
Correctness of the Promela models of MANIFOLD

programs, I

Alain Fagot, Adriano Scutell�a

CWI
Postbus 94079

1090 GB Amsterdam
e-mail: fadriano, fagotg@cwi.nl

1 Introduction

Coordination languages [Coo99] are used for the orchestration of various activities
of a distributed, parallel application. A representative of this class of languages is
MANIFOLD [Arb95,Arb96a,Arb96b]. Promela [Hol91] is a high level modelling lan-
guage used for the speci�cation of concurrent systems and it can be argued that it is
also a sort of coordination language [Hol99]. Besides last observation the idea of this
work comes from the fact that there is a correspondence between MANIFOLD con-
structs and Promela constructs, the use of Promela to specify a model of aMANIFOLD

application may give insights in the comprehension of problems that have to be ad-
dressed when we want to verify such applications.

We point out that our interest is the study of reachability of MANIFOLD program
states: By considering this problem we are led to take into account a broader class of
related ones, such as deadlocks, livelocks, unreachable code.

A methodology in order to translate MANIFOLD constructs into Promela state-
ments has been described in [FS99]. In that paper we address the problem of correctness
of the choices described there.. In Section 4 of this paper we prove that the solutions we
adopted are \correct" with respect to the behaviour of aMANIFOLD application. Sec-
tion 2 contains two examples, some planning for future work and conlcusion is drawn
in Section 5

2 MANIFOLD and its relation with Promela and Spin

This section is a sketchy outline of the characteristics of the coordination language
MANIFOLD. The reader who wishes to learn more on MANIFOLD may consult
[Arb95,Arb96a,Arb96b], for Promela and Spin the book written by Gerard Holzmann
[Hol91] and the online documentation [WWWSP] are our references.

Like Promela applications, a MANIFOLD application consists of various running
processes of some given types. We �nd two kinds of processes in MANIFOLD: atomic
and coordinator processes. Atomic processes compute (i.e. accept data, compute and,
possibly, produce some output data); a coordinator process has the responsability to
coordinate the various activities that it has to supervise. Each process has a number of
input and output ports which are its gateways to the external world. Processes use their
ports to send or receive data. Data are transferred using streams connected to ports. A
stream is a communication link that transports a sequence of bits, grouped into units.

It represents a reliable, unbounded and directed
ow of information from its source
to its sink. The constructor of a stream between two processes is, in general, a third
(coordinator) process. Once a stream is established between a producer process and a
consumer process, it operates autonomously and transfers the units from its source to
its sink. There are four basic stream types; each type of stream behaves according to a
slightly di�erent protocol: See theMANIFOLD manual [Arb96b] for details. Because of
its activity a stream is modelled in Promela by means of a process and of two channels
(one for input, one for output).

Processes can communicate using an additional event mechanism: A process may
raise an event which propagates to all processes belonging to its scope, the event will be
saved in their event memories. These processes upon detection of the event generally
react by perfoming some action.

Actions perfomed by atomic processes (which can be written in a host language)
are production and consumption of data units through their ports, generation and
reception of events and computation.

Coordination processes are written in MANIFOLD and they are called manifolds.
Their body of consists of a �nite number of states. Each state is identi�ed by a label
which is followed by the body of the state. The label of a state de�nes the condition
under which a transition to that state is possible1. The body of a simple state de�nes
the set of primitive actions that are to be performed upon transition to that state. The
body of a compound state is either a nested block of states or a call to a (parameter-
ized) subprogram known as a manner in MANIFOLD. Primitive actions perfomed by
manifolds can be grouped into communication actions and topology actions. Actions in
the �rst group consist of generation and reaction to events: Manifolds have ports but
they have no instruction for manipulating units; ports are used as facilities over which
to connect an incoming stream with an outgoing one in a pipeline fashion. Topology
actions are those that change the structure of the application: Creation and activation
of a process type instance, creation, connection and reconnection of streams to ports.
At each instant a manifold is either executing all primitive actions speci�ed in its state
(and leave that state only when all actions have been perfomed) or trying to evaluate
some condition speci�ed in the labels in order to make a transition to another state.

A manifold process, coordinating the activity of some atomic processes, may it-
self be considered as an atomic process by another manifold process, giving rise to a
sophisticated hierarchy of coordinators.

The execution of Promela instructions is limited to interleaving (of all possible in-
structions that can be concurrently perfomed by independent processes, only one is
e�ectively executed while the others are delayed): This restriction, though peculiar for
MANIFOLD, is not that limiting provided that we adapt MANIFOLD semantics to
such restricted models. The execution of Promela programs is asynchronous, mean-
ing, in the words of the language designer that: \No additional assumption is made
on the relative speed of the process execution" and �ts with MANIFOLD notion of
asynchronicity.

3 Divide et impera

MANIFOLD encompasses two orthogonal characteristics. One is the event broadcasting
and reaction mechanism which is the means to achieve coordination. A complementary

1 It is an expression that can match observed event occurrences in the event memory
of an instance.

characteristic is the possibility, beyond creation of processes, to dynamically rearrange
the data
ow network between various processes in the application. These two charac-
teristics are quite di�erent in nature and their treatment is also independent. In order
to illustrate the approach used we believe that two examples are more illuminating
than one, in addition to this, it is possible, to disentagle the proof of correctness of the
models for both aspects of MANIFOLD.

3.1 The broadcasting mechanism of MANIFOLD

With the �rst application we give account of the broadcasting mechanism ofMANIFOLD

and what is the Promela model that accomplishes it.
The MANIFOLD code reported below consists of two processes that react to two

events playing a sort of Ping-Pong game.

1 event ping, pong, wait.

2

3 manifold pinger

4 {

5 begin : (raise(ping), post(wait)).

6 pong : (raise(ping), post(wait)).

7 wait : (preemptall, terminated(void)).

8 }

9

10 manifold ponger

11 {

12 begin : (post(wait)).

13 ping : (raise(pong), post(wait)).

14 wait : (preemptall, terminated(void)).

15 }

16

17 process pi is pinger.

18 process po is ponger.

19

20 manifold Main

21 {

22 begin: activate(pi, po).

23 }

The application consists of three processes as depicted in Figure 1: The process
Main activates (line 22) the two instances of the process types pinger and ponger

already instantiated at lines 17 and 18 and named pi and po, respectively. A process
of type pinger has its body de�ned at lines 4 - 8. As reaction to the prede�ned event
begin, it enters the state labeled begin (line 5), to execute the speci�ed instructions
. These are raising the event ping, to start the game, posting (i.e., raising only for
itself) the event wait. Once all instructions are executed the state may be abandoned
(preempted) and another search in the event memory is made. Upon detection of the
event pong the process enters the state labeled pong and executes again the previous
set of actions - see line 6. The state labeled wait, line 7, entered on detection in the
event memory of the event wait, is a busy waiting cycle2.

2 This cycle is implemented with the two special primitives preemptall and
terminated(void) which realize this busy wait: preemptall instructs the process

A process of type ponger (lines 10 ... 15) behaves analogously to processes of
type pinger except for the fact that as reaction to begin it only posts wait; while on
reception of the event ping it raises a pong.

input

output

PongPing

Main

begin

wait, pong

 input

begin, wait, pingbegin, wait, pong

wait, ping

 output outputinput

Fig. 1. Structure of the MANIFOLD application for Ping-Pong.

The intended semantics of MANIFOLD provides rules that establish which pro-
cesses will receive an event: In principle an event is received by any process in the
application, the process will react to the event if it does have a handle for it. In prac-
tice, only those processes which are interested in that event will receive it into their
event memories for further treatment.

To model the event broadcasting eachMANIFOLD process is expressed as a Promela
process equipped with a broadcast channel, which will be used to receive all kinds of
communication from other processes. Communication is exploited using messages of
di�erent types carrying some extra information. The type of information is partitioned
into control information and event information (including prede�ned events). There
are di�erent types of messages, each type having a �xed �elds structure: In those �elds
additional information such as the process identity is carried. The broadcast channel
of a process, p, is known by all processes for which p is interested in receiving their
events and by any other process that has to communicate with it (such a process is,
for instance, the creator of p). A process in order to communicate with p will insert
in the broadcast channel of p all messages directed to p. The model for Ping-Pong is
pictured in Figure 2.

init

Ping Pong

Fig. 2. Structure of the Promela application for Ping-Pong.

with the directive that any incoming event has to be reacted, terminated(void)
realizes the waiting part, the process will wait for termination of the special process
void (that never terminates) if no events are present in the event memory.

Messages used for broadcasting an event ename, have type pre�xed with ev followed
by the name of the event, such as ev ename. Each process collects messages from its
broadcast channel (in a later stage it will treat them in the proper way). Every process,
p, maintains also a list of partners: It consists of all process interested to receive the
events raised by p (either because they expicitly signed-in, or because they are in the
scope of p). In the Promela model the broadcasting of a raised event by p corresponds
to sending to each partner in the list, trough their broadcast channel, of an event
ev name.

EachMANIFOLD application begins with a list of events and a list of process types
that will be instantiated at run-time. To create the message types for all such events
it su�ces to scan them all and create a corresponding message. For the Ping-Pong
application we have the following message types:

mtype = {

_csignin, _csignout, ev_begin /* predefined */

ev_ping, ev_pong, ev_wait /* user events */

};

Messages of type csignin, csignout are control messages corresponding to pre-
de�ned constructs or events of MANIFOLD. The message csignin is used to commu-
nicate to a process, p, that the source of the message, s, is interested in p's events. The
receiver p, will put the broadcast channel of s in the list of process partners to which
it has to send its events.

Messages of type csignout, serve the purpose to communicate to the receiver that
the source of the message is not interested anymore in its events, the receiver will delete
the process broadcast channel from its list of partners.

In MANIFOLD a process, p, is activated trough the execution of the statement
activate(p), this will correspond to the insertion of the special event begin in the
event memory of p ; this event is always the �rst one to be reacted by an instance of
a process. In the Promela model, to activate a process,p, a message of type ev begin

is put into its broadcast channel.
The drawings of Figure 3 show the internal structure of a MANIFOLD process

and of its corresponding Promela model. A MANIFOLD process spends its life by
repeatedly choosing a state to react. The choice is based on the labels of that state
and on the event occurrences present in its event memory. If there are (many) event
occurrences matching (many) labels, then one is chosen according to some strategy
and the corresponding instructions speci�ed in that state are perfomed. Instructions
prescribed in the state have to be all executed before leaving the it.

The model in Promela behaves in an analogous way. Its behaviour is divided in
two parts: The �rst part, tagged with a label CONTROL, is a loop. In this loop a process
performs all those actions necessary in order to keep track of incoming events and to
maintain the partners table. The event-memory is simulated by booloean variable
ags
that are set when an event occurrence is received. The CONTROL part is followed by
the CODE part: It is also a loop. This part models the states that have to be entered
in reaction to an event occurrence, it consists of a list of labels analogous to the list
of labels encountered in the corresponding MANIFOLD code. Each time an event
occurrence is reacted the loop is broken and the two phase cycle is repeated until the
process terminates.

Each process type declaration inMANIFOLD (beginning with the keyword manifold)
corresponds to a proctype declaration in Promela carrying some extra parameters

Event Memory Event Flags

end: end:

CONTROL:

event patterns: CODE:

Fig. 3. Structure of MANIFOLD and Promela processes

needed to communicate the identity of the broadcast channel. Upon creation each pro-
cess knows its broadcast channel which is passed to it by its creator in the formal
parameter ownbc. For the process of type pinger of MANIFOLD the Promela decla-
ration coming after the mtype declaration above is schematized as:

proctype pinger (chan ownbc)

{

CONTROL:

do ... od

CODE:

do ... od

goto CONTROL

end: ...

}

We �nd a name for the type, pinger, followed by the formal parameter for the
broadcast channel ownbc. There can be other parameters corresponding toMANIFOLD

parameters.
The CONTROL part for pinger is reported below:

CONTROL:

1 f=0;

2 do

3 :: ownbc?? _csignin(partnerbc) ->/* register signing-in processes */

...

10 ::ownbc??_csignout(partnerbc) -> /* forget signing-out processes */

...

15 /* check incoming events, set event flags */

16 :: (empty(ownbc) && f == 0) -> goto end

17 :: ownbc?ev_ping(partnerbc) -> atomic { ef_ping=true ; f=f+1 }

18 :: /* similar code as the above line for other events */

19 :: (f > 0) -> break /* to break the loop */

20 od;

The process starts at the CONTROL loop checking whether it has incoming messages.
The
ag f is needed to eventually break the loop. Control messages are retrieved before
others by means of the special selective receive with double question marks.

If the message is csignin(partnerbc) the process registers the broadcast channel,
partnerbc, of the signing-in process in a table partners[].

If the message is csignout(partnerbc) information about the process (the broad-
cast channel) emitting the signout is deleted from the table.

If the message is ev ename then the corresponding
ag ef ename is set.

Remark 1. In case there are many events of the same type coming from di�erent sources
the event
ags variables are structured into an array: one for each event and for each
partner of the process so to maintain an event memory for all possible event occurrences
that have been received. A more complete account on this can be found in the expanded
version of this paper [FS99a].

Note that the CONTROL loop is broken either because the broadcast channel is
empty or because the variable f is greater than 0. The variable f has also the purpose
of counting the number of event occurrences received by the process. The condition
\empty(ownbc) && f == 0" on line 18 says that a process can �nish (goto end) its
activity only if its broadcast channel is empty (no event or control messages) and it
has no event occurrences to be treated. After the process exits the control part, it
passes to the CODE part.

AMANIFOLD process \chooses" one state on the basis of the label of that state and
the received event occurrences. The if .. fi construct of Promela is used to model this
choice. The construct presents a number of conditions enclosed between the keywords
if and fi many of which may be true contemporarily, if more than one condition
is true, one of them is chosen nondeterministically and the instructions speci�ed are
performed, this happens analogously in MANIFOLD: If more than one enabling event
is present in the memory, an enabled state is chosen nondeterministically. Conditions
model the labels of a MANIFOLD state. Since labels can match event occurrences
conditions in the Promela model are speci�ed by the boolean event
ags variables set
in the CONTROL part.

CODE:

1 if

2 :: (ef_begin) -> /* begin event received */

3 atomic { /*raise(ping)*/

4 m=0 ;

5 do

6 :: (m < np) -> partners[m]!ev_ping(ownbc) ; m=m+1

7 :: (m == np) -> break

8 od ;

9 ownbc!ev_wait(ownbc);

10 ef_begin=false

11 }

12

13 :: (ef_pong) -> /* pong event received */

14 atomic { /* same as ef_begin */ }

17

18 :: (ef_wait) -> /* wait event received */

19 {nempty(ownbc)-> ef_wait=false}

20 fi;

21 goto CONTROL ;

22 end: skip

The event
ag variable ef begin is used for the special prede�ned event begin;
ef pong, for the event pong; ef wait for wait. For each of them there is a list of
instructions corresponding to the MANIFOLD ones. They are enclosed in an atomic

statement so that the set of instructions between the brackets of an atomic clause has
to be executed as an indivisible piece of code (saving also time in validation of the
model). The instruction raise(ping) is translated into a loop (lines 3 to 9) in which
a message of type ev ping, containing the sender's identity and its broadcast channel,
is sent to all processes registered in the table partners[] of the broadcaster: The table
is scanned and a message is put into each broadcast channel retrieved from the table.
In this case there is only one partner which is an instance of pong. Posting of an event
(say wait) is modelled by sending the corresponding message type to the process own
broadcast channel (corresponding instruction: ownbc!ev wait(ownbc)).

The init process is analogous to the MANIFOLD process Main. Creation of a
MANIFOLD process corresponds, in Promela, to the creation of the process and of
its broadcast channel. Upon creation each process interested in the events of this new
process is informed sending an appropriate csignin type message that contains the
identity and the broadcast channel of the process. Processes are activated sending the
ev begin message.

3.2 The model of a MANIFOLD stream

The behaviour of a MANIFOLD application, with the exception of the events control
mechanism, is a game of dynamically creating new instances of processes and con-
necting or reconnecting their ports through streams. We consider now an application
in which streams are set up, we will then analyze the Promela model; howewer, we
introduce another style in writing a Promela model, namely, we use macro de�nitions
(described in Table 1) which we developed with the aim of helping the user and to ren-
der the syntactic
avour of a MANIFOLD application. The MANIFOLD application
computes Fibonacci numbers.

1 manifold PrintUnits() import.

2 manifold variable(port in) import.

3 manifold sum(event)

4 port in x.

5 port in y.

6 import.

7 event overflow.

8

9 auto process v0 is variable(0).

10 auto process v1 is variable(1).

11 auto process print is PrintUnits.

12 auto process sigma is sum(overflow).

13

14 manifold Main()

15 {

16 begin: (v0 -> sigma.x, v1 -> sigma.y, v1 -> v0,

18 sigma -> v1, sigma -> print).

19

20 overflow.sigma: halt.

21 }

X

Y

V0

V1

Sigma Print

Fig. 4. Structure of the MANIFOLD application for computing Fibonacci numbers.

At run-time the structural view of the applicaton is as in Figure 4. The process
named sigma is an atomic process declared at lines 3 trough 6. It computes the sum
of two numbers supplied at its input ports x and y, until, upon reaching the over
ow,
it raises the event overflow and the application will terminate (line 20): The code of
this process may not even be MANIFOLD code, it resides elsewhere as speci�ed by
the keyword import. Numbers produced by sigma are diverted to a process print that
will print them. The two variable processes v0 and v1 will �rtsly contain the two initial
numbers of the Fibonacci sequence, 0 and 1, passed to them as parameters at their
instantiation on lines 9 and 10; after they will serve as \containers" to feed sigma with
the proper inputs it requires for the computation. The behaviour of the application
is better explained in [Arb95] to which we refer the reader for further details. The
Promela model with macros is listed below, the code is commented to achieve brevity
in the presentation of the paper.

BEGIN_EVENTS /* declaration of events */

EVENT(overflow) /* corresponds to the declaration */

END_EVENTS /* ``event overflow'' in the original */

#include "Streams.promela" /* directives for the inclusion */

#include "printer.promela" /* of atomic and stream */

#include "variable.promela" /* processes models */

#include "sum.promela"

PROCESS(print,printer) /*instantiation of process type printer name: print*/

PROCESS(V0,variable) /*instantiation of process variable name: V0*/

PROCESS(V1,variable) /*instantiation of process variable name: V1*/

PROCESS(sigma,sum) /*instantiation of process type sum name: sigma*/

PROCESS_PORT_IN(sigma,XPORT) /*input port declaration XPORT for sigma*/

PROCESS_PORT_IN(sigma,YPORT) /*input port declaration YPORT for sigma*/

BEGIN_MANIFOLD(main) /*begin of the init (main) process*/

EVENT_MEMORY(overflow)

STREAM(0x)

STREAM(1y)

STREAM(s1) /*local declarations needed for events and streams */

STREAM(10)

STREAM(sp)

INIT_PROCESS /*initialization of event memory, i.e.*/

INIT_EVENT(overflow) /*initialization event flags for each event*/

PORTS_MANAGEMENT /*management of ports*/

EVENTS_MANAGEMENT /*management of the event memory*/

EVENT_RECEIVING(overflow)

BEHAVIOUR

BEGIN_PATTERN_ESP(begin) /* Manifold event pattern begin. */

CONNECT_STREAM(KK,0x,V0,OUTPORT,Sigma,XPORT) /*streams connections*/

CONNECT_STREAM(KK,1y,V1,OUTPORT,Sigma,YPORT)

CONNECT_STREAM(KK,10,V1,OUTPORT,V0,INPORT)

CONNECT_STREAM(KK,s1,Sigma,OUTPORT,V1,INPORT)

CONNECT_STREAM(KK,sp,Sigma,OUTPORT,Print,INPORT)

ACTIVATE(Print,printer) /*activation of processes*/

ACTIVATE(V0,variable)

ACTIVATE(V1,variable)

ACTIVATE(Sigma,sum)

END_PATTERN_ESP(begin) /*end of state labeled begin*/

END_MANIFOLD(main) /* end of main*/

Four our purposes, to model a stream it su�ces to consider its behaviour abstracted
away from the internal content of the stream. In the MANIFOLD reference manual
[Arb96b] it is said that a stream is either full or empty. It is full if it contains at least
one unit otherwise it is empty. There are four types of streams in MANIFOLD, these
are BB, BK, KB and KK3. Another characteristic to be taken into account is the status
of stream connection: The stream may be disconnected from both source and sink,
connected to both of them, or connected to the source (or the sink) and disconnected
from the sink (or the source). Thus a stream may be modelled trough a state based
machine. In addition to that, the stream receives particular control messages from
either its constructor (messages such as disconnect from source, disconnect from sink,

3 The leftmost and rightmost letters refer to the behaviour of the two ends of the
stream: BB, for instance, means break-break: Upon preemption (when the installator
of the stream leaves the state in which a stream has been installed) the stream breaks
automatically its connections. A KB type (keep-break) keeps the source connection
and breaks the sink connection while a BK acts the other way round. A KK type never
disconnects on preemption.

disconnect from both) or the source (sink) to which is attached for instance, to inform
the stream about the death of the process or detach from some port.

Figure 5 reports the simplest state machine representation of a stream of type BB4.

s
_ _/_

_p/ _

_ _/ _

p, d

*

_ p/_

_ _ /g

_ _ /g

_ _ /d

d/

s_/_

_ _ /d

s _ /_

_ _/ _

_ _/_

_ _/_

g, d
d/

FI

Fig. 5. State-machine of a BB stream.

The formalism used in Figure 5 has been introduced in [KSW97a,KSW97b]: It is
brie
y described in the appendix. The letter p indicates a put action (i.e., the trans-
mission of a unit from a process into the stream). Analogously, g stands for get, it
denotes the action of a process willing to get a unit from the stream. The letter d,
denotes disconnection, s is the instalator preemption message. The stream can be in
three di�erent states: I: Empty, connected to the source, connected to the sink, F: Full,
connected to the source, connected to the sink and *: The dead state, the stream is
not active anymore.

Labels on arrows are renamings of the corresponding actions into boundaries ob-

servable actions: For instance, the transition I
p=
�! F means that upon a put action

(executed by the source and no actions from the control and the sink) the stream will
move from the empty state I to the full state F.

A stream of type BB is modeled by a process based on the state-machine repre-
senting the stream. This process manipulates its control and unit channels passed to
it as parameters upon its creation. The reader may verify that the code de�nes a
state based machine represented in Figure 5 (the code is included with the #include

``Streams.promela'' directive).

proctype streamBB (chan i_channel, o_channel)

{

int values;

Unit unit;

values = 0;

I:

do

:: i_channel?_sput(unit) -> /* put unit */

o_channel!_sunit(i_channel, unit) ;

values++ ; goto F

:: i_channel??_spreempt -> goto end /* preempt */

:: i_channel??_sdissource -> goto end /* disconnect */

4 We omit for the sake of brevity the description of all types of streams which appear
in the full version of this paper.

:: o_channel??_sdissink -> goto end /* disconnect */

od;

F:

do

:: i_channel?_sput(unit) -> /* put unit */

o_channel!_sunit(i_channel, unit) ;

values++

:: i_channel?_sget -> values-- ; /* get unit */

if

:: (values < 1) -> goto I

fi

:: i_channel??_spreempt -> goto end /* preempt */

:: i_channel??_sdissource -> goto end /* disconnect */

:: o_channel??_sdissink -> goto end /* disconnect */

od;

end: skip /* handle disconnection from source and sink */

}

To connect multiple streams to one port, we use two di�erent strategies depending
on the sort of port and problem to be solved. For an input port, we need to get a unit
from any stream connected to it, while for an output port we need to put a unit on
every stream connected to it.

An input port is modeled as a Promela channel in which every stream connected
to that port will put units. This input-port channel is passed as parameter on the
instantiation of the Promela process modelling the stream. It is also passed to the
process modelling the manifold as a �eld of the control message cconnect

An output port is modeled as a list of Promela channels to which the process will
have to send the message sput to put a unit in the connected streams. These channels
are passed as arguments of the control message cconnect.

The code corresponding to what we have described is reported in Table 1 as the
following macro de�nitions: PUT(INPORT), GET(OUTPORT).

4 Adequacy of the Promela models

In this section we try to address the problem of the adequacy of the Promela models
we designed. The idea is to show that the behaviour of the Promela Model MP and
the behaviour of the MANIFOLD application are \the same".

As pointed out in the preceding sectionsMANIFOLD presents two orthogonal char-
acteristics: The event-broadcasting and the set up of streams. For reasons of space we
cannot handle the correctness of both aspects, we have choosen to treat the most deli-
cate one which is the modelling and behaviour of streams. The broadcasting mechanism
of MANIFOLD will be treated elsewhere: Here we mention that a di�erent strategy, in
order to implement broadcasting, would have been to use some global variables. Each
time an event (occurrence) is raised the corresponding global variable b is set to true,
each process interested in those event could look at b and react, but the process should
reset the variable for all other interested processes. The reader understands that not
even taking into account the overhead necessary to implement what we said, this ap-
proach could cause some inconsistency; for instance, a problem could be to determine

Manifold Promela
pseudo-manifold

raise(event) m=1;
RAISE(event) do

::(m==np) -> break
::else -> partners[m]!EV (event)(ownbc); m++
od;

post(event) ownbc!EV (event)(ownbc);
POST(event)

STREAM(name) chan SCC (name) = [QSZ CC] of fmtypeg;

process name is manif. chan BC (name) = [QSZ BC] of fmtype, chan, intg;
PROCESS(name , manif) chan SUC PORT(name,INPORT) = [QSZ UC] of fmtype, chang;

activate(name) BC (name)! cconnect(SUC PORT(name,INPORT),INPORT);
ACTIVATE(name , manif) BC (name)!! csignin(ownbc);

BC (name)!ev begin(ownbc);
m=0;
do
::(m==np) ->
np++; partners[m]=BC (name); break
::else ->
if
::(partners[m]==BC (name)) -> break
::else -> m++
�
od;
run manif (BC (name));

PUT(port) m=0;
do
::(m==PNS (port)) -> break
::else -> PCC (port)[m]!! sput; m++
od;

GET(port) PUC (port)? sunit(partner);
partner! sget;

fproc.fport->tproc.tport BC (fproc)! cconnect(SCC (name), fport);
CONNECT STREAM(type , name , fproc , fport , tproc , tport)

BC (tproc)! cconnect(SUC PORT(tproc,tport),tport);
run STREAM (type)(SCC (name),SUC PORT(tproc,tport));

(preemptall, terminated(void)). if
WAIT ::(gnf>1) -> skip

::else -> nempty(ownbc)
�;

Table 1. Translation of MANIFOLD constructs into Promela instructions.

which process is the last one to react to an event; in this case b is not supposed to be
set anymore. Another solution could be to have, for each process p, a separate process
mp implementing its memory. In this case for eachMANIFOLD process we would have
two Promela processes. The solution we adopted it has been suggested from the study
of the MANIFOLD compiler. A proof of its adequacy can be carried out in the same
style of the one we present now for streams.

Correctness of the stream model. A stream, S, is created and set by a co-
ordinator, C, between the output and input ports of a source process, O, and a sink
process, I, respectively. Once connected the stream operates autonomously taking the
units appearing at the output port of O and delivering them (in First In First Out or-
der) to the input port of I when it executes a read operation on the port. In addition to
the put-unit and get-unit operations the stream is sensible to other signals namely the
disconnection of ports, and the preemption messages from C that instruct the stream
to disconnect from either source or sink or both (depending on the stream type). We
consider here the stream type BB, as represented in Figure 5. The system we consider
are represented in the uniform framework o�ered by Span(RGph) in Figure 6

s

C
Coordinator

p, d
O

S
Stream I

g, d

Fig. 6. Model of a stream connection in MANIFOLD and Promela.

Both models can be described at �rst by the same equation:

M = O � S � I (1)

In order to distinguish between the two models we may use the two subscripts M and
P to denote which model we are referring to. We ignore the coordinator C from that
equation, in fact it simply creates the stream and sends the preemption signals to all
three components. That is the only way in which a coordinator can a�ect the behaviour
of a connection, since we are interested in the behaviour of the system in steady-state
we need not to consider the singular e�ects of C. Denote with MP and MM the two
systems. We show that there exists a 2-cell �: MP !MS which is an abstraction and
preserves behaviours (as advocated in [AL91]), i.e. we want to prove:

Theorem 1. Given the two sytems MP andMM there exists an abstraction �:MP !
MS such that B(MP) � B(MM).

Proving the theorem amounts to construct the abstraction � which we do in the
reamining part of this paper. In Section 3 we describe a model of a stream as a system
comprising a process and two channels, if we indicate with IC, S and OC respectively
the input channel, the stream process and the ouput channel, the following equation
describes a stream:

SP = IC � S � OC (2)

p / u

_ / g

_/d _/d

_/d _/d

u

nn-111

p /

_ / gE E

_/d

_ _/p

_ d/_

_ _/d

...

d/_

_/ds _/_
_ _/s

_ p/_

_/d
_/d _/d

E

_ _/d

_ d/_

_ p/_
u/_

. . .

p, s, d, _

/gg/

u/_

_/g

_/d
d/_

u/_

_/d

_/g

_ _/p

_ d/_

_ _/d

...

d/_

_/ds _/_
_ _/s d/_

_/g

_ _/s
s _/_

_ _/p
, g, u, _g

s, _

p, d, _ ...

u/_

_/g

g/_
g/_

...
u/_

*

g, d, __ p/_

_/g

g/_
g/_

g, d, _

11 n-1. . .

u/_

g/_

u/_

_/g

_/d
d/_

_/d

u/_

d/_

E

_/d _/d
_/d

_/d

u/_
E

/d/d

_/d

E _ / g

p / u

_/d

_ / g

up /

Fig. 7. Model of a stream connection in Promela.

The evaluation of the expression in Equation 2 is the system in Figure 7.
The reader may have noticed that the graphs for IC and OC are not completely

drawn, howewer we give a presentation for those graphs which are �nite anyway.

A vertex of IC, or OC, represents the set of messages currently stored into the
channel and is denoted below with a set theoretic representation; s = fm1;m2; � � � ;mkg
is the point at which the set of messages fm1;m2; � � � ;mkg has been received. The graph
for IC is described by the following equations

E
s =
�! fsg; s

s =
�! s [fsg; s [fsg

=s
�! s

E
p=
�! fpg; s

p=
�! s [fpg; s [fpg

=p
�! s

E
d=
�! fdg; s

d=
�! s [fdg; s [fpg

=d
�! s

The graph for OC is presented by:

E
u=
�! fug; s

u=
�! s [fug; s [fsg

=s
�! s

E
=d
�! fdg; s

d
�! s [fdg; s [fpg

=p
�! s

s [fug
=
�! s n fug [fgg; s [fgg

=g
�! s

Above, the letter s stands for the preemption message from the coordinator, u is
the exchange of a unit, p denotes a put and g a get operation, d is the disconnection.
Boldface letters (g, p, g) denote the read counterpart actions. Once we have constructed
the abstraction � we only need to show that indeed is a 2-cell in Span(RGph). It is
convenient to de�ne the abstraction � for each component and rely on the structure of
Span(RGph).

The abstraction � has three main components: � =< �O; �S ; �I > each of them
may be still decomposed if needed. Figure 8 depicts the abstraction function. The �rst
thing worth noticing is that with respect to the source and sink processes O and I we
need to consider those transitions that a�ect the behaviour of the stream, we put: �O =
idO and �I = idI , that is the abstraction is the identity on O and I. Each transition of
the Promela components O and I is mirrored on the MANIFOLD component. In the
picture we depicted only those transitions which a�ect for the stream behaviour, that is
the p (put) and d (disconnect) operations executed by OC-components and the g (get)
and analogous d operations executed by IC components. What remains to be de�ned
is that part of � that acts on the stream. Since a model of a stream is made of three
components we de�ne the 2-cell on each of them separately and rely on the structure
of Span(RGph). Figure 9 depicts the action of the 2-cell on states and transitions
of the stream components of �. The notation is taken from [LS] dotted arrows depict
the transition mappings, while dashed arrows depict the state mapping, of course an
explicit analitic de�nition is possible but we �nd more suggestive this notation.

By exhibiting a 2-cell we completed the proof of the theorem.

M

PPP

M

s d

p

M

O

O
I= id

= id

IS

S IO

s’

p
t’

t

s’

d
t’

t

s’

s s

d

g
t’

t

s

d

g

t’

t

s’

I
O

α

p, d, s

Manifold model

g, dp, d

g, d

α
S

α

Promela model

s

Fig. 8. The abstraction �: MP !MM .

5 Final remarks

In this paper we addressed the problem of the correctness of the models presented
already in [FS99], in part II of this paper we treat the event broadcasting mechanism
whcih for lack of space we could not expose here. The proof of correctness is based
on abstraction morphisms on the graph-theoretic representations of the models, these
morphisms preserve behaviours. The outcome of this study is the adequacy of the
models we devised, it can then be used to adapt the MANIFOLD compiler in such
a way that it can also produce (based on the methodology presented in [FS99]) the
relevant Promela code for the MANIFOLD application. Another useful line of further
study is the tracking back to the original application of the output traces produced
by Spin. Once we have proven the correctness of our approach, we are implementing
the Promela model of a large case study presented in coordination [CNT98] which has
been solved in [Scu99] using MANIFOLD.

Thinking is common to everybody.
(Eraclitus, In: Strobeus, Florilegius 3, 1, 179.)

Acknowledgements. Special thanks go to Kees Everaars, Freek Burger and Kees
Blom for answering all questions we have been asking them regarding theMANIFOLD

compiler.

References

[AL91] M. Abadi, L. Lamport. The existence of re�nement mappings. Theoretical
Computer Science, 82(2), pp.: 253-284, May 1991.

[Arb95] F. Arbab. Coordination of massively concurrent activities. Tech-
nical Report CS{R9565, Centrum voor Wiskunde en Informatica,
Amsterdam, The Netherlands, November 1995. Available on-line
http://www.cwi.nl/ftp/CWIreports/IS/CS-R9565.ps.Z.

[Arb96a] F. Arbab. The IWIM model for coordination of concurrent activities.
In P. Ciancarini and C. Hankin, editors, Coordination Languages and
Models, volume 1061 of Lecture Notes in Computer Science, pages 34{56.
Springer-Verlag, April 1996.

_ _/_

_ _ /g

s _ /_

d/

_ _/_

s, p, d, _

_ _ /_

_ _/ _

_ p/_

_ _/_
s

FI

s _/_
_ _/s

...

p, d
_ _ /g

_ p/_

g, d
*

_ _ /d

IC

_ _ /d

s_/_

d/

_ _/p

_ _/s
s _/_

_ p/_

E
p, d, _ _ d/_

_ _/d

_ d/_

_ _/p

_ p/_

_ _/d

s, _

*

_ / g

up /

_/d

_/d
_/d

/d/d

_/d

u

n1. . . n-1

p /

_ / gE 11

_/d

_ _ /g

_ _/ _

_p/ _

_ _/_

_ _/_

_ _/ _

s, p, d, _

g, d

s_/_

d/

_ _ /d

_ _/_

* FI

g

_/d

_ p/_

s _ /_

d/
s

p, d
_ _ /g

d/_

_/d

u/_

d/_
_/d

u/_

g, d, _g, u, _

g/_
g/_

/g/g...

u/_
E

_/d

_/g

u/_

g/_ _/g

d/_

I
s _ /_

d/
g, d

_ _/_

_ _/_

_ _ /d

OC

_ _ /d

s_/_

d/

_ _/ _

_ _ /g

_ p/_

*

F
p, d

_ _ /g

_ _/ _

_p/ _

_ _/_
s

Fig. 9. The 2-cell �S : SP ! SM .

[Arb96b] F. Arbab. MANIFOLD version 2: Language reference man-
ual. Technical report, Centrum voor Wiskunde en Informat-
ica, Amsterdam, The Netherlands, 1996. Available on-line
http://www.cwi.nl/ftp/manifold/refman.ps.Z.

[Ben67] J. B�enabou, Introduction to bicategories, Reports of the Midwest Cate-
gory Seminar, Lecture Notes in Mathematics 47, pages 1{77, Springer-
Verlag, 1967.

[CNT98] P. Ciancarini, O. Niestratz, and R. Tolksdorf. A case study in coordina-
tion: Conference Management trough the Internet. Electronic note.

[Coo99] P. Ciancarini, A.L.`Wolf, editors. 3rd Int. Conf.on Coordination Lan-
guages and Models, volume 1594 of Lecture Notes in Computer Science.
Springer-Verlag, April 1999.

[FS99] A.Fagot, A.Scutell�a. Model-checking of MANIFOLD applications with
the Spin model-checker. In: Prooceedings of the 5th Workshop on Theo-
retical Aspects of Spin, Trento, Italy, 1999.

[FS99a] A.Fagot, A.Scutell�a. Model-checking of MANIFOLD applications with
the Spin model-checker (extended version). In preparation.

[Hoa] C.A.R. Hoare. Communicating Sequential Processes, Prentice Hall Inter-
national.

[Hol91] G. Holzmann, Design and Validation of Computer Protocols, Prentice-
Hall, Englewood Cli�s, pp.: xii-500.

[Hol99] G. Holzmann, Private communication, 1999.
[KSW97a] P. Katis, N. Sabadini, R.F.C. Walters, Span(Graph) a Categorical Alge-

bra of Transition Systems, LNCS 1349, pp.: 307-321, 1997.
[KSW97b] P. Katis, N. Sabadini, R.F.C. Walters, Representing Place/Transitions

nets in Span(Graph), LNCS 1349, pp.: 322-336, 1997.
[LS] F.W. Lawvere, P.H.Schanuel Conceptual Mathematics
[Scu99] . A. Scutell�a newblock Simulation of a conference Management System

using MANIFOLD. LNCS 1594, pp.: 243-258, 1999.
[WWWSP] AA.VV Spin on line documentation . Available on line at

http://netlib.bell-labs.com/netlib/spin/whatispin.html.

A The bicategory Span(RGph)

The base category we use is the one of re
exive graphs RGph.

De�nition 1. The bicategory Span(RGph) is de�ned as follows:

{ Objects are directed re
exive graphs.
{ An arrow from X to Y consists of a graph H together with a pair of graph morphisms

X
lH
 � H

rH
�! Y .

{ Composition of spans H = X
lR � R

rR�! Y and S = Y
lS � S

rS�! Z is the span;

H �K = Y
lHp1 � R � S

rSp2�! Z formed taking the pullback R
p1 � S � S

p2�! S, it is
called a span from X to Z.

{ The identity arrow for an object X is the span X = X
1

 � X
1

�! X, 1 being the
identity arrow on X.

{ A 2-cell from X
d
 � H

e
�! Y to X

f
 � H

g
�! Y is a graph morphism �: H ! K

such that f� = d and g� = e. Vertical composition � of 2-cells is composition
of graph morphism. Horizontal composition is the unique arrow generated by the
pullback property.

{ Vertical and horizontal composition are related by the middle-four interchange law:
(R � S) � (T � Z) = (R � T) � (S � Z).

Given the span H = X
l
 � H

r
�! Y we call H the head of the span; X and Y the left

and right feet of the span, respectively; the two morphism l, r are the left and right
legs of the span.

Objects can be also given as products of graphs. Figure 10 shows some representa-
tion for spans. On the left there is the spanH = X1X2 � H �! Y1Y2Y3, the drawing
on the right depicts the composition H �K with K = Y1Y2Y3 � K �! Z.

The identity span is denoted by a plain wire.
The composition above de�nes the composite of spans R: X �! Y and S: Y �! Z

as a graph R � S, the head of the span whose vertex set is:

f< r; s >j r is a vertex of R, s is a vertex of S such that rR(r) = lS(s)g

H K ZH
3

1

Y 1

X

Y
1

X

X
22

2

Y
3

Y

Y1
X

Y 2

Fig. 10. Another way to depict spans

and whose edge set is:

f< �; � >j � is an edge of R, � is an edge of S such that rR(�) = lS(�)g

De�nition 2. The tensor of a pair of objects X and Y is their product in Span(RGph)
that is: X
 Y = X � Y .

The tensor of two spans H = W
lH � H

rH�! X and K = Y
lK � K

rK�! Z is the

span H
K = hH
K; l; ri =W � Y
lH�lK � H
K

rH�rK�! X � Z.

The tensor can be depicted as in the following picture:

ZW

H Y

Y

K

3

2

1
1

2X

YX

Fig. 11. Geometric view of the tensor of two spans

Constants of the algebra. Beyond the above operations, there are also some
constants are useful in order to describe general systems.

There is a span with head X and legs 1X :X ! X, �X : X ! X � X called the
diagonal of X (denoted as �X : X ! X�X). The codiagonal is the span ��

X : X�X !
X).

Projections are spans with head X � Y and legs 1X�Y :X � Y ! X � Y and
pX : X � Y ! X, herepX is the projection arrow, it is depicted by the termination of
the wire Y. There is a similar reverse arrow denoted p�X .

Given a pair of objects A and B, there is a graph morphism tw: A� B ! B �A
that acts as follows: ha; bi 7! hb; ai. The permutation �A;B : A
B ! B
A is de�ned

to be the span A�B
1A�B

 � A�B
tw
�! B �A.

The terminal graph, denoted by I, is the graph with one vertex and one edge
(by necessity the identity loop). The unit of the self-dual compact-closed structure on
Span(RGph) is �X : I ! X � X, it is the span with head X and legs !: X ! I,
�:X ! X �X. The co-unit is "X : X �X ! I.

Ususally, when it will be clear in the context, we will omit subcripts in the above
simbology.

The geometric representation of these constants is given in Figure 12.

Y

X

p
X

AX

X

X

X

∆*

B

X

η

ε

X

X

X

A

B

π
A,B

X

X

∆

X

X

X

Fig. 12. Constants of the algebra

De�nition 3. A valid behaviour for R = R: X ! Y is a path � in R beginning at its
initial vertex and ending at some �nal one. The set of behaviours is denoted by B(R).

Applying the legs lR and rR of the span to a valid behaviour � yields a pair of be-
haviours: one lH(�) in X and another rH(�) in Y . These induced behaviours may be
thought as the behaviours of the boundaries of the system R. We have the following
result.

Theorem 2. Consider spans R = R: X ! Y , S = R: Y ! Z and T = R: X 0 ! Y 0.

{ A valid behaviour of R � S is a pair of valid behaviours < �; � >, � being a valid
behaviour of R and � one of S which agree on the common boundary, that is:
rR(�) = lS(�).

{ A valid behaviour of R
T, is a pair of valid behaviours < �; � >, � being a valid
behaviour of R and � one of T.

{ A valid behaviour of �X : I ! X �X is a path � in X re
ected equally on the two
boundaries. (Analogously for ".)

{ A valid behaviour of �X : X ! X � X is a path � in X re
ected equally on the
three boundaries. (Analogously for ��.)

