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Abstract. If synchronizing (rendez-vous) communications are used in
the Promela models, the unless construct and the weak fairness al-
gorithm are not compatible with the partial order reduction algorithm
used in Spin’s verifier. After identifying the wrong partial order reduc-
tion pattern that causes the incompatibility, we give solutions for these
two problems. To this end we propose corrections in the identification of
the safe statements for partial order reduction and as an alternative, we
discuss corrections of the partial order reduction algorithm.

1 Introduction

The issue of fairness is inherent and important one in the study of concurrency
and nondeterminism, in particular in the area of the verification of concurrent
systems. Since fairness is used as generic notion there is a broad taxonomy
of fairness concepts. In this paper we confine our attention to the notion of
weak fairness on the level of processes which is implemented in the Spin verifier.
This means that we require that for every execution sequence of the concurrent
program which is a composition of several processes, if some process becomes
continuously enabled at some point of time (i.e. can always execute some of its
statements), then at least one statement from that process will eventually be
executed. This kind of fairness is most often associated with mutual exclusion
algorithms, busy waiting, simple queue-implementations of scheduling, resource
allocation. Weak fairness will guarantee the correctness of statements like even-
tually entering the critical region for every process which is continuously trying
to do this (in the mutual exclusions) or eventually leaving the waiting queue for
each process that has entered it (in the scheduling) [7].

Partial order reduction is one of the main techniques that are used to allevi-
ate the problem of state space explosion in the verification of concurrent systems
[16, 8, 11, 14] and it is indeed one of Spin’s main strengths. The idea is, instead
of exploring all the execution sequences of a given program, to group them in
equivalence classes which are interleaving of independent program statements.
Then only representatives for each equivalence class are considered. In prac-
tice this is realized such that from each state only a subset of the executable
statements are taken.



Combining the algorithms for model-checking under weak fairness with par-
tial order reduction is a prerequisite for the verification of many interesting
properties to be feasible in practice. However, recently it was discovered that
the two algorithms are not compatible when rendez-vous communications occur
in the Promela models. As a result, in the present implementation of Spin the
combination of weak fairness with partial order reduction when rendez-vous are
used in the models is not allowed.

Another problem with Spin’s partial order reduction in presence of rendez-
vous occurs when the unless construct is used in the Promela models. The
combination of this three Spin’s features is also currently forbidden.

Interestingly, it turns out that both problems are caused exactly by the same
pattern of wrong partial order reduction. After pointing out the incorrect reduc-
tion pattern we propose solutions for these problems. For each of the problems
we discuss two kind of solutions, classified according to the two different phases
of the verification in which they are implemented. The first kind of solutions
corrects the identifications of so called safe statements for the partial order re-
duction algorithm. The marking of the statements as safe is done during the
compilation of the Promela model, so we call this solutions static. The second
kind are the dynamic solutions which are applied during the exploration of the
state space and are in fact corrections of the partial order reduction algorithm.

In the next section we give the necessary preliminaries for the rest of the
paper. Section 3 is devoted to partial order reduction and the concrete algo-
rithm that is used in Spin. In Section 4 we discuss the problem with the unless
construct and give two solutions (one dynamic and one static) to overcome it.
Section 5 deals with the Spin’s weak fairness algorithm. After location of the
problem and the comparison with the unless case, we again propose both kind
of solutions. The last section is a standard summary with some considerations
about the future work.

2 Preliminaries

In this section following [11] and [5] we give semantics of the Promela programs
(models) and their verification in terms of finite labeled transition systems.

We represent the programs as collections of processes. The semantics of the
process P; can be represented as a labeled transition system (LTS). An LTS is a
quadruple (S;, so;, 7, L;), where S; is a finite set of states, so; is a distinguished
initial state, L; is a set of program statements (labels), and 7; : S; x L; — 25
is a nondeterministic transition function. The transition function induces a set
T; C S; x S; of transitions. Every transition in T} is the result of an execution
of a statement from the process, i.e., (s;,s;) € T; iff there exists a statement a
such that s} € 7;(s;,a). We introduce a function Label that maps each transition
to the corresponding statement. For a statement a, with Pid(a) we denote the
process to which a belongs. (If two syntactically identical statements belong to
different processes we consider them as different.) En(a) denotes the set of states



in which a is enabled. (The enabledness (executability) of a given statement is
defined according to some additional rules that we do not consider here.) Given
a state s and process p we say that p is enabled in s (or, more formally, write
s € En(p)) if there is a statement a such that Pid(a) = p and s € En(a).

Now we can define the semantics of the program P that corresponds to the
concurrent execution of the processes P; as an LTS which is a product of the
labeled transition systems corresponding to the component processes. The prod-
uct LTS consists of: state space S = [[ S;, i.e., the Cartesian product of the state
spaces S; from P;’s LTS; so = (o1, ---,S0n); L = |J L;, the set of statements is
union of the statements sets of the components; and the transition function is
defined by: (i) if a is not a rendez-vous statement, then (sq,...,s},...,5,) €
T(S1,. .0, Skye .y Snya) iff s, € 7(s,a); (ii)if a is a rendez-vous send, and
there is a rendez-vous receive statement a’, such that Pid(a') # Pid(a), then
(S15--s8hseeesySlyeeerSn) € T(S1,-vnySkyevnySly---,8n,a) iff s}, € Tx(sg,a) and
s; € 1(s1,a’). Note that in the case of rendez-vous communication the resulting
transition is labeled with the rendez-vous send statement.

An execution sequence for the LTS is an infinite sequence tg,t1,... where
t; € T, for all i > 0 and ¢, originates from the initial state, i.e. to = (so, sy) (for
some s3) and for all adjacent transitions ¢;11 = (Si41,5741),t: = (8i,5;)(i > 0)
it holds s} = s;4+1. The execution sequence can also be defined as a sequence
of global system states. In order to relate the two options for a given transition
ti = (s, 8}) we define State(t;) = s;.

The most general way to represent the requirements on the program is by
linear temporal logic (LTL) formula. In Spin the next-time-free LTL are used,
which means that the formulae may contain only boolean propositions on system
states, the boolean operators A, V, ! (negation), and the temporal operators O
(always), ¢ (eventually) and U (until). For the verification purposes the LTL
formulae are translated into Biichi automata.

A Biichi automaton is a tuple A = (X, S, p, so, F'), where X' is an alphabet,
S is a set of states, p : S x ¥ — 2% is a nondeterministic transition function,
so € S is the initial state, and F C S is a set of designated states. A run of
A over an infinite word w = aqas ..., is an infinite sequence sgps; ... of states,
where s¢ is the initial state and s; € p(s;—1,a;), for all i > 1. A run sgs; ... is
accepting if there is some state from F' that occurs infinitely often, i.e. for some
s € F there are infinitely many i’s such that s; = s. The word w is accepted by
A if there is an accepting run of A over w.

The transitions of the Biichi automaton that is obtained from the formula
are labeled with boolean propositions over the global system states of the LTS
corresponding to the program.

In order to prove the satisfaction of the LTL formula by the program, we
further define the synchronous product of LTS (Sp, sop, 7, L) corresponding to
the program P and the Biichi automaton (X, S4,p, soa, F') obtained from the
negation of the LTL formula, to be an LTS extended with acceptance states,
! with: state set Sp x Sa, initial state (sop, S04), transition function 7 : Sp x

! Although the proliferation of different formal models (LTS, Biichi automata, ex-



Sa x L defined as (sap,S24) € T(S1p,S14,0) iff sap € 7p(s1p,a) and there is a
proposition p € X such that so4 € p(s14,p) and pis true in sq 4, set of statements
L, and set of designated acceptance states Acc defined such that (sp,s4) € Acc
iff s4 € F,i.e. we declare as acceptance states the states with second component
belonging to the acceptance set of the Biichi automaton. Similarly as for Biichi
automata we will say for an execution o that it is acceptance execution if there
is at least one state from Acc that occurs infinitely often in o.

The satisfaction of the formula can now be proven by showing that there are
no acceptance executions of the extended LTS. On the other hand, the existence
of acceptance executions sequences means that the formula is not satisfied. From
the definition of Biichi automata and extended LTS and following the reasoning
from [5], for instance, it is straightforward to conclude that the extended LTS
has an acceptance execution iff it has some state f € Acc that is reachable
from the initial state and reachable from itself (in one or more steps) [5]. In the
sequel we will call the underlying graph a state space. Thus, we have to look
for acceptance cycles in the state space, i.e., for cycles that contain at least one
acceptance state.

3 Partial Order Reduction

In this section we give a brief overview of the partial order reduction (POR)
algorithm by Holzmann and Peled [11], that is considered throughout the paper.
This algorithm is also implemented in Spin. We start with rephrasing some
definitions from [11].

The basic idea of the reduction is to restrict the part of the state space that is
explored by the DFS, in such a way that the properties of interest are preserved.
To this purpose, the independence of the checked property from the possible
interleaving of statements is exploited. More specifically, two statements a,b are
allowed to be permuted precisely then, if for all sequences v,w of statements:
if vabw (where juxtaposition denotes concatenation) is an accepted behaviour,
then vbaw is an accepted behaviour as well. In practice, sufficient conditions
for such permutability are used that can be checked locally, i.e., in a state. For
this, a notion of “concurrency” of statements is used that captures the idea that
transitions are contributed by different, concurrently executing processes of the
system.

We first introduce some additional terminology. For ¢ € En(a), a(q) is state
which is reached by executing a in state g. Concurrent statements (i.e. statements
with different Pids) may still influence each other’s enabledness, whence it may
not be correct to only consider one particular order of execution from some
state. The following notion of independence defines the absence of such mutual
influence. Intuitively, two statements are independent if in every state where

tended LTS) that are used to represent the semantics and ultimately the state space
might seem unnecessary, we use three different formal concepts in order to follow
more closely [11] and [5], so that we will be able to reuse most of the results from
these papers in a seamless way.



they are both enabled, they cannot disable each other, and are commutative,
i.e., the order of their execution makes no difference to the resulting state.

Definition 1. The statements a and b are independent iff for all states g such
that ¢ € En(a) and ¢ € En(b),

— a(q) € En(b) and b(q) € En(a), and
— a(b(q)) = b(a(q)).

Statements that are not independent are called dependent.

Note that a and b are trivially independent if En(a) N En(b) = 0. An example
of independent statements are assignments to or readings from local variables,
executed by two distinct processes.

Also note that the statements a and b are considered to be independent even
if a can enable b (and vice versa). The main requirement is that the statements
do not disable each other. This is unusual in a sense, because in the literature a
more strict definition prevails that does not allow that a statement can enable
another statement (e.g. [16, 8]). The advantage of the subtlety in Definition 1
is that ensures a greater set of independent statements than the “classical”
definition and consequently a better reduction of the state space. However, we
must be careful with this, because as we will see later this feature is closely
connected with the incompatibilities that we are discussing in this paper.

Another reason why it may not be correct to only consider only one particular
order of execution from state s of two concurrent statements a and b is that the
difference between the intermediate states a(s) and b(s) may be observable in
the sense that it influences the property to be checked. For a given proposition
p that occurs in the property (an LTL formula), and a state s, let p(s) denote
the boolean value of the proposition p in the state s. Then, a is nonobservable
iff for all propositions p in the property and all states s € En(a), we have
p(s) = p(a(s)). The statement a is said to be safe if it is nonobservable and
independent from any other statement b for which Pid(b) # Pid(a).

In the rest of the section we describe in a rather informal way the partial
order algorithm from [11]. For the full details about the algorithm we recommend
the original references [11, 14].

The reduction of the search space is effected during the DFS, by limiting the
search from a state s to a subset of the statements that are enabled in s, the
so-called ample set. Such an ample set is formed in the following way: If there
is a process which has only safe statements enabled and all those transitions
lead to a state which is not on the DFS stack, then the ample set consists of
all the statements from this process only. Otherwise, the ample set consists of
all enabled statements in s. It can be proven [11, 14] that the reduced graph
obtained in this way preserves the properties of the original LTS, stated as an
LTL formula. The condition that all transitions from the ample set must end out
of the DFS stack, the so-called “cycle proviso”, ensures that a statement that it
is constantly enabled, cannot be “forgotten” by leaving it outside the ample set
in a cycle of transitions.



While the cycle proviso is clearly locally checkable during a DFS, the condi-
tion that an enabled statement is safe is not, as the definition of safety requires
independence from any concurrent statement. For instance, a sufficient condition
for safety of a statement a that can be checked locally is that a does not touch
any global variables or channels. Indeed, it is this condition that is implemented
in Spin.

However, it will turn out that one solution for our incompatibility problems
will be to correct (or better to say, refine) this safety criterion.

In [11, 14] it is shown that

Theorem 2. If there exist reachable acceptance cycles in the state space the
reduced search algorithm will report at least one of them.

4 The unless construct

The unless construct is a mean for modeling exception handling routines and
priority choices. Formally, it introduces partial ordering between the statements
that belong to a same process. Its syntax is stmnt unless stmnt. The first (left-
hand) statement is called normal or main, while the second (right-hand) is escape
statement. 2 Semantically, the executability of the normal statement depends
on the executability of the escape sequence. The escape sequence has higher
priority than the normal statement, which means that the normal statement
will be executed only if the escape statement is not executable. Otherwise the
escape statement is executed and the normal statement is ignored (skipped).
This dependence between the two statements of unless causes the problems
when the partial order reduction is used and the escape statement is a rendez-
vous communication.

Let us consider the motivating Promela example given in Figure 1. 3 (In
the sequel we assume that the reader is familiar with Promela.) Suppose that
both A and B are in their starting points, i.e. A is trying to execute its skip
statement, while B is attempting to do its only statement. Obviously the higher
priority rendez-vous send offer c!1 issued by B cannot find a matching receive,
so the verifier should detect the assertion violation assert (false).* However,
in the reduced search this is not detected, because of the incorrect partial order

2 In general, both statements can be sequences of Promela statements. Also the unless
construct can be nested. The results form this paper can be extended in a straight-
forward way for this general case.

3 The example is distilled from a model made in the discrete time extension of Spin
DTSpin [2]. The model was written by Victor Bos, who first draw our attention to
the possible problems with the unless statement.

* Strictly speaking in this example we are considering a safety property that is not
expressed as an LTL formula. The equivalent formulation of the property in LTL can
be done in a straightforward way and the partial order reduction will fail because of
the same reason as in the present case. We decided to use this version of the example
for the sake of simplicity.



chan ¢ = [0] of {bit}

active proctype A()
{

skip; c?1;

}

acive proctype B()
{
assert(false) unless c!i;

}

Fig. 1. Motivating example for unless statement.

reduction. The problem with the reduction occurs because the skip statement
is not safe anymore. Namely, the criterion that a statement is safe if it does not
affect any global objects is no longer true. Because of the specific property that
the executability of the rendez-vous statement can be changed only because of
the change of the location in the process (program counter), the statements like
skip are not unconditionally globally independent according to the Definition 1.

@ assert(false)

A cllcen

\ cll|c?1

Fig. 2. Interdependence between the “safe” statements and the unless escape and
normal statements.

The reason is depicted in Fig. 2. In the starting state described above the
rendez-vous send c!1 is disabled, but with the execution of skip it becomes
enabled. This means that skip has indirectly disabled assert(false) which
was enabled in the starting state. In that way skip and assert(false) are not
independent according to the Definition 1, because the net effect is that skip



disables assert(false).

The problem can be solved both statically in compile time or dynamically
during the exploration of the state space. The dynamic solution consists of check-
ing whether in a given state there is a disabled rendez-vous statement (more pre-
cisely, rendez-vous send) which is a part of an escape statement and in that case
the partial order reduction is not performed in the given state. The drawback of
this solution is that it can be time consuming.

The static solution is to simply declare each statement which is followed
by a rendez-vous communication (more precisely, by a rendez-vous receive) as
unsafe. We use the term “followed” in a syntactical sense, taking into account
all the cycles and jumps in the program. For example, the last statement of the
body of an iteration is followed by the first statement of the body. Whether a
given statement is followed by a rendez-vous can be checked by inspecting Spin’s
internal representation of the Promela program (abstract syntax tree). This can
be done during the generation of the C source (pan.c) of the special purpose
verifier for the program. Thus, the solution does not cause any time overhead
during the verification. Its drawback with regard to the dynamic solution is that
the reduction can be less effective because of an unnecessary strictness. It can
happen that the reduction is unnecessarily prevented even when in the state that
is considered by DFS there is no disabled rendez-vous send in unless construct
or even there is no statement with an unless construct at all.

5 Fairness

A pattern very similar to the one from the previous section that causes the
partial order reduction algorithm to fail in presence of rendez-vous communica-
tions, occurs when the weak fairness option is used in the verification. The weak
fairness algorithm is also a very instructive example how the things can become
complicated because of the feature interaction.

5.1 The Standard Nested Depth-First Search (NDFS) Algorithm

The weak fairness algorithm that we are going to present in the next subsection
is an extension of the algorithm of Courcoubetis, Vardi, Wolper and Yannakakis
[5] for memory efficient verification of LTL properties. The algorithm is a more
efficient alternative to the usual computation of the strongly connected compo-
nents of the underlying graph for the product LTS. It is also compatible with
Spin’s bit-state hashing, which is not the case with the strongly connected com-
ponents algorithm. We start with the brief overview of this algorithm given in
Figure 3.

The algorithm consists of two alternating depth first searches for exploration
of the state space. When the first search retracts to an acceptance state the
second search is started to check for a cycle through this acceptance state. If
the second depth first search (DFS) closes a cycle, it is reported as an accep-
tance cycle. Otherwise, the first DFS resumes until the next acceptance state



in postorder (if there is such a state). If no cycle is found than the property is
successfully verified.

We need to work with two copies of the state space in order to ensure that
the second DFS does not fail to detect a cycle by cutting the search because it
has encountered a state visited already by the first DFS. To distinguish between
states belonging to a different copy we extend the state with one bit denoting
the DFS phase.

proc dfs(s)
add {s,0} to Statespace
for each successor s’ of s do
if {s’,0} not in Statespace then dfs(s’) fi
od
if accepting(s) then seed:={s,1}; ndfs(s) fi
end

proc ndfs(s) /* the nested search */
add {s,1} to Statespace
for each successor s’ of s do
if {s’,1} not in Statespace then ndfs(s’) fi
else if {s’,1}==seed then report cycle fi
od
end

Fig. 3. Nested depth first search algorithm.

The following theorem from [5] establishes the correctness of the algorithm

Theorem 3. The algorithm in Fig. 3 reports a cycle iff there is an acceptance
state reachable from the initial state that belongs to a nontrivial strongly con-
nected component of the state space.

Notice that the first DFS serves to order the acceptance states in postorder,
such that the cycle checks can be done starting from the acceptance state which
is removed first from the stack (i.e. first in postorder). It is important to empha-
size that during the second DFS each state in the second copy of the state space
is visited only once. This has (most of the time) an advantage over the straight-
forward solution to do the cycle check in preorder, i.e. starting a cycle check as
soon as we visit an acceptance state. If we used preorder we would have to start
the second DF'S always from scratch. Although the memory requirements would
be the same as for the postorder, the multiple visits to a same state can lead to
a significant time overhead.



5.2 Description of the Weak Fairness Algorithm

We will consider weak fairness with regard to processes, i.e. we will say that a
given execution sequence is fair if for each process that becomes continuously
enabled starting at some point in the execution sequence, a transition belonging
to this process is eventually executed. Formally

Definition 4. An execution sequence o = tyty ... is fair iff for each process p
the following holds: for all ¢ > 0 such that State(t;) € En(p) for all j > i, there
is k > i such that Pid(Label(ty)) = p.

When model checking under fairness, we are interested only in fair acceptance
runs (sequences). This means that we require the detected cycles to be fair,
i.e. each continuously enabled process along the cycle contributes at least one
transition to it.

The basic idea behind the weak fairness algorithm is to work in an extended
state space instead of the original one. The extended state space consists of IV
copies of the original state space, where N is the number of processes. Whenever
we are in the i-th copy and either we take a transition belonging to the process
i or there is no executable transition that belongs to i, then we pass to the
((i + 1)modN) + 1 copy. A cycle is then fair if and only if it passes through all
the copies. This is because we are sure that all permanently enabled processes
have contributed an action to the cycle.

The idea is quite straightforward and at first sight it seems that all we need
is some counter which will indicate the copy of the state space we are passing
through. However, the algorithm becomes more involved when we have to take
care about the partial order reduction and try to improve it with some heuristics.

The weak fairness (WF) algorithm we are considering here is by Holzmann
and it is a variant of the Choueka’s flag algorithm [10]. This algorithm is also
implemented in Spin as an extension of the nested depth first search algorithm.

For the WF algorithm we need a new extended state space. Its elements are
quadruples of the form (s, A, C, b), obtained by extending each state s, apart from
the bit b discriminating between the first and second DFS, with an additional
bit A and an integer C. The variable C is the already mentioned counter that
keeps track of the copy of the state space we are passing through. The role of
A is to indicate that we have already passed through an acceptance state in the
state space. We need this indicator because, as we will see in a moment, we will
not always start the search from an acceptance state, but instead in a state when
we are sure that all enabled processes have executed a statement, which often
means that we have a better chance to close a fair cycle.

The standard NDFS model-checking algorithm is modified correspondingly
for manipulation of the new variables and generation of the extended state space.
The pseudo-code of the algorithm is given in Figure 4 and 5.

In the initial state A and C are zero. The values of A and C are changed
according to the following three rules that apply both to the first and the second
DFS.



— Rule 1: If A is zero in an acceptance state, then A is set to 1 and C is
assigned the value N + 1, where N is the number of processes. (This rule
is a kind of initialization that indicates that we have passed an acceptance
state and a cycle check, i.e., a second DFS, is possibly needed.)

— Rule 2: If A is 1 and C equals the Pid number (increased by two) of the
process which is being currently considered, then C'is decreased by 1. (This
rule is to keep track of the state space copy in which we are working. The
technical difference is that the counter is increased instead of being decreased,
as in the “naive” algorithm above.)

— Rule 3: If the condition of Rule 1 does not apply and if C' is 1, then both
C and A are reset to 0. (This rule is a preparation (initialization) for the
second DFS.)

We have to use the counter not only in the second DFS, but also during
the first DFS in order to keep the copies of the state space the same in both
searches. This is important for the partial order reduction algorithm that we
are going to use later. If those copies differ, the interaction between the nested
DFS algorithm and the partial order reduction can produce incorrect results, as
shown in [12].

Notice that if C' is ¢ + 2, then it is immediately decreased when we start
exploring the statements (transitions) of a new process. This means that even
if the process cannot perform any statement we will pass to a new state with
a different counter number. This kind of transition in the state space we call a
default transition and label it with a default statement meaning that the process
is disabled and should not be taken into consideration for the cycle that is cur-
rently checked. We will see in the next subsection that these default transitions
play a crucial role in the incompatibility with partial order reduction.

We mentioned above that unlike the standard NDFS in the WF algorithm
the cycle check does not have to start in an acceptance state. Instead it starts in
special states, which we simply call starting states in the sequel, and which have
the property that A =1, C' =1 and b = 1. Analogously to the standard NDFS,
the cycle check starts after all the successors of the starting state are explored
and the search returns back to the starting state. Also, let us emphasize that
a starting state can “cover” several acceptance states in a sense that several
acceptance states can be passed before the cycle check is started. The additional
acceptance state that are passed after the first one do not “generate” new starting
states because C' stays unchanged. In this way we can often reduce the number
of calls for the second DFS. Also by the lookahead for a possible fragment of a
fair cycle, as we essentially do, we reduce the number of unsuccessful attepmpts
to close a fair cycle.

5.3 Incompatibility with the Partial Order Reduction Algorithm

The incompatibility of the weak fairness algorithm with POR (and because of
rendez-vous communications) was first discovered for the example given in Fig. 6
(by Dennis Dams):



proc dfs(s, A, C)
add {s,A,C,0} to Statespace
/* Rule 1 x/
if accepting(s) then
if A == 0 then

A =1;
C = N+1
fi
else
/* Rule 3 */
if C == 1 then
A =0;
c=0
fi

for each process i = N-1 downto 0 do
/* Rule 2 */
if A == 1 and C == i+2 then
c=C-1
fi
nxt = all transitions enabled in s with Pid(t)=i
for all t in nxt do
s’ = successor of s via t
if {s’,A,C,0} not in Statespace then dfs(s’,A,C) fi
od
od
if A == 1 and C == 1 then
seed:={s,A,C,1};
ndfs(s,A,C)
fi
end

Fig. 4. Weak fairness algorithm — first depth first search (continued in Figure 5).

In the model from Fig. 6 the LTL formula <$p, where p is defined as b ==
true, is not valid even under fairness condition. This is because of the statement
x = 0 in process C. Namely, because of this statement, the rendez-vous send
c!1 from process B is no longer continuously enabled. Since, now there exists
a fair cycle formed just by the statements from A and C, i. e. c!0; c?7x; x =
0; c!0 ... along which the process B can be safely ingnored because it is not
continuously enabled.

However, when partial order redcution was used the verifier uncorrectly
showed that the forumula was valid. ® So, the aforementioned fair cycle formed

® Note that if you try to run the example with the recent releases of Spin an error will
be issued because of the incompatibility of fairness and partial order reduction in
models with rendez-vous operations.



proc ndfs(s,A,C) /* the nested search */
add {s,A,C,1} to Statespace
/* Rule 1 */
if accepting(s) then
if A == 0 then

A =1;
C = N+1
fi
else
/* Rule 3 */
if C == 1 then
A =0;
C = 0;
fi
for each process i do
/* Rule 2 */
if A == 1 and C == i+2 then
c=C-1
fi

nxt = all transitions enabled in s with Pid(t)=i

for all t in nxt do
s’ = successor of s via t
if {s’,A,C,1} not in Statespace then ndfs(s’,A,C) fi
else if {s’,A,C,1}==seed then report cycle fi

od

od
end

Fig. 5. Weak Fairness Algorithm — second depth first search

by the processes A and C was not discovered. The reason for the failure is very
similar to the one for the unless statements. Again the same pattern of a wrong
partial order reduction because of the incorrect independence relation occurs.
But this time the problem is with the difault meta transitions. Recall that those
transitions only change the counter C in the fairness algorithm when all state-
ments of the process which is currently considered are disabled. As ilustrated in
Fig. 7 the problem is again caused by the rendez-vous statements.

With s is denoted the state in which process C' is about to execute the
statement x = 0, processes A and B are hanging on their rendez-vous sending
statements, and the counter C' from the WF algorithm equals the Pid of process
B increased by 2. Then, the statement x = 0 is no longer safe, because it is
dependent with the default transition (the decrement of C). Namely, because
c!1is disabled, according to the WF algorithm the default transition is enabled.
After the execution of x = 0 the system passes in the state s’ in which c!1
becomes enabled, and consequently the default transition is not possible. In
the reduced search the statement c!1 is not considered at all. On the other



chan ¢ =[0] of {bit};
bool b = false;

active proctype A()
{

starta:
c!0;
goto starta

}

active proctype B()

{

startb:
c!l; b = true;
goto startb

}

active proctype C(Q)
{ bit x;
startc:

c?x; x = 0;

goto startc

}

Fig. 6. Motivating example for the fairness algorithm.

default (C = C-1)
O

\c!l|c’?x

Fig. 7. Interdependence between the “safe” transitions and the default moves



hand in s, after x = 0, c!1 becomes enabled and must be included in the fair
cycles. In this way during the reduced search the verifier never considers the fair
cycle in which process B does not contribute a transition, which is, of course,
wrong. There is an apparent analogy with the pattern from the unless case.
By enabling a rendez-vous statement (transition) (c!1 in combination with c?x)
we are preventing another transition (in this case the “meta” default transition)
which is in discord with the independence definition.

As in the case of the unless construct two kind of solutions are possible.

The first solution is static and it is actually the same with the one for the
problem with unless. 8 This is not surprising because we have the same problem-
atic reduction pattern which we can avoid exactly in the same way by declaring
as unsafe all statements that are safe according to the standard criteria in Spin,
if they are followed by a rendez-vous receive statement.

We can also propose a dynamic solution which is analogous to the one for the
unless case. In each state we need to check if there is a possibility of a default
move caused by a rendez-vous communication. The partial order reduction is
not performed if this is the case. Unlike in the unless case, this time the time
overhead can be much smaller because we have to check the transitions from
only one process - the one who’s Pid satisfies C' = Pid + 2.

However, we conjecture that there is a much more efficient dynamic solution
that still allows reduction even in the state with a default move. In the new
solution we use again the fact that we exactly know the possible problematic
statements, or more precisely the Pid of the process which default move can
cause the incorrect reduction.

In fact we correct the POR algorithm, while the same static criteria for
safety of statements remain unchanged as in the standard POR. The change of
the algorithm follows from the following reasoning. Because the problem is with
the default move we should take care that we do not loose the counter decrement.
To this end, before doing a reduction on a safe transition we first check if the
process with Pid such that C' = Pid+ 2 can make a default move because no one
of its transitions is enabled in the current state and in the same time contains a
synchronous communication (which is not enabled, of course). If there is such a
process we execute this default move before the reduction. In that way we do not
loose the counter decrement because of the incorrect reduction. By decreasing C
now another process can acquire the above problematic property to be blocked
and to have a rendez-vous send while his Pid equals C'—2. We must obviously do
the check described above in an iteration, until there are no processes with the
problematic property. Although this solution will also exhibit a time overhead
during the verification because of the necessary checks, it is reasonable to expect
that this overhead will not be that significant. The new dynamic solution keeps
of course the advantage over the static one that it can provide better reduction
of the state space. Probably only the prospective practical implementations and
tests on case examples can answer the question whether the possible timing
overhead will be compensated by significantly less memory consumption. The

6 The author owes this observation to Dennis Dams.



disadvantage for the practical implementation can be that the second dynamic
solution (at least conceptually) seems more complicated than the static one.

As we stated above, our proposal is only a conjecture for the time being,
because we are still checking the proofs. The idea is to show by an adaptation
of the correctness proof from [11, 14] that with the small addendum described
above the POR algorithm remains correct even when the reduction is done on
in fact unsafe statements (with regard to the default move). This is because the
LTL formulae do not refer to C' which is a “meta” variable in the system and
affects only the cycle fairness.

6 Conclusion

Promela’s unless construct and the weak fairness algorithm are both incompati-
ble with the partial order reduction algorithm when rendez-vous communications
are present in the programs. We gave solutions to both problems by proposing
a corrected identification of safe statements or changes in the partial order algo-
rithm. It is hoped that the lessons learned from these problems will be helpful
to avoid the interference of the partial order with the prospective new features
of Spin.

A natural task for the future work would be the implementation of the solu-
tions in Spin. In that regard the most promising looks the static solution with
the correction of the criteria for safe statements. The only obstacle can be to
find the successor of a given statement. The main problem in this context is the
handling of the various Promela jump constructs (break, goto, etc.). Also the
implementation of the first dynamic solution for the fairness should not be too
involved. In the theoretical direction the correctness proof of the conjectured
dynamic solution for fairness remains to be rechecked.

As a final remark, the compatibility with the weak fairness algorithm can
be very important for the existing [2] and future extensions of Spin with real
time, especially having in mind the work of [3] about zeno cycles in the real-time
systems.
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