
An Ordered Approach to Solving Parity Games in Quasi
Polynomial Time and Quasi Linear Space

John Fearnley
University of Liverpool
fearnley@liverpool.ac.uk

Sanjay Jain
National University of Singapore

sanjay@comp.nus.edu.sg

Sven Schewe
University of Liverpool

sven.schewe@liverpool.ac.uk

Frank Stephan
National University of Singapore

fstephan@comp.nus.edu.sg

Dominik Wojtczak
University of Liverpool

d.wojtczak@liverpool.ac.uk

ABSTRACT

Parity games play an important role in model checking and
synthesis. In their landmark paper, Calude et al. have shown
that these games can be solved in quasi-polynomial time. We
show that their algorithm can be implemented efficiently: we
use their data structure as a progress measure, allowing for a
backward implementation instead of a complete unravelling
of the game. To achieve this, a number of changes have to
be made to their techniques, where the main one is to add
power to the antagonistic player that allows for determining
her rational move without changing the outcome of the game.
We provide a first implementation for a quasi-polynomial
algorithm, test it on small examples, and provide a number
of side results, including minor algorithmic improvements, a
quasi bi-linear complexity in the number of states and edges
for a fixed number of colours, and matching lower bounds for
the algorithm of Calude et al.

KEYWORDS

parity games, model checking games, synthesis

ACM Reference format:
John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan, and Do-
minik Wojtczak. 2017. An Ordered Approach to Solving Parity
Games in Quasi Polynomial Time and Quasi Linear Space. In

Proceedings of 24th International SPIN Symposium on Model
Checking of Software, Santa Barbara, California, USA, July 2017

(SPIN 2017), 11 pages.

DOI:

1 INTRODUCTION

Parity games are two-player games zero-sum games played
on a finite graph. The two players, named even and odd,
move a token around the graph until a cycle is formed. Each
vertex is labelled with an integer colour, and the winner is
determined by the parity of the largest colour that appears

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPIN 2017, Santa Barbara, California, USA

© 2017 Copyright held by the owner/author(s). . . . $15.00
DOI:

on the cycle: player even wins if it is an even colour, and
player odd wins otherwise.

Parity games have been the focus of intense study [2–
6, 8, 10, 11, 18–20, 22–25, 27, 29, 30, 33, 35, 37], in part due
to their practical applications. Solving parity games is the
central and most expensive step in many model checking [1,
7, 9, 10, 21, 36], satisfiability checking [21, 31, 34, 36], and
synthesis [16, 26, 32] algorithms.

Parity games have also attracted attention due to their
unusual complexity status. The problem of determining the
winner of a parity game is known to lie in UP ∩ co-UP [17],
so the problem is very unlikely to be NP-complete. However,
despite much effort, no polynomial time algorithm has been
devised for the problem. Determining the exact complexity
of solving a parity game is a major open problem.

Three main classes of algorithms have been developed
for solving parity games in practice. The recursive algo-
rithm [24, 37], which despite being one of the oldest al-
gorithms has been found to be quite competitive in prac-
tice [14]. Strategy improvement algorithms use a local search
technique [35], similar to the simplex method for linear pro-
gramming and policy iteration algorithms for solving Markov
decision processes. Progress measure algorithms define a
measure that captures the winner of the game, and then
use value iteration techniques to find it [18]. Each of these
algorithms has inspired lines of further research, all of which
have contributed to our understanding of parity games. Un-
fortunately, all of them are known to have exponential worst
case complexity.

Recently, a major breakthrough has occurred: Calude et
al. [5] have provided a quasi-polynomial algorithm for solving

parity games that runs in time nlog(n)+6. Previously, the best
known algorithm for parity games was a deterministic sub-
exponential algorithm [20], which could solve parity games

in nO(
√
n) time, so this new result represents a significant

advance in our understanding of parity games.
Their approach is to provide a compact witness that can be

used to decide whether player even wins a play. Traditionally,
one must store the entire history of a play, so that when the
players construct a cycle, we can easily find the largest priority
on that cycle. The key observation of Calude et al. [5] is
that a witness of poly-logarithmic size can be used instead.
This allows them to simulate a parity game on an alternating
Turing machine that uses poly-logarithmic space, which leads

SPIN 2017, July 2017, Santa Barbara, California, USA Fearnley, Jain, Schewe, Stephan & Wojtczak

to a deterministic algorithm that uses quasi-polynomial time
and space.

This new result has already inspired follow-up work. Jur-
dziński and Lazić [19] have developed an adaptation of the
classical small-progress measures algorithm [18] that runs in
quasi-polynomial time. Their approach is to provide a suc-
cinct encoding of a small-progress measure, which is actually
very different from the succinct encoding developed by Calude
et al. [5]. The key advantage of using progress measures as a
base for the algorithm is that it avoids the quasi-polynomial
space requirement of the algorithm of Calude et al., instead
providing an algorithm that runs in quasi-polynomial time
and near linear space.

Our contribution. In this paper, we develop a progress-
measure based algorithm for solving parity games that uses
the succinct witnesses of Calude et al. [5]. These witnesses
were designed to be used in a forward manner, which means
that they are updated as we move along a play of the game.
Our key contribution is to show that these witnesses can
also be used in a backwards manner, by processing the play
backwards from a certain point. This allows us to formulate
a value iteration algorithm that uses (backwards versions of)
the witnesses of Calude et al. [5] directly.

The outcome of this is to provide a second algorithm for
parity games that runs in quasi-polynomial time and near
linear space. We provide a comprehensive complexity analysis
of this algorithm, which is more detailed than the one given
Calude et al. [5] for the original algorithm. In particular, we
show that our alogorithm provides

(1) a quasi bi-linear running time for a fixed number of
colours, O(mn log(n)c − 1);

(2) a quasi bi-linear FPT bound, e.g. O(mna(n)log logn),
where any other quasi-constant function can be used
to replace the inverse Ackermann function a; and

(3) an improved upper bound for a high number of

colours, O(m · h · nc1.45+log2(h))

for parity games with m edges, n vertices, and c colours, and
h = d1+ c/ log(n)e. We also provide an argument that parity
games with O(logn) colours can be solved in polynomial
time.

The complexity bounds (1) of our algorithm only match the
bounds for the algorithm of Jurdziński and Lazić [19], while
(2) and (3) are new. Moreover, we believe that it is interesting
that the witnesses of Calude et al. [5] can be used in this way.
The history of research into parity games has shown that ideas
from the varying algorithms for parity games can often spur
on further research. Our result and the work of Jurdziński and
Lazić show that there are two very different ways of succinctly
encoding the information that is needed to decide the winner
in a parity game, and that both of them can be applied
in value iteration algorithms. Moreover, implementing our
progress measure is easier, as standard representations of the
colours can be used. We have implemented our algorithm,
and we provide some experimental results in the last section.

Finally, we present a lower bound for our algorithm, and
for the algorithm of Calude et al. [5]. We derive a fam-
ily of examples upon which both of the algorithms achieve
their worst case—quasi-polynomial—running time. These
are simple single player games.

2 PRELIMINARIES

Parity games are turn-based zero-sum games played between
two players—even and odd, or maximiser and minimiser—
over finite graphs. A parity game P is a tuple (Ve, Vo, E, C, φ),
where (V = Ve ∪Vo, E) is a finite directed graph with the set
of vertices V partitioned into a set Ve of vertices controlled
by player even and a set Vo of vertices controlled by player
odd, E ⊆ V × V is the set of edges, C ⊆ N is a set of colours,
and φ : V → C is the colour mapping. We require that every
vertex has at least one outgoing edge.

A parity game P is played between the two players, even
and odd, by moving a token along the edges of the graph.
A play of such a game starts by placing a token on some
initial vertex v0 ∈ V . The player controlling this vertex then
chooses a successor vertex v1 such that (v0, v1) ∈ E and the
token is moved to this successor vertex. In the next turn the
player controlling the vertex v1 chooses the successor vertex
v2 with (v1, v2) ∈ E and the token is moved accordingly.
Both players move the token over the arena in this manner
and thus form a play of the game. Formally, a play of a
game P is an infinite sequence of vertices 〈v0, v1, . . .〉 ∈ V ω

such that, for all i ≥ 0, we have that (vi, vi+1) ∈ E. We
write PlaysP(v) for the set of plays of the game P that start
from a vertex v ∈ V and PlaysP for the set of plays of the
game. We omit the subscript when the arena is clear from
the context. We extend the colour mapping φ : V → C from
vertices to plays by defining the mapping φ : Plays→ Cω as
〈v0, v1, . . .〉 7→ 〈φ(v0), φ(v1), . . .〉.

A play 〈v0, v1, . . .〉 is won by player even if
lim supn→∞ φ(vi) is even, by player odd if lim supn→∞ φ(vi)
is odd.

A strategy for player even is a function σ : V ∗Ve → V such
that

(
v, σ(ρ, v)

)
∈ E for all ρ ∈ V ∗ and v ∈ Ve. A strategy

σ is called memoryless if σ only depends on the last state
(σ(ρ, v) = σ(ρ′, v) for all ρ, ρ′ ∈ V ∗ and v ∈ Ve). A play
〈v0, v1, . . .〉 is consistent with σ if, for every initial sequence
ρn = v0, v1, . . . , vn of the play that ends in a state of player
even (vn ∈ Ve), σ(ρn) = vn+1 holds.

It is well known that the following conditions are equivalent:
Player even wins if she has a strategy σ that sasisfies that

(1) all plays 〈v0, v1, . . .〉 consistent with σ satisfy
lim supi→∞ φ(vi) (i.e. the highest colour that occurs
infinitely often in the play) is even;

(2) all plays 〈v0, v1, . . .〉 consistent with σ contain a win-
ning loop vi, vi+1, . . . , vi+k, that sastisfies vi = vi+k

and φ(vi) ≥ φ(vi+j) for all natural numbers j ≤ k;
(3) as (1), and σ must be memoryless; or
(4) as (2), and σ must be memoryless.

We use different criteria in the technical part, choosing
the one that is most convenient.

Parity Games SPIN 2017, July 2017, Santa Barbara, California, USA

3 QP ALGORITHMS

We discuss a variation of the algorithm of Calude et al. [5].
In a nutshell, the algorithm keeps a data structure, the

witnesses, that encodes the existence of sequences of “good”
events. This intuitively qualifies them witnesses a measure
of progress in the construction of a winning cycle. This intu-
ition does not fully hold, as winning cycles are not normally
identified immediately, but it gives a good intuition of the
guarantees the data structure provides.

In [], witnesses are used to track information in an al-
ternating machine. As they are quite succinct (they have
only logarithmically many entries in the number of vertices
of the game, and each entry only requires lograthmic space
in the number of colours), this entails the quasi-polynomial
complexity.

We have made this data structure accessible for value iter-
ation, using it in a similar way as classical progress measures.
This requires a—simple—argument that witnesses can be
used in a backward analysis of a run just as well as in a for-
ward analysis. This, in turn, requires a twist in the updating
rule that allows for rational decisions. For this, we equip the
data structure with an order, and show that the same game
is still won by the same player if the antagonist can increase
the value in every step.

i-Witnesses. Let ρ = v1, v2, . . . , vm be a play of the par-
ity game. An i-witness is a set of (not necessarily consecutive)
positions of ρ

p1, p2, p3, . . . , p2i ,

of length exactly 2i, that satisfies the following properties:

• Position: Each pj specifies a position in the playe
ρ, so each pj is an integer that satisfies 1 ≤ pj ≤ m.

• Order: The positions are ordered. So we have
pj < pj+1 for all j < 2i.

• Evenness: All positions other than the final one
are even. Formally, for all j < 2i the colour φ(vpj)
of the vertex in position pj is even.

• Inner domination: The colour of every vertex
between pj and pj+1 is dominated by the colour
of pj , or the colour of pj+1. Formally, for all
j < 2i, the largest colour of any vertex in the subse-
quence vpj , v(pj)+1, . . . , vp(j+1)

is less than or equal

to max
{
φ(vpj), φ(vpj+1)

}
.

• Outer domination: The colour of p2i is greater
than or equal to the colour of every vertex that
appears after p2i in ρ. Formally, for all k in the
range p2i < k ≤ m, we have that φ(vk) ≤ φ(vp

2i
).

Witnesses. We define C = C∪{ } to be the set of colours
augmented with the symbol. A witness is a sequence

bk, bk−1, . . . , b1, b0,

of length k + 1—we will later see that k = blog2(e)c is big
enough, where e is the number of vertices with an even
colour—where each element bi ∈ C , and that satisfies the
following properties.

• Witnessing. There exists a family of i-witnesses,
one for each element bi with bi 6= . We refer to
such an i-witness in the run ρ. We will refer to this
witness as

pi,1, pi,2, . . . , pi,2i .

• Dominating colour. For each bj 6= , we have
that bj = φ(vp

i,2i
). In other words, bj is the outer

domination colour of the i-witness.
• Ordered sequences. The i-witness associated with
bi starts after j-witness associated with bj whenever
i < j. Formally, for all i and j with i < j, if bi 6=
and bj 6= , then pj,2j < pi,1.

It should be noted that the i-witnesses associated with each
position are not stored in the witness, but in order for a
sequence to be a witness, the corresponding i-witnesses must
exist.

Observe that the dominating colour property combined
with the ordered sequences property imply that the colours in
a witness are monotonically increasing, since each colour bj
(weakly) dominates all colours that appear afterwards in ρ.

Forwards and backwards witnesses. So far, we have
described forwards witnesses. The main results of this paper
will actually use backwards witnesses, which we now define.
For each play ρ = v1, v2, . . . , vm, we define the reverse play
←−ρ = vm, vm−1, . . . , v1. A backwards witness is a witness for
←−ρ , or for an initial sequence of it.

Order on witnesses. We first introduce an order � over
the set C , that captures the following requirements: even
numbers are better than odd numbers, and all numbers are
better than . Among the even numbers, higher numbers
are better than smaller ones, while among the odd numbers,
smaller numbers are better than higher numbers. Formally,
b � c if either c = ; or if c is odd and b is either odd and
b ≤ c holds, or b is even; or c is even and b is even and b ≥ c
holds.

Then, we define an order w over witnesses. This order
compares two witnesses lexicographically, starting from bk
and working downwards, and for each individual position
the entries are compared using �. We also define a special
witness won which is w than any other witness.

The value of a witness. An even chain of length m is a
sequence of positions p1 < p2 < p3 < . . . < pm (with 0 ≤ p0
and pm ≤ n) in ρ that has the following properties:

• for all j ≤ m, we have that φ(vpj) is even, and
• for all j < m the colours in the subsequence de-

fined by pj and pj+1 are less than or equal to
φ(pj) or φ(pj+1). More formally, we have that
all colours φ(vpj), φ(v(pj)+1), . . . , φ(vp(j+1)

) are less

than or equal to max
{
φ(vpj), φ(vpj+1)

}
.

For each witness b = bk, bk−1, . . . , b0, we define the func-
tion even(b, i) = 1 if bi 6= and bi is even. Then we define the

value of the witness b to be value(b) =
∑k

i=0 2i · even(b, i).
We can show that the value b corresponds to the length of
an even chain in ρ that is witnessed by b.

SPIN 2017, July 2017, Santa Barbara, California, USA Fearnley, Jain, Schewe, Stephan & Wojtczak

Lemma 3.1. If b is a (forward or backward) witness of ρ,
then there is an even chain of length value(b, i) in ρ.

Proof. Let i be an index such that even(b, i) = 1. By
definition, the i-witness pi,1, pi,2, . . . , pi,2i is an even chain

of length 2i in ρ. This holds irrespective of whether b is a
forward or backward witness.

Then, given an index j > i such that even(b, j) = 1,
observe that the outer domination property ensures that
φ(pi,2i) ≥ φ(vl) for all l in the range pi,2i ≤ l ≤ pj,1. So,
when we concatenate the i-witness with the j-witness we still
obtain an even chain. Thus, ρ must contain an even chain of
length value(b, i). �

Let e = |{v ∈ V : φ(v) is even }| be the number of
vertices with even colours in the game. Observe that, if we
have an even chain whose length is strictly greater than e,
then ρ must contain a cycle, since there must be a vertex with
even colour that has been visited twice. Moreover, the largest
priority on this cycle must be even, so this is a winning cycle
for player even. Thus, for player even to win the parity game,
it is sufficient for him to force a play that has a witness whose
value is strictly greater than e.

Lemma 3.2. If player even can force the game to run
through a sequence ρ, such that ρ has a (forwards or back-
wards) witness b and value(b) is greater than the number of
vertices with even colour, then player even wins the parity
game.

3.1 Updating forward witnesses

We now show how forward witnesses can be constructed
incrementally by processing the play one vertex at a time.
Throughout this subsection, we will suppose that we have a
play ρ = v0, v1, . . . , vm, and a new vertex vm+1 that we would
like to append to ρ to create ρ′. We will use d = φ(vm+1)
to denote the colour of this new vertex. We will suppose
that b = bk, bk−1, . . . , b1, b0 is a witness for ρ, and we will
construct a witness c = ck, ck−1, . . . , c1, c0 for ρ′.

We present three lemmas that allow us to perform this
task.

Lemma 3.3. Suppose that there exists an index j such that
bi is even for all i < j, and that bi ≥ d or bi = for all i > j.
If we set ci = bi for all i > j, cj = d, and ci = for all i < j,
then c is a witness for ρ′.

Proof. For the indices i > j, observe that since bi >
d, the outer domination of the corresponding i-witnesses
continues to hold. For the indices i < j, since we set ci =
there are no conditions that need to be satisfied.

To complete the proof, we must argue that there is a j-
witness that corresponds to cj . This witness is obtained by
concatenating the i-witnesses corresponding to the numbers
bi for i < j, and then adding the vertex vm+1 as the final
position. This produces a sequence of length 1+

∑j−1
i=0 2i = 2j

as required. Since all bi with i < j were even, the evenness
condition is satisfied. For inner domination, observe that
the outer domination of each i-witness ensures that the gaps

between the concatenated sequences are inner dominated,
and the fact that b0 dominates sequence vp0,1 , . . . , vm ensures
that the final subsequence is also dominated by b0 or d. Outer
domination is trivial, since vm+1 is the last vertex in ρ′. So,
we have constructed a j-witness for ρ′, and we have shown
that c is a witness for ρ′. �

Note that, differently from Calude et al. [5], we also allow
this operation to be performed in the case where d is odd.

Lemma 3.4. Suppose that there exists an index j such that
bj 6= , d > bj , and, for all i > j, either bi = or bi ≥ d hold.
Then setting ci = bi for all i > j, setting cj = d, and setting
ci = for all i < j yields a witness for ρ′.

Proof. For all i > j, we set ci = bi. Observe that this
is valid, since bi ≥ d, and so the outer domination property
continues to hold for the i-witness associated with bi. For
all i < j, we set ci = , and this is trivially valid, since this
imposes no requirements upon ρ′.

To complete the proof, we must argue that setting cj = d
is valid. Observe that in ρ, the j-witness associated with bj
ends at a certain position p = pj,2j . We can create a new

j-witness for ρ′ by instead setting pj,2j = m + 1, that is,
we change the last position of the j-witness to point to the
newly added vertex. Note that inner domination continues
to hold, since d > bj = φ(vp) and since vp outer dominated
ρ. All other properties trivially hold, and so c is a witness
for ρ′. �

Lemma 3.5. Suppose that for all j ≤ k either bj = or
bj ≥ d. If we set ci = bi for all i ≤ k, then c is a witness for
ρ′.

Proof. Since d ≤ bj for all j, the outer domination of
every i-witness implied by b is not changed. Moreover, no
other property of a witness is changed by the inclusion of
vm+1, so by setting c = b we obtain a witness for ρ′. �

When we want to update a witness upon scanning another
state vm+1, we find the largest witness that (according to v)
can be obtained by applying Lemmas 3.3 through 3.5. The
largest such witness is quite easy to find: first, there are at
most 3k to check, but the rule is quite easily to update the
leftmost position in a witness that can be updated.

For a given witness b and a vertex vm+1, we denote with

• ru(b, vm+1) the raw update of the witness to c, as
obtained by the update rules described above.

• up(b, vm+1) is either ru(b, vm) if
value

(
ru(b, vm+1)

)
≤ e (where e is the num-

ber of vertices with even colour), or up(b, vm) = won
otherwise.

4 BASIC UPDATE GAME

With these update rules, we define a forward and a backward
basic update game. The game is played between player even
and player odd. In these game, player even and odd produce
a play of the game as usual: if the pebble is on a position of
player even, then player even selects a successor, and if the

Parity Games SPIN 2017, July 2017, Santa Barbara, California, USA

pebble is on a position of player odd, then player odd selects
a successor.

Player even can stop any time she likes and evaluate
the game using b0 = , . . . , as a starting point and the
update rule bi+1 = up(bi, vi). For a forward game, she
would process the partial play ρ+ = v0, v1, v2, . . . , vn from
left to right, and for the backwards game she would process
the partial play ρ− = vn, vn−1, . . . , v0. In both cases, she has
won if bn+1 = won.

Theorem 4.1. If player even has a strategy to win the
(forward or backward) basic update game, then she has a
strategy to win the parity game.

Proof. By definition, we can only have bn+1 = won if
at some point we created a witness whose value was more
than the total number of even colours in the game. As we
have argued, such a witness implies that a cycle has been
created, and that the largest priority on the cycle is even.
Since player even can achieve this no matter what player odd
does, this implies that player even has a winning strategy
for the parity game. �

5 DATA-STRUCTURE AS PROGRESS
MEASURE

Recall that there are two obstacles in implementing the
algorithm of Calude et al. [5] as a value iteration algorithm.
The first (and minor) obstacle is that it uses forward witnesses,
while value iteration naturally uses backward witnesses. We
have already addressed this point by introducing the same
measure for a backward analysis.

The second obstacle is the lack of an order over witnesses
that is compatible with value iteration. While we have intro-
duced an order in the previous sections, this order is not a
natural order. In particular, it is not preserved under update,
nor does it agree with the order over values. As a simple
example consider the following two sequences:

• b = , 4, 2, and
• c = 9, 8, .

While value(b) = 3 > value(c) = 2, c A b. In particular,
c2 � b2 and c1 � b1 hold. Yet, when using the update
rules when traversing a state with colour 6, b is updated to
b′ = 6, , ,, while c is updated to c′ = 9, 8, 6. While c A b
held prior to the update, b′ A c′ holds after the update.
Value iteration, however, needs a natural order that will
allow us to choose the successor with the higher value.

We overcome this problem by allowing the antagonist in
our game, player odd, an extra move: prior to executing the
update rule for a value b, player odd may increase the witness
b in the v ordering. The corresponding antagonistic update
is defined as follows.

au(b, v) = minv
{
up(c, v) | c w b

}
Obtaining au(b, v) is quite simple: only if up(b, v) must

use Lemma 3.3, i.e. when it updates a position bj with bj =
or bj > φ(v) while, for all i < j, bi is even. If there is a
smaller position i < j such that increasing bi by 2 creates

a well formed witness, then we fix the smalles such i, and
obtain c by setting ch = bh for all h > i, ci = bi + 2, and
ch − for all h < i. (Otherwise we have = b.)

6 ANTAGONISTIC UPDATE GAME

The antagonistic update game is played like the basic update
game, but uses the antagonistic update rule. I.e. player even
and odd play out a play of the game as usual: if the pebble
is on a position of player even, then player even selects a
successor, and if the pebble is on a position of player odd,
then player odd selects a successor.

Player even can stop any time she likes and evaluate the
game using b0 = , . . . , as a starting point and the update
rule bi+1 = au(bi, vi). For a forward game, she would process
the partial play ρ+ = v0, v1, v2, . . . , vn from left to right,
and for the backwards game she would process the partial
play ρ− = vn, vn−1, . . . , v0. In both cases, she has won if
bn+1 = won.

Theorem 6.1. If player even has a strategy to win the
(forward or backward) antagonistic update game, then she
has a strategy to win the parity game.

Proof. We first look at the evaluation of a play ρ+ =
v0, v1, v2, . . . , vn or ρ− = vn, vn−1, . . . , v0 in a forward or
backwards game, respectively. In an antagonistic game, this
will lead to a sequence a0,a1, . . . ,an+1, while it leads to a
sequence b0,b1, . . . ,bn+1 when using the basic update rule.
We show by induction that bi w ai holds.

For an induction basis, b0 = a0 = , . . . , .
For the induction step, if bi w ai, then

ai+1 = au(ai, vi) = min
w

{
up(c, vi) | c w ai

}
v up(ai, vi)

vIH up(bi, vi) = bi+1.

Thus, when player even wins the (forward or backward)
antagonistic update game, then she wins the (forward or
backward) basic update game using the same strategy. �

It remains to show that, if player even has a strategy to
win the parity games, then she has a strategy to win the
antagonistic update game. For this, we will use the fact that
she can, in this case, make sure that the highest number
that occurs infinitely often on a run is even. We exploit this
in two steps. We first introduce a ↓x operator, for every
even number x, that removes all but possibly one entry with
numbers smaller than x, and adjust the one that possibly
remains to x − 1. We then argue that, when there are no
higher numbers than x, this value of the witnesses obtained
after this operator are non-decreasing w.r.t. w, and increase
strictly with every occurrence of x.

Formally we define, for a witness b = bk, bk−1, . . . , b0 and
an even number x, the following.

• b ↓x to be b if, for all i ≤ k, bi = or bi ≥ x holds.
• Otherwise, let i = max{i ≤ k | bi 6= and bi < x}.

We define b ↓x= b′k, b
′
k−1, . . . , b

′
0 with b′j = bj for all

j > i, b′i = x− 1, and b′j = for all j < i.

SPIN 2017, July 2017, Santa Barbara, California, USA Fearnley, Jain, Schewe, Stephan & Wojtczak

Lemma 6.2. The ↓x operator provides the following guar-
antees:

(1) b A a ⇒ b ↓xw a ↓x
(2) φ(v) < x ⇒ up(b, v) ↓xw b ↓x
(3) φ(v) < x ⇒ au(b, v) ↓xw b ↓x
(4) φ(v) = x ⇒ up(b, v) ↓xA b ↓x
(5) φ(v) = x ⇒ au(b, v) ↓xA b ↓x

Proof. For (1), let i ≤ k be the highest position with
bi 6= ai, and thus with bi � ai (as b A a). If b1 � x or
x + 1 � ai, the claim follows immediately (and we have
b ↓xA a ↓x). For the case x � bi � ai � x+ 1, this position
would be replaced by x− 1 and all smaller positions by by
the ↓x operator (and we have b ↓x= a ↓x).

For (2), the highest position i ≤ k for which a = up(b, v)
and b differ (if any) satisfies ai < x and bi ≺ x (the latter
holds because otherwise v does not overwrite position i by
this update rule). If bi ≺ x+1, then we get up(b, v) ↓xA b ↓x;
otherwise we get up(b, v) ↓x= b ↓x.

(3) follows from (1) and (2).
For (4), a = up(b, v) and b differ in some highest position

i ≤ k, and for that position, x = ai � bi holds. Thus,
up(b, v) ↓xA b ↓x.

(5) follows with (1) and (4). �

This almost immediately implies the correctness.

Theorem 6.3. If player even can win the parity game from
a position v, then she can win the (forward and backward)
antagonistic update game from v.

Proof. Player even can play such that the highest colour
that occurs in a run infinitely many times is even. She can
thus in particular play to make sure that, at some point in
the run, an even colour x has occurred more often that the
size of the image of ↓x after the last occurrence of a priority
higher than x. By Lemma 6.2, evaluating the forward or
backward antagonistic update game at this point will lead to
a win of player even. �

These results directly provide the correctness of all four
games described.

Corollary 6.4. Player even can win the forward and
backward antagonistic and basic update game from a position
v if, and only if, she can win the parity game from v.

7 VALUE ITERATION

The antagonistic update game offers a direct connection to
value iteration. For value iteration, we use a progress measure,
a function ι : V → W, where W denotes the set of possible
backwards witnesses. That is, a progress measure assigns a
backwards witness to each vertex.

Let bv = maxv{au(ι(s), v) | (v, s) ∈ E} for v ∈ Ve and
bv = minv{au(ι(s), v) | (v, s) ∈ E} for v ∈ Vo. We say that
ι can be lifted at v if ι(v) @ bv. When ι is liftable at v,
we define by lift(ι, v) the function ι′ with ι′(v) = bv and
ι′(v′) = ι(v′) for all v′ 6= v. We extend the lift operation

to every non-empty set V ′ ⊆ V of liftable positions, where
ι′ = lift(ι, V ′) updates all values v ∈ V ′ concurrently.

A progress measure is called consistent if it cannot be
lifted at any vertex v ∈ V . The minimal consistent progress
measure ιmin is the smallest (w.r.t. the partial order in the
natural lattice defined by pointwise comparison) progress
measure that satisfies

• for all v ∈ Ve that ι(v) w maxv{au(ι(s), v) | (v, s) ∈
E}, and

• for all v ∈ Vo that ι(v) w minv{au(ι(s), v) | (v, s) ∈
E}.

As au(b, v) is monotone in b by definition and the state
space is finite, we get the following

Lemma 7.1. The minimal consistent progress measure ιmin

is well defined.

Proof. First, a consistent progress measure always ex-
ists: the function that maps all states to won is a consistent
progress measure.

Second if we have two consistent progress measures ι and
ι′, then the pointwise minimum ι′′ : v 7→ minv{ι(v), ι′(v)} is
a consistent progress measure. To see this, we assume w.l.o.g.
that ι(v) v ι′(v).

For v ∈ Ve we get ι′′(v) = ι(v) w maxv{au(ι(s), v) |
(v, s) ∈ E} w maxv{au(ι′′(s), v) | (v, s) ∈ E}, using that
ι′′(s) v ι(s) holds for all s ∈ V .

Likewise, we get for v ∈ Vo that ι′′(v) = ι(v) w
minv{au(ι(s), v) | (v, s) ∈ E} w minv{au(ι′′(s), v) | (v, s) ∈
E}, using again that ι′′(s) v ι(s) holds for all s ∈ V .

As the state space is finite, we get the minimal consistent
progress measure as a pointwise minimum of all consistent
progress measures. �

Moreover, we can compute the minimal consistent progress
measure by starting with the initial progress measure ι0,
which maps all vertices to the minimal witness , . . . , , and
iteratively lifting.

Lemma 7.2. The minimal consistent progress measure ιmin

can be obtained by any sequence of lift operations on liftable
positions, starting from ι0.

Proof. We show that, for any sequence ι0, ι1, . . . , ιn of
progress measures constructed by a sequence of lift operations,
for all v ∈ V , and for all i ≤ n, ιi(v) v ιmin(v) holds.

For the induction basis, ι0(v) is the minimal element for
all v ∈ V , such that ι0(v) v ιmin(v) holds trivially. For the
induction step, let Vi ⊆ V be a set of liftable position for
ιi and ιi+1 = lift(ιi, Vi). We now make the following case
distinction.

• For v ∈ Vi∩Ve, we have ιi+1(v) = maxv{au(ι(s), v) |
(v, s) ∈ E} vIH maxv{au(ιmin(s), v) | (v, s) ∈ E} v
ιmin(v).

• For v ∈ Vi∩Vo, we have ιi+1(v) = minv{au(ι(s), v) |
(v, s) ∈ E} vIH minv{au(ιmin(s), v) | (v, s) ∈ E} v
ιmin(v).

• For v /∈ Vi, we have ιi+1(v) = ιi(v) vIH ιmin(v).

Parity Games SPIN 2017, July 2017, Santa Barbara, California, USA

This closes the induction step.
While we have proven that the value of the progress mea-

sures cannot surpass the value of ιmin at any vertex, each
liftable progress measure ιi is succeeded by a progress mea-
sure ιi+1, which is nowhere smaller, and strictly increasing
for some vertices. Thus, this sequence terminates eventually
by reaching a non-liftable progress measure. But non-liftable
progress measures are consistent.

Thus, we eventually reach a consistent progress measure
ιn which is pointwise no larger than ιmin; i.e. we eventually
reach ιmin. �

It is simple to get from establishing that ιmin(v) = won
holds to a winning strategy of player even in the antagonistic
update game.

Lemma 7.3. If ιmin(v) = won, then player even has a
strategy to win the antagonistic update game when starting
from v.

Proof. We can construct the strategy in the following
way: starting in state vn = v, where n is the length of the
play we will create, player even selects for a state vi ∈ Ve with
i > 0 a successor vi−1 such that ιi(vi) v au(ιi−1(vi−1), vi).
Note that such a successor must always exist. Note also that,
if vi ∈ Vo with i > 0, then ιi(vi) v au(ιi−1(vi−1), vi) holds
for all successors vi−1 of vi by definition.

Assume that player even selects a successor from her ver-
tices as described above, and vn, vn−1, . . . , v0 is a play created
this way. Let b0 = , . . . , be the minimal element of W,
and bi+1 = au(bi, vi+1). Then we show by induction that
bi w ιi(vi).

For the induction basis, we have b0 = ι0(v0) by definition.
For the induction step, we have ιi+1(vi+1) v au(ιi, vi+1) vIH

au(bi, vi+1) = bi+1.
Thus, we get bn w ιn(vn) = won, and player even wins

the antagonistic update game. �

At the same time, player even cannot win from any vertex
v with ιmin(v) 6= won, and ιmin provides a witness strategy
for player odd for this.

Lemma 7.4. Player even cannot win from any vertex v
with ιmin(v) 6= won, and ιmin provides a witness strategy for
player odd.

Proof. We recall that the construction of ιmin by Lemma
7.2 provides

• ιmin(v) v maxv{au(ιmin(s), v) | (v, s) ∈ E} for v ∈
Ve, and

• ιmin(v) v minv{au(ιmin(s), v) | (v, s) ∈ E} for v ∈
Vo.

The latter provides the existence of some particular successor
s of v with ιmin(v) v au(ιmin(s), v). The witness strategy of
player odd is to always choose such a vertex.

Let ρ = vn, vn−1, vn−2, . . . , v1 be a sequence obtained by
any strategy of player even from a starting vertex vn with
ιmin(vn) 6= won, such that player even chooses to evaluate

the backward antagonistic update game after ρ, and ρ, v0 an
extension in line with the strategy of player odd.

We first observe that ιmin(vi+1) v au(ιmin(vi), vi+1) holds
for all i < n, either by the choice of the successor of
vi+1 of player odd if vi+1 ∈ Vo, or by ιmin(vi+1) v
maxv{au(ιmin(s), vi+1) | (vi+1, s) ∈ E} v au(ιmin(vi), vi+1)
if vi+1 ∈ Ve. With ιmin(vn) 6= won, this provides ιmin(vi) 6=
won for all i ≤ n.

Let b0 = , . . . , be the minimal element of W, and bi+1 =
au(bi, vi+1). Then b0 v ιmin(v0), and the monotonicity of
au in the first element inductively provides bi v ιmin(vi) for
all i ≤ n. Thus bn 6= won, and player even loses the update
game. �

8 COMPLEXITY

We use natural representation for the set of colours as integers
written in binary, encoding the as 0. The first observation
is that the number of individual lift operations is, for each
vertex, limited to |W|.

Lemma 8.1. For each vertex the number of lift operations
is restricted to |W|. The overall number of lift operations
is restricted to |V | · |W|. The number of lift operations an
edge (or: source or target vertex of an edge, respectively) is
involved in is restricted to |W|. Summing up over all edges
and over the number of lift operations their target or source
vertex is involved in amounts to O(|E| · |W|).

A simple implementation can track, for each vertex, the
information which position in the witness is the next one that
would need to be updated to trigger a lift along an edge, and,
using a binary representation in line with <, which bit in
the representation of this position has to change to consider
triggering an update. (Intuitively the most significant bit
that separates the current value from the next value that
would trigger an update.)

Obviously, the most expensive path to ιmin is for each
position to go through all values of |W| in this case. But in
this case, tracking the information mentioned in the previous
section reduces the average cost of an update to O(1). The
information that we store for this is, for each vertex, the
current witness that represents its current value before and
after executing the antagonistic update, and the next value
that would lead to a lift operation on the antagonistic value.

For each incoming edge, the position and bit that need to
be increased to trigger the next lift operation for this vertex
are also stored.

Theorem 8.2. For a parity game with n vertices and m
edges, the algorithm can be implemented to run in O(m · |W|)
time and O(n · log |W|+m log log |W|) space.

Note that the log log |W| information per edge is only
required to allow for a discounted update cost of O(1). It can
be traded for a log |W| increase in the running time. This
leaves the estimation of |W|.

To improve the complexity especially in the relevant lower
range of colours, we first look into reducing the size of W,
and then look into keeping the discounted update complexity

SPIN 2017, July 2017, Santa Barbara, California, USA Fearnley, Jain, Schewe, Stephan & Wojtczak

low. We make three observations that can be used to reduce
the size of W; they can be integrated in the overall proof,
starting with the raw and basic update steps.

The first observation is that, if the highest colour is the
odd colour omax, then we do not need to represent this colour:
if φ(v) = o and b 6= won, then up(b, v) contains only and
omax entries. Moreover, and omax entries behave in exactly
the same way. This is not surprising: omax is the most
powerful colour, and a state with colour omax cannot occur
on a winning cycle.

The second observation is that, if the lowest colour is the
odd colour omin, then we can ignore it during all update
steps without violating the correctness arguments. (In fact,
this colour cannot occur at all when using the update rules
suggested in Calude et al. [5].)

Finally, we observe that, for the least relevant entry b0 of
an witness b, it does not matter if this entry contains or
an odd value. We can therefore simply not use odd values
at this position. (Using the third observation has no impact
on the complexity of the problem, but still approximately
halves the size of W, and is therefore useful in practice.)

We call the number of different colours, not counting the
maximal and minimal colour if they are odd, the number r
of relevant colours.

Lemma 8.3. For a parity game with r relevant colours and
e vertices with even colour, and thus with length l = dlog2(e+

1)e of the witnesses, |W| ≤ 1 +
l∑

i=0

(l
i

)
·
(i+ r − 1

r − 1

)
.

Proof. The 1 refers to the dedicated value won. For
the other witnesses, the values can be by considering the
number i of integer entries. For i integer entries, there are(l
i

)
different positions in the witnesses that could hold

these i integer values. Fixing these positions, there are(i+ r − 1
r − 1

)
ways to assign non-increasing values from the

range of relevant colours. (E.g. these can be represented by a
sequence of i white balls and r − 1 black balls. The number
of white balls prior to the first black ball is the number of
positions assigned the highest relevant colour, the number
of white balls between the first and second black ball is the
number of positions assigned the next lower colour, etc.) �

This allows for two easy estimations of the size of |W|:
If the number c of colours is small (especially if c is con-

stant), then we can use the coarse estimate |W| ∈ O
(
l ·(l + r − 1

l

))
.

In particular, we get the following complexity for a constant
number of colours.

Theorem 8.4. A parity game with r relevant colours, n
vertices, m edges, and e vertices with even colour can be
solved in time O

(
e ·m · (log(e) + r)r−1/(r − 1)!

)
and space

O
(
n · log(e) · log(r) +m · log(log(e) · log(r))

)
.

We use that the length l = dlog2(e+ 1)e of the witnesses
is logarithmic in e.

This also provides us with a strong fixed parameter
tractability result: when we fix the number of colours to
some constant c, we maintain a quasi bi-linear complexity in
the number of edges and the number of vertices. If we fix,
e.g., a monotonously growing quasi constant function qc (like
the inverse Ackermann function), then Theorem 8.4 shows
that, as soon qc(n) ≥ c, and thus almost everywhere and in

particular in the limit, have (l+r)r−1/(r−1)! ≤ (log2 n)qc(n),

or (l + r)r−1/(r − 1)! ≤ qc(n)log2(log2(n)) if log2(qc(n) ≥ c).
Corollary 8.5. Parity games are fixed parameter

tractable, using the number of colours as their parameter,
with complexity O

(
m · n · qc(n)log logn

)
for an arbirary quasi

constant qc, where m is the number of edges and n is the
number of states.

For a “high” number of coulours, we can improve the
estimation: if r ≥ l2, then the case i = l dominates the

overall cost, such that |W| ∈ O
((l + r − 1

l

))
.

Theorem 8.6. For a parity game with r relevant colours,
m edges, and e vertices with even colour, and thus length
l = dlog2(e + 1)e of the witnesses, and h =

⌈
1 + r−1

l

⌉
, one

can solve the parity game in time O(m · h · e1+c1.45+log2(h)),

and in time O(m · h · ec1.45+log2(h)) if r > l2.

We use the constant c1.45 = limh→∞ log2(1 + 1/h) · h =
log2 e < 1.45, where e ≈ 2.718 is the Euler number; using
that (1 + 1/h)h < e and thus log2(1 + 1/h) · h < c1.45 holds
for all h ∈ N.

Proof. To estimate W, we again start with analysing the

size of
(l + r − 1

l

)
.

We note that l + r − 1 ≤ h · l, such that we can estimate
this value by drawing l out of h · l.

The number of all ways to choose l = dlog(e+1)e out of h·l
numbers can, by the Wikipedia page on binomial coefficients
and the inequality using the entropy in there (also can be
found in [28]), be bounded by

2(log2(e)+1)·h·((1/h)·log2(h)+((h−1)/h)·log2(h/(h−1)))

= 2(log2(e)+1)·(log2(h)+log2(1+1/(h−1))·(h−1))

= (2e)log2(h)+(log2(1+1/(h−1)))·(h−1))

≤ (2e)c1.45+log2(h) ∈ O
(
h · ec1.45+log2(h)

)
.

The estimation uses that log(1 + 1/(h−1)) · (h−1) < c1.45
holds for all h ∈ N.

Theorem 8.2 now provides O(m · h · e1+c1.45+log2(h)) time
bound. If the number of colours is high (r > l2), then

we observe that |W| ≤ 1 +
∑l

i=0

(l
i

)
·
(i+ r − 1

i

)
∈

O
((l + r − 1

l

))
holds, as the sum is dominated by

(l
l

)
·(l + r − 1

l

)
. This allows for the second estimate O(m · h ·

ec1.45+log2(h)) of the running time when r > l2 holds. �

Parity Games SPIN 2017, July 2017, Santa Barbara, California, USA

This allows for identifying a class of parity games that can
be solved in polynomial time.

Corollary 8.7. Parity games where the number c of
colours is logarithmically bounded by the number e of vertices
with even colour (c ∈ O(log e)) can be solved in polynomial
time.

9 LOWER BOUNDS

Here an example for ‘the basic update game from [5] is slow’.
(Recall that these original rules restrict the use of Lemma
3.3 to even colours. Adjusting the example is not hard, but
effectively disallows to make effective use of b0.)

The example is a single player game, which is drawn best
as a ring. In this example, the losing player, player odd can
draw out his loss. The vertices of the game have name and
colour 1, . . . , 2n. They are all owned by player odd. There
is always an edge to the next vertex (in the modulo ring).
Additionally, there is an edge back to 1 from all vertices with
even name (and colour).

Obviously, all runs are winning for player even. We show
how player odd can, when starting in vertex 1, produce a
play, such that forward updates produce all witnesses that
use only and even numbers.

We first observe that every value 2i−1 is overwritten after
the next move in a play by 2i in a witness b.

The strategy of player odd to create a long path is simple.
We consider three cases.

If, in the current witness b = bk, . . . , b0, we have b0 = ,
then player odd moves the token to a position 2i < 2n.
Obviously, when b0 = , then moving to 1, and thus next to
2, results in the next larger witness without odd entries than
b.

If b0 6= , then we have that b0 = 2i, and b has no smaller
entries than 2i. If all of these entries are consecutively on the
right of b, then we obtain the next larger witness without
odd entries than b by going through 2i+ 1 to 2i+ 2. Player
odd therefore chooses to continue by moving the token to
vertex 2i+ 1 in this case.

Otherwise, there is a rightmost bj = , such that right of
it are only entries 2i (for all h < j, bh = 2i), and there is
also a 2i value to the left (for some h > j bh = 2i). Then the
next larger witness without odd entries than b is obtained
by replacing bj by 2 and all entries to its right by . This
can be obtained by going to vertex 1 and, subsequently, to
vertex 2. Player odd therefore chooses to continue by moving
the token to vertex 1 in this case.

10 IMPLEMENTATION

We implemented our algorithm in C++ and tested its per-
formance on Mac OS X with 1.7 GHz Intel Core i5 CPU and
4 GB of RAM. We then compared it with the small progress
measure algorithm [18], Zielonka’s recursive algorithm [37]
and the classic strategy improvement algorithm [35] all im-
plemented in PGSolver [15]. We tested their performance,
with timeout set to two minutes, on around 250 different

1

2

3

4

Figure 1: The lower bound example for n = 2.

parity games of various sizes generated using PGSolver.
These examples include the following classes.

• Friedmann’s trap examples [12], which show exponen-
tial lower bound for the classic strategy improvement
algorithm;

• random parity games of sizes, s, ranging from 100
to 10000 that were generated using PGSolver’s
command steadygame s 2 4 3 5 6 (for each s we
generated ten instances);

• recursive ladder construction [13] generated using
PGSolver’s command recursiveladder.

PGSolver implements several optimisation steps before
the algorithm of choice is invoked. These include SCC de-
composition, detection of special cases, priority compression,
and priority propagation as described in [15]. To illustrate
this, the small progress measures algorithm in PGSolver
was able to solve all Friedmann’s trap examples in 0.01 sec-
ond when using these optimisations. However, without these
optimisation, it failed to terminate within the set timeout of
two minutes. As our aim was to compare different algorithms
and not the heuristics or preprocessing steps involved, we
invoked PGSolver with options “-dgo -dsd -dlo -dsg” to
switch off some of these optimisation steps. We believe this
gives a better and fair picture of the relative performance of
these algorithms. Some of these optimisation are embedded
in the algorithms themselves and cannot be switched off.
For example, the small progress measure algorithm starts off
with the computation of maximal values that may ever need
to be considered [15]. In future, we plan to include these
optimisation preprocessing techniques into our tool as well.

The more interesting results of our tests are presented
in Table 1. As expected, our algorithm is outperformed
by strategy improvement and recursive algorithm on ran-
domly generated examples. Our algorithm is very fast on
Friedmann’s trap examples, because player odd wins from
all nodes and a fixed point is reached very quickly using a
small number of entries in the witnesses. An example of this
behaviour can be seen in Figure 2 in the appendix. Finally,
we tested the algorithms on the recursive ladder construction,
which is a class of examples for which the recursive algorithm
runs in exponential time. As expected, the small progress
measure and the recursive algorithm fail to terminate for
examples as small as 250 nodes. Our algorithm as well as
the classic strategy improvement solved these instances very
quickly. In conclusion, our algorithm complements quite well

SPIN 2017, July 2017, Santa Barbara, California, USA Fearnley, Jain, Schewe, Stephan & Wojtczak

Example Nodes Colours QPT SPM REC CSI

steadygame 1000 1000 (0.37; 1.6) (1.3; –) (0.01; 0.02) (0.13; 0.28)
steadygame 5000 5000 (12; 88) (32; –) (0.04; 0.07) (1.07; 1.84)
steadygame 10000 10000 (80; –) – (0.1; 0.43) (2.86; 13.4)

Ftrap 77 66 0.01 – 0.01 0.26
Ftrap 230 118 0.01 – 0.01 21.66
Ftrap 377 156 0.01 – 0.01 –
ladder 250 152 0.01 – – 0.01
ladder 10000 6002 0.21 – – 0.01

Table 1: Running times (in seconds) of the four algo-
rithms tested: quasi-polynomial time algorithm pre-
sented in this paper (QPT), small progress measure
(SPM), Zielonka’s recursive algorithm (REC), and
the classic strategy improvement (CSI). Entry “–”
means that the algorithm did not terminate within
the set timeout of two minutes. For the steadygame

examples we state the lower and upper bound of
the measured execution time as (lower value; upper
value). Ftrap stands for Friedmann’s trap.

the existing well-established algorithms for parity games and
can be faster than any of them depending on the class of
examples being considered.

The implementation of our algorithm along with all the
examples that we used in this comparison are available at
https://cgi.csc.liv.ac.uk/∼dominik/parity/.

REFERENCES
[1] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002.

Alternating-time temporal logic. J. ACM 49, 5 (2002), 672–713.
[2] Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan

Kreutzer. 2006. DAG-width and parity games. In Proc. of STACS.
Springer-Verlag, 524–436.

[3] Henrik Björklund and Sergei Vorobyov. 2007. A combinatorial
strongly subexponential strategy improvement algorithm for mean
payoff games. Discrete Appl. Math. 155, 2 (2007), 210–229. DOI:
http://dx.doi.org/10.1016/j.dam.2006.04.029

[4] A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. Mar-
rero. 1997. An improved algorithm for the evaluation of fixpoint
expressions. TCS 178, 1–2 (1997), 237–255.

[5] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan.
2017. Deciding parity games in quasipolynomial time. In Proc.
of STOC 2017. ACM Press, (to appear).

[6] Krishnendu Chatterjee, Monika Henzinger, and Veronika Loitzen-
bauer. 2015. Improved Algorithms for One-Pair and k-Pair Streett
Objectives. In Proc. of LICS. IEEE Computer Society, 269–280.

[7] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar.
2001. From verification to control: Dynamic programs for omega-
regular objectives. In Proc. of LICS. 279–290.

[8] E. Allen Emerson and Charanjit S. Jutla. 1991. Tree Automata,
µ-Calculus and Determinacy. In Proc. of FOCS. IEEE Computer
Society Press, 368–377.

[9] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. 1993.
On Model-Checking for Fragments of µ-Calculus.. In Proc. of
CAV. 385–396.

[10] E. Allen Emerson and C. Lei. 1986. Efcient model checking in
fragments of the propositional µ-calculus. In Proc. of LICS. IEEE
Computer Society Press, 267–278.

[11] John Fearnley. 2010. Non-oblivious Strategy Improvement. In
Proc. of LPAR. 212–230.

[12] Oliver Friedmann. 2011. An Exponential Lower Bound for the
Latest Deterministic Strategy Iteration Algorithms. LMCS 7, 3
(2011).

[13] Oliver Friedmann. 2011. Recursive algorithm for parity games
requires exponential time. RAIRO-Theoretical Informatics and
Applications 45, 4 (2011), 449–457.

[14] Oliver Friedmann and Martin Lange. 2009. Solving Parity Games
in Practice. In Proc. of ATVA. 182–196.

[15] Oliver Friedmann and Martin Lange. 2014. The PGSolver col-
lection of parity game solvers. University of Munich (2014).
http://www.win.tue.nl/ timw/downloads/amc2014/pgsolver.pdf.

[16] Ernst Moritz Hahn, Sven Schewe, Andrea Turrini, and Lijun
Zhang. 2016. A Simple Algorithm for Solving Qualitative Prob-
abilistic Parity Games. In Proc. of CAV (LNCS), Vol. 9780.
291–311.

[17] Marcin Jurdziński. 1998. Deciding the Winner in Parity Games
Is in UP ∩ co-UP. Inform. Process. Lett. 68, 3 (November 1998),
119–124.

[18] Marcin Jurdziński. 2000. Small progress measures for solving
parity games. In Proc. of STACS. Springer-Verlag, 290–301.

[19] Marcin Jurdziński and Ranko Lazić. 2017. Succinct progress
measures for solving parity games. CoRR abs/1702.05051 (2017).
https://arxiv.org/abs/1702.05051

[20] M. Jurdziński, M. Paterson, and U. Zwick. 2006. A Deterministic
Subexponential Algorithm for Solving Parity Games. In Proc. of
SODA. ACM/SIAM, 117–123.

[21] Dexter Kozen. 1983. Results on the Propositional µ-Calculus.
TCS 27 (1983), 333–354.

[22] M. Lange. 2005. Solving Parity Games by a Reduction to SAT. In
Proc. of Int. Workshop on Games in Design and Verification.

[23] Walter Ludwig. 1995. A Subexponential Randomized Algorithm
for the Simple Stochastic Game Problem. Inf. Comput. 117, 1
(1995), 151–155.

[24] Robert McNaughton. 1993. Infinite Games Played on Finite
Graphs. Ann. Pure Appl. Logic 65, 2 (1993), 149–184.

[25] J. Obdržálek. 2003. Fast Mu-calculus Model Checking when Tree-
width is Bounded. In Proc. of CAV. Springer-Verlag, 80–92.

[26] Nir Piterman. 2006. From Nondeterministic Büchi and Streett
Automata to Deterministic Parity Automata. In Proc. of LICS.
IEEE Computer Society, 255–264.

[27] Anuj Puri. 1995. Theory of hybrid systems and discrete event
systems. Ph.D. Dissertation. Computer Science Department,
University of California, Berkeley.

[28] Ash B. Robert. 1990. Information Theory. (1990).
[29] Sven Schewe. 2008. An Optimal Strategy Improvement Algorithm

for Solving Parity and Payoff Games. In Proc. of CSL 2008.
Springer-Verlag, 368–383.

[30] Sven Schewe. 2017. Solving Parity Games in Big Steps. J. Comput.
Syst. Sci. 84 (2017), 243–262.

[31] Sven Schewe and Bernd Finkbeiner. 2006. The Alternating-Time
µ-calculus and Automata over Concurrent Game Structures. In
Proc. of CSL. Springer-Verlag, 591–605.

[32] Sven Schewe and Bernd Finkbeiner. 2006. Synthesis of Asynchro-
nous Systems. In Proc. of LOPSTR. Springer-Verlag, 127–142.

[33] Sven Schewe, Ashutosh Trivedi, and Thomas Varghese. 2015.
Symmetric Strategy Improvement. In Proc. of ICALP (LNCS),
Vol. 9135. 388–400.

[34] Moshe Y. Vardi. 1998. Reasoning about The Past with Two-Way
Automata. In Proc. of ICALP. Springer-Verlag, 628–641.

[35] Jens Vöge and Marcin Jurdziński. 2000. A Discrete Strategy
Improvement Algorithm for Solving Parity Games. In Proceedings
of the CAV. Springer-Verlag, 202–215.

[36] Thomas Wilke. 2001. Alternating Tree Automata, Parity Games,
and Modal µ-Calculus. Bull. Soc. Math. Belg. 8, 2 (May 2001).

[37] Wies law Zielonka. 1998. Infinite games on finitely coloured graphs
with applications to automata on infinite trees. Theor. Comput.
Sci. 200, 1-2 (1998), 135–183.

https://cgi.csc.liv.ac.uk/~dominik/parity/
http://dx.doi.org/10.1016/j.dam.2006.04.029
https://arxiv.org/abs/1702.05051

Parity Games SPIN 2017, July 2017, Santa Barbara, California, USA

�������������������

����������������������

���������������������

����������������������

���������������������

������������������������ ����������������������

�����������������������

����������������������

���������������������

����������������������

������������������������

����������������������

������������������������

������������������������

������������������������

������������������������

������������������������

����������������������

�����������������������

Figure 2: The fixed-point reached when using the QPT algorithm to solve the Friedmann’s trap example with
20 nodes. Square nodes belong to player odd and circle nodes to player even. The label of a node consists of
its name, followed by its colour (in parentheses), and after a colon its witness for ιmin.

	Abstract
	1 Introduction
	2 Preliminaries
	3 QP Algorithms
	3.1 Updating forward witnesses

	4 Basic Update Game
	5 Data-structure as Progress Measure
	6 Antagonistic Update Game
	7 Value Iteration
	8 Complexity
	9 Lower Bounds
	10 Implementation
	References

