds
with the particular abstraction of the model M and the minor version name n
corresponds with the n-th revision of the particular abstraction. The fact that
the major version name m in PRCS is an arbitrary string can be used to give
appropriate names to the different abstraction models.

3.2 Architecture

Figure 1 shows the architecture of Xspin/Project. Xspin/Project is an extension of
Xspin. The Project-part of Xspin/Project is responsible for collecting the Promela

3 A PRCS project corresponds to the term configuration of SCM.



PRCS

Project

Xspin

PRCS repository

description.log

validation results
Promela models

Tcl/Tk

Fig. 1. Architecture of Xspin/Project.

models and validation results from Xspin and passing them to PRCS. Further-
more, the Project-part integrates a visual front end to PRCS into Xspin. The
Project-extensions are written in Tcl/Tk [16].

Every Promela model Mi can be saved into the PRCS repository. Furthermore,
the contents of any message box of Xspin which is the result of some validation
run (i.e. ri,j) can be saved into the PRCS repository. Xspin/Project uses a special
file, i.e. description.log in which it stores additional information about the
validation files (e.g. validation goals, options, directives, timestamps) into the
current version of the project.

Xspin/Project needs PRCS version 1.2 [14] to be installed. PRCS on its turn
needs RCS version 5.7 as its underlying version control system. Xspin/Project is
available from http://www.cs.utwente.nl/˜ruys/xspin-project.

3.3 Overview

In a nutshell the current version of Xspin/Project can be characterized as follows:

– Xspin/Project implements a visual front end to PRCS into Xspin. To the
user, Xspin/Project is presented as a conceptual database of Promela models
together with their validation results.

– The user of Xspin/Project can save all its validation activities into the PRCS
database. Furthermore, the user is given the possibility to annotate these
validation activities.

– All essential verification data such as directives and options to the C compiler
and the pan verifier are automatically saved into the PRCS repository.

– Xspin/Project ensures the integrity of the Promela models and their validation
models.

Xspin/Project uses plain PRCS as its underlying configuration management tool.
This means that all additional powerful features (like diff and merge) of PRCS



Fig. 2. Screen capture of a validation session with Xspin/Project.

are also available to the user. However, these advanced features of PRCS are not
(yet) available from within Xspin/Project. To exploit these features, one should
use PRCS’ command-line options.

3.4 User awareness

Figure 2 captures a screenshot of a validation session with Xspin/Project. The
added functionality of Xspin/Project provides the user with a “sandbox” environ-
ment: a consistent, flexible and reproducible environment to edit and validate
Promela models. The user should not be unnecessarily hampered during the
validation trajectory. Below we discuss the user awareness with respect to the
features added by Xspin/Project on top of the original Xspin.

– Accessing PRCS. An extra toplevel menu has been added to Xspin: Project.
This menu can be used to access most Xspin/Project functions, like:

• Starting a new project.
• Opening an existing project.
• Loading (checking out) a particular Promela model (i.e. an explicit ver-

sion of the project).
• Saving (checking in) a particular Promela model and all its recorded

validation results.



• Adding files explicitly to the current version. This may be useful when
non-Xspin files are relevant to a validation run or when one has forgotten
to save a Xspin file into the repository.

• Cleaning up the directory. Using this function all files that have been
saved previously in the repository are removed from the current direc-
tory.

– Saving validation results. To every dialog box containing validation output
(e.g. simulation traces, message sequence charts) an extra button has been
added: “Save into Repository”. When this button is pressed, Xspin/Project
shows a dialog box where the user can annotate the particular file with some
notes on the particular validation run. The file and the (optional) notes are
subsequently saved into the repository. Furthermore, for verification runs,
Xspin/Project saves all options that are needed to build and run the pan
verifier into the description.log file.

– Forcing version integrity. When the user has saved the results of a validation
run into the current version of the project, the corresponding Promela model
will be locked: the user can only perform additional validation runs on the
model. Only when the complete version has been saved (checked in) into
the repository, the Promela model will be unlocked again for user edits. This
strategy of Xspin/Project is necessary to keep all models and their validation
results accurate.4

Software development vs. validation When using a SCM tool to control the soft-
ware development process, a version of the ‘product’ consists of several files and
rules to construct the product. Older versions correspond to inferior or less stable
versions (containing bugs) or to versions of the product with fewer features.

In Xspin/Project, PRCS is used as a database to store and log all validation
activities. Each different Promela model is stored together with the validation
results on that particular model. In contrast with software development, earlier
versions of the model are not inferior or less stable versions, but should be
considered as different abstractions of the same model.

4 Conclusions

The success of model checking tools is mainly based on the bugs and errors
that those verification tools have exposed in (existing) systems and standards.
Now that model checking tools are becoming more widespread, the application
of model checkers is slowly shifting from debugging to verification.

4 This strict behaviour does not restrain the user when constructing a new Promela
model. During the development of a Promela model, one usually performs several
sanity checks (mostly simulation runs) on intermediate models before actual veri-
fication runs are tried. Naturally, these sanity runs do not have to end up in the
validation repository. Therefore, the user is not forced to save all validation files but
may only optionally do so.



This paper discusses the need for systematic control and management over
the (generated) data when using an analysis tool like Spin for the validation of
large systems. The strength of SCM systems and tools has briefly been discussed.
We have concluded that the full power of SCM systems is not needed to manage
the validation activities; a flexible version control mechanism is sufficient to
manage the validation phase when using Xspin.

We have presented Xspin/Project, an integration of the version control system
PRCS into Xspin. The current version of Xspin/Project presents the user with a
conceptual database for Promela models and their validation results. To guide
the verification engineer even further, we are currently working on the following
extensions to Xspin/Project:

– Reporting : adding reporting facilities to generate a detailed overview of the
complete validation trajectory.

– Reverification: when a Promela model has been altered, all previous verifi-
cation runs on the model should be automatically re-verified.

– Reuse: reusing verification options of previous verification runs to verify new
versions of Promela models.

– Compare: comparing different versions of Promela models (using PRCS’ diff
command) to get information on the abstractions and revisions made during
the validation trajectory.

But even without these additions the current version of Xspin/Project already
promises to be a great help in managing the version space explosion.

References

[1] Wayne A. Babich. Software Configuration Management: Coordination for team
productivity. Addison-Wesley, Reading, MA, 1986.

[2] Brian Berliner. CVS II: Parallelizing Software Development. In Proceedings of the
Winter 1990 USENIX Conference, January 22-26, 1990, Washington DC, USA,
pages 341–352, Berkeley, CA, USA, January 1990. USENIX.

[3] Reidar Conradi and Bernhard Westfechtel. Version Models for Software Configu-
ration Management. ACM Computing Surveys, 30(2):232–282, June 1998.

[4] Pedro R. D’Argenio, Joost-Pieter Katoen, Theo C. Ruys, and G. Jan Tretmans.
The Bounded Retransmission Protocol must be on time! In Ed Brinksma, editor,
Proceedings of the Third International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’97), number 1217 in Lecture Notes
in Computer Science (LNCS), pages 416–431, University of Twente, Enschede,
The Netherlands, April 1997. Springer Verlag, Berlin.

[5] Susan Dart. Concepts in Configuration Management Systems. In P.H. Feiler,
editor, Proceedings of the Third International Workshop on Software Configura-
tion Management (SCM’91), pages 1–18, Trondheim, Norway, June 1997. ACM
SIGSOFT, ACM Press, New York.

[6] Stuart I. Feldman. Make – A Program for Maintaining Computer Programs.
Software – Practice and Experience, 9(3):255–265, March 1979.

[7] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, Englewood Cliffs, New Jersey, 1991.



[8] Gerard J. Holzmann. The Theory and Practice of a Formal Method: NewCore. In
Proceedings of the IFIP World Congress, Hamburg, Germany, August 1994. Also
available from URL: http://cm.bell-labs.com/cm/cs/doc/94/index.html.

[9] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, May 1997. See also URL:
http://netlib.bell-labs.com/netlib/spin/whatispin.html.

[10] IEEE. IEEE Standard Glossary of Software Engineering Terminology: IEEE Stan-
dard 729-1983. IEEE, New York, 1983.

[11] IEEE. IEEE Guide to Software Configuration Management: ANSI/IEEE Std
1042-1987. IEEE, New York, 1987.

[12] Donald E. Knuth. Literate Programming. The Computer Journal, 27(2):97–111,
May 1984.

[13] David B. Leblang and Paul H. Levine. Software Configuration Management: Why
is it needed and what should it do? In Jacky Estublier, editor, ICSE SCM-4 and
SCM-5 Workshops – Selected Papers, number 1005 in Lecture Notes in Computer
Science (LNCS), pages 53–60. Springer Verlag, Berlin, 1995.

[14] Josh MacDonald. PRCS – Project Revision Control System. Available from URL:
http://www.xcf.berkeley.edu/˜jmacd/prcs.html.

[15] Josh MacDonald, Paul N. Hilfinger, and Luigi Semenzato. PRCS: The Project
Revision Control System. In B. Magnusson, editor, Proceedings of the ECOOP’98
SCM-8 Symposium on Software Configuration Management (SCM’98), number
1439 in Lecture Notes in Computer Science (LNCS), pages 33–45, Brussels, Bel-
gium, July 1998. Springer Verlag, Berlin.

[16] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1994.

[17] Roger S. Pressman. Software Engineering – A Practioner’s Approach. McGraw-
Hill, New York, third edition, 1992.

[18] Theo C. Ruys and Ed Brinksma. Experience with Literate Programming in the
Modelling and Validation of Systems. In Bernhard Steffen, editor, Proceedings of
the Fourth International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’98), number 1384 in Lecture Notes in Computer
Science (LNCS), pages 393–408, Lisbon, Portugal, April 1998. Springer Verlag,
Berlin.

[19] Theo C. Ruys and Rom Langerak. Validation of Bosch’ Mobile Communication
Network Architecture with SPIN. In Proceedings of SPIN97, the Third Inter-
national Workshop on SPIN, University of Twente, Enschede, The Netherlands,
April 1997. Also available from URL:
http://netlib.bell-labs.com/netlib/spin/ws97/ruys.ps.Z.

[20] Walter F. Tichy. RCS – A System for Version Control. Software – Practice and
Experience, 15(7):637–654, July 1985.

[21] Walter F. Tichy. Tools for Software Configuration Management. In J.F.H. Win-
kler, editor, Proceedings of the International Workshop on Software Version and
Configuration Control, pages 1–20, Grassau, Germany, January 1988. Teubner
Verlag.

[22] André van der Hoek. Configuration Management Yellow Pages. Available from:
http://www.cs.colorado.edu/users/andre/configuration management.html, 1999.


