
Formal Methods Adoption:
What’s working, What’s not!

Dan Craigen

ORA Canada
1208 ONE Nicholas

Ottawa, Ontario, K1N 7B7
CANADA

dan@ora.on.ca
WWW home page: http://www.ora.on.ca

Abstract. Drawing from the author’s twenty years of experience in
formal methods research and development, and, particularly, with the
EVES-based systems, this paper provides personal impressions on what
is and what is not working with regards to the adoption and application
of formal methods.
As both the community’s understanding of technology transfer issues
and formal methods technology improve, one is optimistic that formal
methods will play an increasingly important role in industry. However,
significant impediments continue to exist with, perhaps, the increasing
complexity of systems being both a blessing and a curse.

1 Introduction

Drawing upon my twenty years of experience in formal methods R&D, I will
discuss personal impressions on what is and what is not working with regards to
the adoption and application of formal methods.1 I will structure this paper pri-
marily around a narrative of the history of my group’s work on formal methods.2

Some conclusions are drawn in 20-20 hindsight. I will generally eschew technical
discussions of our own technology. The citations provide appropriate pointers
and many of our technical reports are available through our web site.

2 Genesis: m-EVES

Our work on formal methods grew out of a mid- to late-70s DARPA motivated
effort in developing a verifiable programming language, ultimately named Euclid.
1 I am writing this paper as we introduce our newborn daughter (Cailin) into our

family (which also includes Liz and Ailsa). Sleep deprivation and various distractions
have taken their toll on what I had hoped to include herein.

2 Currently, the formal methods group at ORA Canada consists of myself, Sentot
Kromodimoeljo, Irwin Meisels and Mark Saaltink. Bill Pase (automated deduction)
and Karen Summerskill (technical editor) are instrumental past members of the
group.



2

Euclid was a Pascal derivative which was provided a Hoare-style axiomatization,
extended Pascal in various ways to support larger-scale system programming,
and even had a compiler written for much of the language. Initially, our R&D
plans were to develop a Euclid Verification and Evaluation System (hence, the
acronym, EVES3). However, circumstances would dictate otherwise.

In the early 80s, Bill Pase and the author were sponsored to review and assess
U.S. efforts in developing program verification systems (Affirm, the Gypsy Ver-
ification Environment, the Stanford Pascal Verifier, and HDM [the Hierarchical
Design Methodology]).4 This was a great opportunity to come to terms with
the then cutting-edge of technology in various disciplines, including automated
deduction, software engineering and language design. One of our observations
resulting from the survey and subsequent experimentation, was that the math-
ematical underpinnings of the program verification systems were suspect (actu-
ally, generally unsound). To be fair, however, it must be noted that the prime
goals of the researchers were to show that such verification systems could be de-
veloped and applied. Consequently, it was prudent to ask whether these systems
could or should be used to reason about security- or safety-critical applications.
We felt that appropriate mathematical foundations were necessary.

As the survey came to conclusion, sponsorship for developing EVES was ob-
tained. The initial intent was to use results from the U.S. program verification
efforts (including the possible use of system components) and to enhance Eu-
clid (resulting in a language called Ottawa Euclid) with a formal specification
framework. To cut a long story short, we ended up rejecting Euclid (and Ottawa
Euclid) because of language and logic pathologies and the inimical nature of the
pathologies towards our goal of reasoning about security-critical applications.
Furthermore, we were advised by our colleagues in the automated deduction
community that it would be best to develop our own automated deduction facil-
ity (ultimately called Never). With these decisions, we launched into language
design and prover development. A somewhat risk-adverse approach was taken
in that we were to develop a proof-of-concept system for a reasonably simple
programming language. Consequently, we developed the m-EVES system [1, 2]
with its programming (somewhat akin to a cleaned up Pascal with libraries) and
specification (essentially, first order type theory) language (m-Verdi) and prover
(m-Never). As part of the language design, we developed the underlying seman-
tics and proof theory. m-Never was a nifty integration and enhancement of ideas
drawn from the Stanford Pascal Verifier, Affirm, Gypsy, and the Boyer-Moore
prover). Subsequently, we demonstrated the use of m-EVES on (somewhat large)
toy examples.

In retrospect, there were a number of observations and lessons that came out
of the m-EVES exercise:

3 Though we continue to use the EVES acronym, (for example, in Z/EVES) we have
long ago jettisoned the underlying interpretation.

4 From a technology transfer perspective, it is interesting to note that Bill and I
became conduits for information flow between the research groups which, otherwise,
had been working independently of each other.



3

Technology driven: The project was technology driven. We focused on engi-
neering and R&D issues as it pertained to a proof-of-concept comprehensive
and sound verification environment. Except for the consideration that our
technology would be used for critical systems, we gave no real consideration
of how clients might apply the technology. Be customer-centric. However, be
wary, for sometimes the customer does not have it right!

Puritanical: As the overall project goals were to support the development of
security- (later safety-) critical systems, we were serious about the mathe-
matical underpinnings for the system. This has both positive and negative
consequences, which were accentuated with EVES and are discussed in the
next section. We were religious and inflexible in our certitude.

Controlled distribution: In the mid-80s, many North American systems were
tightly controlled as to accessibility. This had the deleterious effect of con-
straining the development of user communities and of independent feedback.

Technology transfer: We gave only limited consideration of actual transfer
of the technology. While we embodied what we viewed as good software
development principles, we gave no real consideration to commercialization
of m-EVES nor of how the technology might be adopted by other organi-
zations. A few other organizations did successfully use the technology, but
these generally were early adopters following technical interests. Be prepared
to take the whole product perspective. A substantial amount of boring stuff
needs to be developed to really provide a useful product.

The completion of m-EVES was a significant technical milestone and it led
to the almost immediate effort in developing EVES. In retrospect, we should
have delayed moving onwards with EVES until we had given m-EVES more
substantial trials and considered its linkage into our sponsors’ organizations.

3 Let’s do it again!

In the mid-80s we got to do it all over again, both with respect to surveying
technology and moving forwards with the EVES development.

3.1 Verification Assessment Study

Firstly, of some note, was the Verification Assessment Study [3] led by Dick Kem-
merer (University of California at Santa Barbara). This study brought together
representatives of Enhanced HDM (Karl Levitt, then at SRI International), the
Gypsy Verification Environment (Don Good, then at UT-Austin), Affirm (Dave
Musser, then at GE Schenectady) and FDM (Debbie Cooper, then at SDC,
Santa Monica), along with myself as an independent participant. The primary
idea for the Study was to allow for the sharing of technical details between the
participants and help form the basis for future development. This experience
allowed me to update my knowledge of these systems and provided some input
into the ongoing EVES development.



4

Of some note, is the then view of what a mid-80s state-of-the-art verification
system would look like, if only to consider how we have progressed since then.
The VERkshop III proceedings [4] identified such a system as consisting of:

– a specification language based on first-order, typed predicate calculus.
– an imperative language derived from the Pascal/Algol 60 family of program-

ming languages.
– a formal semantic characterization of the specification and implementation

languages.
– a verification condition generator (itself a major research challenge of the

mid-70s).
– a mechanical proof checker with some automated proof generation capabili-

ties.
– a (small) supporting library of (reusable) theorems.
– a glass (as opposed to hard copy) user interface, possibly using bit mapped

displays.
– a single system dedicated to one user at a time.
– the embedding of these components in a modest programming environment.

As it turned out, our work with EVES was aiming to achieve at least these
requirements.

Technology transfer was discussed during the study and efforts were made
by the sponsors to make the verification systems available for use on a Multics
system through the ARPAnet. However, there was still contention between those
who felt a more open distribution of technology was appropriate and those who
did not. As noted above, the controlled distribution of many systems impeded
adoption.

3.2 EVES

With the m-EVES proof of a concept deemed a success (at least in our minds and
those of our sponsors), we moved forward (in the mid-80s) with the production
EVES system [5, 6]. With EVES, we would not be making some of the sim-
plifying assumptions of m-EVES. However, a key continuing tenet to our work
was that EVES would be used for the specification and development of critical
applications and, consequently, sound mathematical foundations were crucial.

Our first important decision was which mathematical framework to use. The
expressiveness we wanted could be found in either untyped set theory or (our
initial bias) higher-order logic. We chose set theory since, in part, we felt it would
be an easier adoption channel and had better automated deduction support.

EVES was a technical success. We generally achieved all the goals that we set
out for. We developed a language (Verdi) that supported the expression of gen-
eral mathematical theories, specification of programs (pre/post form), sequential
imperative constructs, and a reasonable library mechanism. The prover brought
together ideas from across the automated deduction domain (Boyer-Moore style
heuristics in a richer logic, decision procedures, good mix of automation and



5

user direction). A solid mathematical basis in which the language semantics
were described and the proof theory shown to be sound. The development of
an independent proof checker mechanism that validated the proofs found by the
prover.5 The validation of putative proofs is an important requirement for crit-
ical applications. And a rigorously developed compiler, in which key passes of
the compiler were rigorously specified and traceability from the compiler source
to the compiler specification demonstrated. EVES has been successfully used
(by both ourselves and external groups) on a number of applications including
fielded safety- and security-critical applications.6

However, being able to demonstrate a successful project from a technical
perspective is different from actually having the technology transition into gen-
eral use. It must be admitted that EVES has not been successfully transfered. I
believe there are a number of reasons; many of which generalize to other efforts
in formal methods.

Language: Not many people (especially within industrial contexts) wish to
learn yet another specification or programming language. Verdi was spare
with respect to its notation (basically akin to Lisp s-expressions). Also, the
programming component was restrictive. One interesting lesson was that our
design was not usually restricted by formal semantics concerns, but by logic
constraints. For example, we excluded global state because of the difficulties
resulting in the Verdi inference rules. The typeless basis also seemed to be an
impediment. The equivalent of type reasoning is usually a part of the proof
effort. This meant that feedback on simple specification infelicities came a
bit later than necessary. Finally, I generally concluded that language design
was more trouble than it was worth. No matter what decisions one made,
there were always critics!
Industry will consider adopting new languages if there are significant com-
mercial reasons for doing so. The attributes of formal semantics and (support
for mechanized) proof are very low on the priority list and languages designed
with these latter attributes as their main characteristic just will not transfer.

Ambitious: We were highly ambitious in our language design goals and for
the overall system. I know of no system or research effort that has cast as
wide a net as the EVES project. By choosing such ambitious goals, we, in
effect, delayed our “coming out party.” It also meant that we were subject to
derogation. By the 90s, if not earlier, the concept of “program verification”
had engendered a pejorative tone. Though EVES supported the expression

5 Hence, we separated issues pertaining to proof discovery (using the prover) and to
proof validity. For proof discovery, we were free to use any mechanisms (including
extra-logical mechanism) to help find proofs. The use of integer linear programming
techniques in the decisions procedures is one example. The (comparatively) smaller
proof checker was an embodiment of the EVES logic proof rules, was carefully scru-
tinized, and is reasonably reviewable by independent parties.

6 Numerous technical reports on all these aspects of EVES are available at our web
site.



6

and analysis of general mathematical concepts, competitors would sometimes
deride our efforts as purely “program verification.”
For ambitious projects, attempt to structure them in such a manner that
useful products and results can be released throughout the project time
frame.

Complexity: EVES is a complex system, as are most serious verification sys-
tems. The complexities of formal specification, heuristic proof, etc., make it
a difficult system to come to terms with.
Industry does not need to add complex development and analytical tech-
nologies atop of already complex processes and products. While education
will, in the long term, help the insertion of formal methods technology, crafty
integration and hiding of complex technologies is likely to be more successful.

Isolated: As with most verification systems, EVES was a stand-alone system.
This isolation (both physical and conceptually) makes it difficult to integrate
into industrial processes.
Integrate, integrate, integrate! We have to bite the bullet and accept the
realities of current hardware and software development processes. Aim to
improve and evolve current processes. It is highly unlikely that we will suc-
ceed with discontinuous innovations, even though this is a hallmark trait of
high-technology.

Publication: We did not actively publish our work. A substantial amount of
quality R&D was performed and published in technical reports. However,
for various reasons, we did not actively publish (publicize!) our efforts. Con-
sequently, the broader community was not necessarily aware of our achieve-
ments.

Not open: EVES was a closed system. We gave no allowance for users to add
functionality (except through the addition of reusable theories). This limited
certain R&D opportunities.
Where possible, we need to open our systems; perhaps to the point of dis-
tributing open source software. At the very least, we need to define system
APIs so as to support the integration process.

Distribution impediments: Though substantially eased by the early- to mid-
90s, there were still some distribution impediments early on.
And we still see it today, where governmental security concerns are being
replaced by corporate priority and market advantage issues.

4 Technology Transfer

4.1 Survey of Industrial Applications

In the early 90s we started to come to terms with technology transfer. In 1992/3,
Susan Gerhart (then at Applied Formal Methods), Ted Ralston (then at Ralston
Research Associates), and I embarked on what became a fairly influential survey
of industrial applications of formal methods [7–9]. In this survey we looked at



7

twelve formal methods projects in North America and Europe.7 The objectives
of the study were threefold:

– To better inform deliberations within industry and government on standards
and regulations.

– To provide an authoritative record on the practical experience of formal
methods to date.

– To suggest areas where future research and technology development are
needed.

I will not rehash the conclusions of the survey, but one of the consequences
of the effort was to apply an “innovation diffusion” model to the survey data [9].
As I believe the analytic framework is useful for understanding formal methods
adoption, I will take a few moments to discuss the framework. Formal methods
researchers would do worse than to consider their adoption trajectories in terms
of these criteria (and of Chasm Model, discussed later). As of the mid-90s, we
concluded that formal methods advocates were facing significant, though not
unique, impediments in diffusing their technology to industry. The innovation
diffusion model provides a framework for understanding the forces advancing
and/or retarding the diffusion of formal methods. The framework is based on
work by Rogers [10] and others.

As discussed in [9], we identified the following criteria:

Relative advantage: An analysis of the technical and business superiority of
the innovation over technology it might replace. Until recently, formal meth-
ods did not compellingly pass the economic profitability test. However, espe-
cially with the use of model checking in Hardware verification, the balance
is shifting. Achieving reliability levels through testing solely is running into
problems with complexity and size.
The lack of a compelling economic argument often relegated formal methods
to (a perceived ghetto of) security- and safety-critical systems, where the
cost of system failure is inordinate. But, even here, adoption was minimal.

Compatibility: An analysis of how well the innovation meshes with existing
practice. Typically, formal methods systems have not meshed well with exist-
ing practice. However, improved recognition of this issue is resulting in the
insertion of formal methods-based technology into tools that are actually
used by developers.
It is important to note that compatibility is not only at the tool level, but at
a social level, in that the proposed innovations must fit well with community
values. Regulatory environments can be particularly difficult to penetrate if
only for the conservative view of change.

Complexity: An analysis of how easy the innovation is to use and understand.
For large scale adoption, we have to hide some of the complexity of formal
methods. Complexity can be mitigated by aggressive educational programs,
push-button tools, and a formal methods taxonomy.

7 A clear oversight of the survey was its lack of projects using model checking.



8

Trialability: An analysis of the type, scope and duration of feasibility experi-
ments and pilot projects.

Observability: An analysis of how easily and widely the results and benefits
of the innovation are communicated.

Transferability: An analysis of the economic, psychological and sociological
factors influencing adoption and achieving critical mass. Principal factors
are:

Prior technology drag. The presence of large and mature installed bases for
prior technologies.

Irreversible investments. The cost of investing in the new technology.

Sponsorship. The presence of an individual or organization that promotes
the new technology. Promotion includes subsidization of early adopters and
the setting of standards.

Expectations. The benefits accruing from expectations that the technology
will be extensively adopted.

Adoption of a superior innovation may still be negated by concerns, on the
part of early adopters, arising from two early adoption risks: “transient incom-
patibility” and “risks of stranding.” Transient incompatibility refers to risks
accruing from delays in achieving a sufficiently large community interested in
the new innovation. Stranding refers to the risks arising due to the failure to
achieve critical mass.

We applied the above criteria to our survey data and concluded at that time,
correctly I believe, that formal methods have a low adoption trajectory. See [9]
for a detailed discussion of applying this framework to formal methods.

It is important to note that a low adoption trajectory is not necessarily
inherent to formal methods. Changing perspectives on how to use the technology
effectively, the development of new capabilities and the creation of new markets
may all result in enhanced adoption for key technical facets.

4.2 Adopting Z

In addition to the survey, we were also looking for means to enhance the adop-
tion rate of our EVES technology. This search was manifested by our efforts, for
example, to remedy the syntax (resulting in s-Verdi) and to port EVES to Win-
dows. However, the main manifestation was in our decision to link our EVES
technology with Z, resulting in Z/EVES [11–13]. This meshing of technologies
has been particularly effective with Z/EVES now distributed to over forty coun-
tries.

When we viewed the Z world we found a world in which there were an ex-
tensive number of consumers, a reasonable pedagogical literature, an incomplete
language semantic definition and, generally, lousy tool support. If one negates



9

the previous four conjuncts, one had a reasonable description of the EVES world.
A union seemed to make sense! Furthermore, sponsorship was available to pur-
sue the work. Though we were certain that technical difficulties would arise in
linking Z with EVES, we were also certain of the benefits. We also noted that
many of our North American colleagues derided Z as a language for which me-
chanical reasoning was impossible and showed absolutely no interest for tapping
into a broader community. It is true that Z presents some challenges to mech-
anized proof support, but these are offset by Z’s facilities for the concise and
clear specifications. Z/EVES shows that powerful proof support can, indeed, be
provided for Z. One does not necessarily have to design new languages that,
arguably, have been designed for mechanized proof. Such efforts, while useful
R&D, will not succeed in transitioning to a broad user community.

Z/EVES integrates a leading specification notation with a leading automated
deduction capability. Z/EVES supports the entire Z notation. The Z/EVES
prover provides powerful automated support (e.g., conditional rewriting, heuris-
tics, decision procedures) with user commands for directing the prover (e.g.,
instantiate a specific variable, introduce a lemma, use a function definition). We
have automated much of the Z Mathematical Toolkit and include this extended
version with the Z/EVES release.

Z/EVES supports the analysis of Z specifications in several ways:

– syntax and type checking,
– schema expansion,
– precondition calculation,
– domain checking (i.e., Are functions applied only on their domains?),
– refinement proofs, and
– general theorem proving.

The range of analysis supports an incremental adoption of Z/EVES capabil-
ities. For example, very little knowledge of the theorem prover is required for
syntax and type checking, and schema expansion. Even with domain checking,
many of the proof obligations are easily proven; and for those that are not, of-
ten the generation of the proof obligation is a substantial aid in determining
whether a meaningful specification has been written. It has been our experience
that almost all Z specifications are materially improved through syntax and type
checking conjoined with domain checking (even if only performed informally).
Consequently, for very little effort on the part of the Z/EVES user, material
returns accrue from analyses that fall short of the full use of the analytical
capabilities of Z/EVES.

Z/EVES accepts its input in the markup format used by the LATEX system
and by Spivey’s “fuzz” typechecker. Additionally, the Z/EVES interface is ba-
sically Emacs (or a Windows-related clone). While the use of LATEX and Emacs
are fine within the research community, both are impediments to a broader use
by industry and by a next generation brought up in a PC-centric, Microsoft
dominated world. John Knight’s group at the University of Virginia have been
working on a Framemaker-based tool for developing specifications in Z called



10

Zeus [14, 15]. Z specifications are written using all the publishing facilities of
Framemaker, uses the Z character set, and interacts with Z/EVES via a graph-
ical user interface. We are also focusing on GUI and word processor integration
issues [16, 17]. A portable GUI for Z/EVES is due to be completed by the Fall
of 1999. As part of this work, we have chosen XML as our markup language for
Z and as the main means of communication between tools. We have opened up
Z/EVES by formally specifying (in Z) the Z/EVES API [16]. This will allow
others to integrate with Z/EVES in a seamless manner. We are also considering
further how Z/EVES can be linked with Word [17]. A necessary evil!

Both our work on a Z/EVES GUI and the University of Virginia work on Zeus
were discussed at the Z/EVES session of the FM’99 Z Users’ Group meeting.
We expect that these evolutionary changes to Z/EVES will further enhance its
adoption trajectory. A current significant use of Z/EVES is in undergraduate
and graduate courses. We expect that Z/EVES will play a significant role in
formal methods training.

5 Applications

Over the years we have had a number of opportunities to use formal methods
technology (primarily as embodied in EVES or Z/EVES). Some of these efforts
have been clear technical successes. Others, a bit more marginal.

Recently, we have been analyzing authentication protocols and open source
public key infrastructures (PKI). These efforts have been great learning experi-
ences and helped to reinforce certain biases. While our work is generally hidden
behind a veil of proprietary issues, some general observations can be reported.

Modeling and Analysis: Mathematically modeling key attributes of complex
systems and analyzing such attributes can be highly cost effective. By focus-
ing our analysis on certain design and implementation aspects of the PKI,
we found significant infelicities. It’s worth noting that modeling and anal-
ysis can be used in both a forward and reverse engineering manner. Either
way, significant benefits can accrue. Obviously, one would prefer to engineer
formal modeling and analysis into the development of systems; however, an
industrial reality is that there is a huge base of legacy software that is be-
coming increasing difficult to manage and predict.

Complexity: The complexity of today’s software and hardware artifacts is pro-
found and, often, is a result of ill-discipline and reaction to market forces.
(The mindset appears to be one along the lines of best to get a product out
with capability X, even though the implementation and design of X is sus-
pect. There’s always time to fix it later!) My general view is that while formal
methods has made outstanding progress over the last decade (or so), we are
falling further behind industrial practice because of the rapid advances of
hardware and software system requirements. At best, we must carefully slice
out key aspects of such systems for modeling and analysis.

Open Source Software: Arguments have been made about the potential for
achieving high reliability levels with open source software. Our review of



11

important attributes of the PKI indicated important infelicities at both the
conceptual and implementation levels. While there are definite benefits to
the open source software movement, one must be very careful in attributing
high reliability to such software. Many individuals involved with using and
testing such software will have only fleeting commitments. I’m unsure that
open source is a valid path to high reliability.

Limitations of Model Checking: In our work with PKI and authentication
protocols we have used a number of tools in addition to EVES and Z/EVES.
For example, we experimented with Murφ, SMV, FDR2 and Dymna (a nice
tool which identifies potential masquerade attacks in authentication proto-
cols). The enhanced automation of the model checking tools certainly helped,
but, in many cases, still required substantial setup. In fact, especially with
Murφ and SMV, I felt that I was in the midst of a programming exercise; in
effect, writing abstract executable specifications. The latter statement is not
necessarily a pejorative comment; such a view may aid adoption. But, what
surprised us, in addition to the substantial setup, was that there were ex-
treme difficulties in controlling state space explosion. In fact, we knew of one
significant infelicity in the PKI that we tried to find using Murφ. No matter
how much we progressively abstracted our specification and pointed Murφ
to the problem area, we couldn’t get the counterexample shown. There’s ob-
viously substantial R&D required in understanding how to abstract systems
effectively, how to partition and/or control state space explosions, and on
how to integrate (either through loose or tight coupling) the various model-
ing and analysis engines.

Benefits of Automation: Automated analysis of models has the significant
potential benefits of generating accurate proofs (or calculations), extending
our capabilities to complex artifacts that otherwise would be unmanage-
able, and doing so rapidly. Model checking has shown great promise in these
regards. Theorem provers, much less so (because of the richer properties
normally tackled).

Legacy Code: Formal methods can be highly effective in understanding legacy
code. (I guess IBM learned this quite early with their use of Z to understand
components of CICS.) One must be careful in selecting the important aspects
of such systems, but there is a huge potential market here.

We are now much less puritanical in our use of formal methods; we are now
making much better use of engineering judgment in choosing where and how to
apply formal methods. In fact, in many respects, the perspective has changed
from one in which one aims for total correctness and, instead, aims at exposing
infelicities. It’s almost become “design and formally debug,” rather than “design
and verify.”

For years, our project resources were directed at evolving our technology
base, not on applying the technology on artifacts of interest to the broader
community within which our sponsorship resided. While such an approach has
its benefits, it also has significant costs in that we were not able to demonstrate
the utility of the technology to mission-oriented criteria, nor were we able to



12

validate the applicability of the technology. We did not have the opportunity to
evolve our work towards the realities of the sponsor’s marketplace. There are
substantial benefits that accrue from applying new technology on true industrial
scale problems.

6 The Chasm

Geoffrey Moore’s book Crossing the Chasm [18] focuses on high technology mar-
keting. However, much of what he has to say relates to technology transfer and
sets a useful model for formal methods adoption. While I cannot do full justice
to his treatise, I feel it is worthwhile noting a few points, for they provide some
indications on how formal methods must adapt to become truly successful.

Moore’s view of the Technology Adoption Life Cycle is primarily based on the
identification of five groups of potential adopters: Innovators, Early Adopters,
Early Majority, Late Majority and Laggards. Understanding the differences and
mindsets of these adopters is crucial for successful technology transfer.

Innovators: These folks pursue new technology products aggressively. Technol-
ogy is the central purpose of their lives. One must win this group over as
their endorsement of a new technology reassures other potential adopters.

Early Adopters: These folks are not techies, but individuals who find it easy
to appreciate the benefits of a new technology and to relate the benefits to
their concerns. They do not rely on well-established references in making
buying decisions, preferring their intuition and vision. Early adopters are
key to opening any high-tech market segment.

Early Majority: The early majority share the early adopter’s ability to relate
to technology, but are driven by a strong sense of practicality. They want to
see well-established references before investing substantially. It is with the
early majority the the opportunities for significant profits start to appear!

Late Majority: The late majority has the same concerns as the early major-
ity plus one major additional fact: they are uncomfortable with technology
products. They want a well-established standard, lots of support, and buy
from large and well-established companies. If one succeeds in winning this
group, profits can be substantial as most R&D costs have been amortized.

Laggards: Laggards don’t want anything to do with new technology. It has to
be buried deep inside another product.

Moore goes on to claim that the groups of adopters form a bell curve for
technology adoption, except that there are gaps: between innovators and early
adopters; between the early majority and the late majority; and, most signif-
icantly, between the early adopters and the early majority. In Moore’s view,
the last gap is, in fact, a chasm and therein lies the most significant danger for
technology adoption. Early adopters are looking for a change agent. The early
majority wants a productivity improvement for existing operations.

To cross the chasm, one must target a market segment defined around a
must-have value proposition. There are three sources of a must-have condition:



13

– It enables a previously unavailable strategic capability that provides a dra-
matic competitive advantage in an area of prime operational focus.

– It radically improves productivity on an already well-understood critical suc-
cess factor.

– It visibly, verifiably, and significantly reduces current total overall operating
costs.

Basically, one must be able to argue that the new technology will radically
improve productivity on an already well-understood critical success factor spe-
cific to the organization being targeted. Furthermore, there is no existing means
by which comparable results can be achieved. Exercise for the reader: How does
your technology meet these criteria?

From this perspective, one concludes that we chose some rather unfortunate
value propositions for EVES. Perhaps the most unfortunate value proposition
was that of mathematical soundness. Soundness (to a certain extent) is not a
marketable proposition. Our efforts on code verification were also likely mis-
placed.

7 Discussion

Though our experiences and those of the general formal methods community
has been mixed, I continue to believe that the technology will play a crucial role
in the future.

One reason for my optimism is that we are increasing understanding key
technology transfer issues. Models such as those of Rogers and Moore provide
important insights. Moore’s model seems to suggest that, on the most part, for-
mal methods is still at the innovator or early adopter stage. Though, one can
point to apparent successes at, for example, Siemens and Intel, suggesting incre-
mental movement towards the early majority.8 In both cases, it appears that the
limitations of traditional validation processes (mainly simulation) were not up
to the task for achieving the requisite reliability requirements. Reducing Q&A
effort, wherein lies much of the development time, is the critical business require-
ment. Model checking and equivalence checking appear to have suitable business
cases. Theorem proving does not (at least according to one senior Siemens indi-
vidual)!

There have been failures at the innovator and early adopter stage as well,
especially in the security-critical area. These failures are due to complex reasons,
but amongst the reasons are (i) the lack of clear mission-oriented goals (rather
than technical driven projects), (ii) intransigence and inflexibility on the part of
formal methods researchers who refused to react positively to the real needs of
their sponsors, (iii) the lack of research focus and clear evaluation criteria, and

8 The perspective taken here is that the market for adoption is within Siemens, In-
tel or the like; not broad industrial acceptance. At Siemens and Intel, it appears
that general development groups are using formal methods (as embodied in model
checking).



14

(iv) the lack of a clear winning observable “product.” In some organizations, a
harsh “formal methods winter” has set in as current management view the lack
of return on significant investments.

Positive results can come from surprising corners. One of the main achieve-
ments of NQTHM is the use of executable specifications to model hardware
chips, sometimes at a speed that is faster than traditional hardware simulation
tools.

We are also learning how to integrate our technology in a manner that poten-
tially enhances existing engineering practices. For example, Prover Technology’s
integration of NP-Tools with STERNOL allowed for the automatic verification
of safety properties of computerized railway interlocking systems. The actual
analysis engine was completely hidden from the engineers, they had only to con-
tinue to use their own language and push the analysis buttons at the right time.
According to Prover Technology, system verification was reduced by 90%. Nu-
merous other current and planned efforts are looking at this type of integration
(say, with more widely disseminated languages such as VHDL and UML).

The prime formal methods business case, at this point in time, is to en-
hance Q&A; to complement current testing resources. For those areas in which
mechanized formal analysis can be effectively used, much of the limited test-
ing resources can be reallocated to other parts of the assurance process. Formal
modeling has obvious benefits, especially with regards to requirements elicitation
and clarification. But, we are up against major challenges with the increasing
complexity of systems and the changes of paradigm. Java is quite different from
Algol 60. Heterogeneous distributed systems quite different from single processor
systems. Out-of-order and speculative execution. Dynamic compilers. And so on.

8 Acknowledgements

My thanks to Mark Saaltink for his review of an earlier draft of this paper.

References

1. Dan Craigen, Sentot Kromodimoeljo, Irwin Meisels, Andy Nielson, Bill Pase and
Mark Saaltink. m-EVES: A Tool for Verifying Software. In Proceedings of the 11th
International Conference on Software Engineering (ICSE’11), Singapore, April
1988.

2. Dan Craigen. An Application of the m-EVES Verification System. In Proceedings of
the 2nd Workshop on Software Testing, Verification and Analysis, Banff, Alberta,
July 1988.

3. Richard Kemmerer. Verification Assessment Study: Final Report. Volumes I-V,
National Computer Security Center, 1986.

4. Proceedings of VERkshop III: A Formal Verification Workshop, Pajaro Dunes
Conference Center, Watsonville, California, February 1985. Software Engineering
Notes, Volume 10, Number 4, August 1985.

5. Dan Craigen, Sentot Kromodimoeljo, Irwin Meisels, Bill Pase and Mark Saaltink.
EVES: An Overview. In Proceedings of VDM’91: Formal Software Development
Methods. Volume 551, Lecture Notes in Computer Science, Springer-Verlag 1991.



15

6. Dan Craigen and Mark Saaltink. Simple Type Theory in EVES. In Proceedings of
the Fourth Banff Higher Order Workshop. Graham Birtwistle (editor). Springer-
Verlag, 1990.

7. Dan Craigen, Susan Gerhart and Ted Ralston. An International Survey of Indus-
trial Applications of Formal Methods. NIST GCR 93/626 (Volumes 1 and 2), U.S.
National Institute of Standards and Technology, March 1993. Also published by the
U.S. Naval Research Laboratory (Formal Report 5546-93-9582, September 1993),
and the Atomic Energy Control Board of Canada, January 1995.

8. Susan Gerhart, Dan Craigen and Ted Ralston. Observations on Industrial Practice
Using Formal Methods. In Proceedings of the 15th International Conference on
Software Engineering (ICSE’15). Baltimore, Maryland, May 1993.

9. Dan Craigen, Susan Gerhart and Ted Ralston. Formal Methods Technology
Transfer: Impediments and Innovation. In Applications of Formal Methods, M.G.
Hinchey and J.P. Bowen (editors). Prentice-Hall International Series in Computer
Science, September 1995.

10. Everett Rogers. Diffusion of Innovations. Free Press, New York 1983.
11. Mark Saaltink. The Z/EVES System. In ZUM’97: The Z Formal Specification

Notation (10th International Conference of Z Users. Bowen, Hinchey, Till (editors).
Lecture Notes in Computer Science, Volume 1212, Springer-Verlag.

12. Mark Saaltink and Irwin Meisels. The Z/EVES Reference Manual. ORA Canada
Technical Report TR-97-5493-03d, December 1995.

13. Mark Saaltink. Domain Checking Z Specifications. Presented at the 4th NASA
LaRC Formal Methods Workshop, Langley, Virginia, September 1997. ORA
Canada conference paper CP-97-6018-65.

14. John Knight, Thomas Fletcher and Brian Hicks. Tools Support for Production Use
of Formal Methods. Discussion paper in Proceedings of FM’99: World Congress
on Formal Methods.

15. University of Virginia Software Engineering Group. Zeus: A Comprehensive Tool
for Developing Formal Specifications. Version 1.3, March 1999.

16. Mark Saaltink, Sentot Kromodimoeljo and Irwin Meisels. The Z/EVES GUI Design
and API. To appear.

17. Mark Saaltink. Integration of Z/EVES with Word Processors. To appear.
18. Geoffrey A. Moore. Crossing the Chasm. Harper Business, 1991.


