
Dynamic Delayed Duplicate Detection

for External Memory Model Checking

Sami Evangelista
evangeli@daimi.au.dk

DAIMI - Department of Computer Science
University of Aarhus, Denmark

Abstract. Duplicate detection is an expensive operation of disk-based
model checkers. It consists of comparing some potentially new states, the
candidate states, to previous visited states. We propose a new approach
to this technique called dynamic delayed duplicate detection. This one
exploits some typical properties of states spaces, and adapts itself to
the structure of the state space to dynamically decide when duplicate
detection must be conducted. We implemented this method in a new
algorithm and found out that it greatly cuts down the cost of duplicate
detection. On some classes of models, it performs significantly better
than some previously published algorithms.

Model checking, or state space analysis, is a method to prove that finite state
systems match their specification. Given a model of the system and a property,
e.g., a temporal logic formula, it explores all the possible configurations, i.e.,
the state space, of the system to check the validity of the property. Despite
its simplicity, its practical application is limited due to the well-known state
explosion problem [19]: the state space can be far too large to be explored in
reasonable time or to fit within the available main memory. Consequently, the
design of methods able to cope with this problem has gained a lot of interest in
the verification community.

A first family of techniques reduce the part of the state space that needs
to be explored in such a way that all properties of interest are preserved. An
example of such a technique is partial order reduction [4] that limits redundant
interleavings by exploiting the independence of some actions.

A more pragmatic approach does not aim at reducing the size of the problem
but rather at making a more subtle use of the available resources (or augment
them) to extend the range of problems that can be analyzed. Many options
are available. We can, for example, compress states to virtually decrease the
problem size, distribute the search to benefit from the aggregate computational
power and memory of a cluster of machines, or make use of external memory.

In this work we look at this last option. Using disk storage instead of main
memory is indeed very tempting since it considerably increases the amount of
available memory thereby making it possible to solve problems that could not
be solved even with the help of sophisticated techniques such as partial order
reduction. As a counterpart, disk accesses are much slower. In addition, the

data structure used to store states is typically randomly accessed, involving an
important runtime penalty when kept on disk. Hence, the use of disk storage
requires a dedicated algorithm to be effective.

Most external memory algorithms are somehow based on the key idea of
delayed duplicate detection. When a state is generated, the algorithm does not
immediately check if the state has already been visited, i.e., if the state is a
duplicate, since it would require a new disk access, and potentially the load of
a disk block. Instead, the state is put into a candidate set that contains all the
potentially new states and the comparison to the visited set stored on disk is
delayed until it can be efficiently conducted. Hence, a large number of individual
disk look-ups is replaced by a single file scan.

This paper reviews some algorithms proposed by the model checking and ar-
tificial intelligence community and introduces a new duplicate detection scheme
based on breadth-first search. We refer to this scheme as dynamic delayed dupli-

cate detection. Its principle is to exploit some typical properties of state spaces
to decrease the cost of duplicate detection and to dynamically collect some data
on the structure of the state space that will be used to decide when duplicate
detection should be delayed or conducted.

Organization of the paper We recall in Section 1 some basic elements on
graphs and review existing works on disk based model checking. Section 2 in-
troduces a simple variation of hash based delayed duplicate detection [10] that
will be the basis of our dynamic algorithm. Some structural properties of state
spaces that can be exploited are presented in Section 3. Section 4 contains the
main contribution and introduces dynamic delayed duplicate detection that is
experimentally evaluated in Section 5. Finally, Section 6 concludes this paper.

1 Background

Definitions and notations We briefly give the ingredients that are relevant
for understanding this paper. Figure 1 will help us illustrate these notions.

A state space is a directed graph (S, T, s0) where S is a finite set of states,

21

4 5

6

0

3

L (3)

L (0)

L (1)

L (2)

Fig. 1. A state space

T ⊆ S×S is a set of transitions, and s0 ∈ S is the initial
state. A state s′ ∈ S is a successor (resp. predeces-
sor) of state s ∈ S, if (s, s′) ∈ T (resp. (s′, s) ∈ T).
We denote by succ(s) (resp. pred(s)) the set of suc-
cessors of s (resp. predecessors). The distance of a
state s, denoted by d(s) is the length of the shortest
path from s0 to s. The states at level k, noted L (k),
is the set of all states which distance is k. It is de-
fined recursively as L (0) = {s0}, L (k + 1) = {s′ ∈
S|∃s ∈ L(k) ∩ pred(s′)} \ ∪k

i=0L (i). The height of a
state space is its number of levels and its width is the
size of its largest level, i.e., maxk |L (k)|. In our exam-
ple, the height and width are respectively 4 and 3. The

2

average degree is the ratio |T |
|S| .

t = (s, s′) is a forward transition if d(s′) = d(s) + 1. Otherwise it is a back-
ward transition and we define its length as d(s′) − d(s). All transitions of
our example are forward transitions except (1,2) and (6,1). Their lengths are
respectively of 0, since 1 and 2 are on the same level, and 2.
We denote by R(k) the successors of states of level k, i.e., s ∈ R(k) ⇔
∃s′ ∈ L (k) ∩ pred(s). More generally, Rn(k) consists of all the states reach-
able from level k by a path of length n. Formally, s ∈ Rn(k) ⇔ ∃s′ ∈
L (k), (s1, s2), . . . , (sn, sn+1) ∈ T |s1 = s′ ∧ sn+1 = s. The successors of states of
level 1 in figure 1 is the set R(1) = L (2)∪{2} = {2, 4, 5} and R2(1) = {4, 5, 6}.
By definition, it holds for any d that L (d + 1) ⊆ R(d) since R(d) contains level
d + 1 plus all the states reachable from level d by a backward transition.

A breadth-first search (BFS) explores a state space by maintaining a set of
already visited states and a FIFO queue filled with states to be further explored.
Each state dequeued is expanded and those of its successors that do not belong to
the visited set are inserted into it and enqueued to be later expanded. Applying a
FIFO strategy ensures that levels of the state space will be processed one by one:
if a state s of level k is dequeued then all states of levels l < k have been processed
and belong to the visited set. A transition (s, s′) generates a duplicate s′ if s′

already belongs to the visited set when s is processed. Obviously, any backward
transition will generate a duplicate when applying BFS.

Related work Dill and Stern [2] were the first work to propose the use of
external memory as a way to enhance the capabilities of explicit state model
checkers. Their breadth-first search algorithm stores all the states of the current
level in a RAM hashtable while previous levels are stored on disk. The search
for duplicates occurs each time a BFS level has been completed or the RAM
hashtable becomes full. The disk file is then read and duplicates in memory
are deleted. Remaining states are written on disk and inserted in the memory
queue. Grouping disk lookups is the strategy of most disk based model checkers.
It allows to read or write whole blocks of states at once, while checking for
each state individually would likely require to reload a new block from disk.
This technique is known as delayed duplicate detection (DDD): the resolution is
postponed until it may be efficiently conducted.

Della Penna et al. [18,17] proposed two algorithms that benefits from a prop-
erty usually exhibited by communications protocol: backward transitions are
usually short. Hence, in BFS, they usually lead to a recently visited state. The
first one, [18], is a cache based algorithm that only keeps recent states in mem-
ory while the queue is on disk. The second one, [17] is a variation of the initial
disk-based algorithm of [2]. Instead of systematically comparing the set of can-
didate states to the visited set, it is only checked against some blocks of states
chosen randomly according to their age. We found in [21] a similar process called
layered duplicate detection.

Bao and Jones observed in [1] that duplicate detection is the most time
consuming operation of the algorithms of [2] and [17]. They proposed a new

3

algorithm, based on a partitioned hash table, that mimics a distributed search
and behaves better than these two.

Hammer and Weber [5] designed a hybrid algorithm that adapts itself to the
size of the state space: as long as memory is sufficient it remains a pure RAM
based algorithm while it slowly shifts to a disk based algorithm as memory
becomes scarce.

In [7], an I/O efficient solution is presented for directed model checking.
States are organized into buckets according to some heuristics. Files are asso-
ciated to buckets in order to store overflowing states. This distribution greatly
eases the search for duplicates and the parallelization of the algorithm [8].

Korf introduced in [9] and [10] the principles of sorting-based (SDDD) and
hash-based delayed duplicate detection (HDDD) both based on a generic al-
gorithm called frontier search [12] that only stores states to be expanded (the
frontier). This algorithm cannot really be applied in the context of model check-
ing as it requires the ability to compute the predecessors of a state, an operation
that is impossible when the state space is given implicitly as an initial state
and a successor function. After each expansion phase SDDD sorts resulting files
in order to detect duplicates while HDDD avoids the complexity of sorting by
distributing states onto multiple files using two orthogonal hash functions. Not
only is it more efficient than SDDD but it can also be efficiently parallelized [11].

In structured duplicate detection [20] an abstraction of the system is used to
determine when to load/unload states from/to disk. This technique has a strong
potential but heavily relies on the quality of the abstraction. This problem may
be overcome by partitioning the edges [23] or by automatically extracting an
appropriate abstraction from the system description [22].

2 A variation of hash-based duplicate detection

Hash based delayed duplicate detection (HDDD) is a very successful strategy for
external memory graph search, already applied to state spaces with more than
1012 states [11]. Unfortunately, in its basic version, it is based on the generic
frontier search that cannot be applied in the context of implicitly given graphs
that we have in model checking. We present in this section a simple breadth first
search (BFS) variation of the algorithm of Korf [9]. We refer to this algorithm
as bfs-hddd. Exploring the state space in breadth-first order has several advan-
tages. The most obvious one is its ability to report safety violations of minimal
lengths. Secondly, as opposed to, e.g., depth first search, BFS can be easily par-
allelized. This requires some synchronizations [8], but if the load is well balanced
among processors (or nodes of the network), which is the case in the algorithm
of [9], it is likely that latency will be negligible. Last, it is possible with BFS to
exploit some interesting properties of state spaces to reduce duplicate detection
times and fasten the search. This is perhaps the most interesting property of
BFS for us since it is an important component of our new algorithm.

The bfs-hddd algorithm (see figure 2) partitions the queue of states to visit
into N files Q1, . . . ,QN and the visited set into N files V1, . . . ,VN . In a first step,

4

Memory
cache

Successors
generation

detection

New states

V1C1Q1

New states

Duplicate
CN VN

Duplicate
detection

QN

Fig. 2. An iteration of bfs-hddd.

queued states are processed, their suc-
cessors generated and inserted into a
memory cache. If this one becomes
full its content is flushed to the candi-
date set, also partitioned in a set of N

files C1, . . . , CN . A first hash function is
used to map states to the appropriate
candidate file ensuring that duplicates
will be inserted into the same file. Once
all queued states have been expanded
the cache is flushed to candidate files
and the duplicate detection phase begins. In the second step each partition is
processed one by one. The content of a candidate file is hashed to memory using
a second hash function, thus detecting duplicates in this file. Then, the states
of the corresponding visited file are read one by one and deleted from memory.
Remaining states in memory are therefore new and can be written in the visited
file as well as in the queue file so that they can be processed by the algorithm
at the next iteration. Once all partitions are processed the algorithm can move
to the next BFS level. Before that, the candidate set is emptied.

Partitioning the state space has two advantages. First it is helpful to par-
allelize the algorithm as showed in [11]. Moreover, it virtually multiplies by N

the number of candidates that may reside in memory allowing us to perform
a single duplicate detection per level. This is in constrat with algorithms of [2]
and [17] which also perform a detection when the cache is full. Hence, bfs-hddd

should behave much better with large models for which only a small fraction of
the state space can be kept in RAM. However, duplicate detection still remains
a costly operation, especially if the graph has a large height. Detections are very
cheap at the beginning of the search when the visited set is small but on the last
levels each one entails to read from disk a large portion of the state space. More
generally, if H is the height of the graph, the number of states read from the
visited files during duplicate detections will exactly be

∑

s∈S(H − d(s)). Some
interesting properties usually exhibited by state spaces can however help us to
reduce the cost of this operation and design a new algorithm that behaves better
than bfs-hddd.

3 Some structural properties of state spaces

State spaces, as opposed to random graphs, have some typical properties [14]
that can be exploited in automated verification. For instance, disk based model
checkers can exploit transition locality [18,17]. Tools can also decide which re-
duction technique to apply depending on a partial knowledge of the graph [16].

The BEEM database [15] is a precious tool to analyze such properties. It
contains more than 50 parametrized models and 300 actual instances of various
families. Three observations, that have some consequences in BFS, can be made.
The reader may consult [3] for further details on the data provided in this section.

5

Observation 1: Low proportion of backward transitions First, as already
shown in [18], most transitions of state spaces are forward transitions. The aver-
age rate of backward transitions we computed is around 20%. If we only consider
communication protocols this rate goes down to approximately 15%.
Observation 2: Few typical lengths for backward transitions A closer
look at the backward transitions also reveals a non uniform distribution of their
length as already pointed out in [14]. There are usually a few typical lengths and
most backward transitions have one of these lengths. For example, we observed
that on 95% of the database instances 5 lengths covered more than 50% of all
backward transitions. Even one single length cover more than 50% of backward
transitions in 53% of the instances.
Observation 3: Regular evolution of levels We measured the progression

of rate |L (l+1)|
|L (l)| , that we shall call the level progression rate (or more simply

progression rate), and found out that the size of levels evolve in a rather regular
way and there are usually no huge variations of this rate between close levels.
When this is not the case we however noticed that corresponding levels are
rather small, meaning that the number of states involved is negligible. Some
simple models, e.g, the tower of Hanoi, do not have such a property but if we
look at more interesting ones like communication protocols, this observation is
often valid. The progression rate generally follows a three step scenario. First
levels are characterized by a high rate: levels grow quickly at the beginning of
the search. Then the progression rate quickly collapses to a value close to 1 and
during a long period stays around this value while tending to decrease. Finally,
on last levels, the rate drops down to 0.

4 Dynamic delayed duplicate detection

We propose in this section, dynamic delayed duplicate detection (or DDDD for
short), as an alternative to existing duplicate detection schemes. DDDD is based
on two key ideas. First, it exploits the structural properties usually exhibited by
state spaces that we have discussed in the previous section. We thus obtain a
specialized algorithm, especially designed for state spaces having those proper-
ties. Second, we dynamically collect data on the graph structure so that the
algorithm can adapt itself on-the-fly to its particular characteristics. Thus, even
if the model is not, a priori, suited, the algorithm will progressively change its
strategy to fit with the model.

4.1 Principle

A breadth first search algorithm based on the DDDD discipline works basically
as the algorithm presented in section 2. The only difference is the following one:
instead of systematically comparing the candidate set to the visited set at each
level, we only perform a duplicate detection when we consider it to be necessary.
This decision will mainly be based on data collected by the algorithm during the
search. The general principle of DDDD is also the one of [17] and is motivated by

6

the first observation made in section 3: when we expand the states of level l, it
is likely that most of the states reached will not belong to the visited set. Thus,
looking for duplicates may be almost useless. Instead we store R(l) on disk in
a candidate set that will be used later during the next duplicate detection. The
states expanded at the next BFS level will be those of R(l) and their successors,
i.e., R2(l), will also be written in the candidate set, and so on. Only when
we decide to perform duplicate detection will the candidate states be hashed
to memory and the visited states will be read in order to delete duplicates in
memory as done by the bfs-hddd algorithm. Remaining states in memory are
inserted to the visited set and those which are on the “front” of the candidate
set, i.e., the states of R

n(l) (if the detection occurs at level l + n) minus the
duplicates removed, are later expanded.

The figure below presents a snapshot of visited and candidate sets during the
execution of our algorithm. Visited states belongs to L (0)∪· · ·∪L (l) while the
candidate set contains all states reachable from level l via a path of length n or
less. The latter is actually a multi-set since a state may belong to R(l), R2(l),
. . . , and Rn(l).

L (0) L (1) L (l) R(l) Rn(l)
V C

Though this strategy is expected to decrease I/Os it has a cost since a state
may be reexpanded during the search: any target of a backward transition (or
one of its descendant) is likely to be revisited. Since the expansion of a duplicate
necessarily leads us to other duplicates, the proportion of duplicates visited may
quickly grow even if the graph has few backward transitions. For instance, if
90% of transitions of forward transitions, we can expect to approximately have
10% of duplicates on level l + 1, then 1 − 0.92 = 19% on level l + 2 and more
generally, a proportion of 1 − 0.9n duplicates on level l + n.

4.2 The algorithm

The bfs-dddd algorithm (see figure 3) partitions the visited and candidate sets
as well as the BFS queue into N files V1, . . . ,VN , C1, . . . , CN and Q1, . . . ,QN . A
unique hash function h is used to map states to these files. The only global data
structure to reside in memory is the memory cache Cache implemented by a
chained hash table. States overflowing from Cache are stored in some temporary
files T1, . . . , TN

1. Those are candidate states and could be directly written in
candidate files but we prefer to avoid it as it would involve the possibility to
have multiple instances of the same state in a candidate file. Since it is likely

1 Thereafter we shall use the term of visited, candidate and temporary sets when
speaking of states written in the corresponding files. We write V = ∪iVi, C = ∪iCi

and T = ∪iTi.

7

that candidate files will be read several times (especially with the optimization
described in Section 4.4) this seems preferable.

The search begins with the insertion of the initial state in the appropriate
queue file. Each level l is then processed in two steps2.

Procedure expand first reads states from the queue and inserts their succes-
sors into the cache. If Cache becomes full (lines 4-8) a state s′′ is chosen, written
to the appropriate temporary file if not stored yet and deleted from Cache. Once
this expansion phase terminates unstored states residing in the cache are written
in temporary files (lines 11-14). At this point these will trivially contain all the
states of R(l) and may contain several occurrences of the same state. It may
happen if a state is removed from the cache and reached again later within the
same expansion phase.

The merge procedure decides whether it will perform duplicate detection or
postpone it to a future level (line 1) and then processes partitions one by one.

States of the temporary file are first hashed to memory in table H, hence
detecting duplicates in this file (line 4).

If duplicate detection is delayed (lines 5-6), the content of H is written back
to the candidate file in order to be processed during the next duplicate detection.

Otherwise (lines 7-11) the states of the candidate file are also hashed to
memory. The visited states of this partition are read from disk and deleted from
H. States in H are therefore new and written to the visited file. Note that a
boolean value is associated to the states of H in order to identify states in front
of the candidate set that will be expanded at the next level (the ones in the
temporary file) from those of previous levels which have already been expanded
(the ones of the candidate file).

The last step (lines 12-13) consists of writing in the queue file the front states
of the candidate set identified as new so that they can be expanded later.

4.3 Deciding when to perform duplicate detection

One question still remains: when should we perform or postpone duplicate detec-
tion. Delaying detection comes at the cost of possibly revisiting some duplicates
while performing it requires to read the whole visited and candidate sets from
disk. The underlying principle of the decision procedure is therefore to delay the
detection as long as it estimates that the number of duplicates visited so far
is too small to justify a duplicate detection. It is of course impossible to know
the number of duplicates in the candidate set as it would require to actually
perform the detection, but we can still estimate it from our knowledge of the
graph structure.

Visiting a duplicate is an expensive task as it implies many costly operations.
First, the state must be written (read) to (from) the queue file and the candidate
file. Then it is expanded3 and its successors are written to temporary files to

2 It is actually possible to merge both procedures to save some disk accesses but we
separated them for sake of clarity.

3 An expansion implies several non trivial operations that represent the most time
consuming tasks of RAM based model checkers: computation of enabled actions,

8

bfs-dddd ()
1 for i ∈ 1..N do

2 Vi := ∅ ;; Ci := ∅ ;; Qi := ∅
3 Cache := ∅ ;; Qh(s0).write(s0)
4 while ∃i ∈ 1..N with Qi 6= ∅ do

5 expand() ;; merge()
merge ()
1 detection := doDetection()
2 for i ∈ 1..N do

3 H := ∅ ;; Qi := ∅
4 for s ∈ Ti do H.insert(s, true)
5 if ¬detection then

6 for (s,) ∈ H do Ci.write(s)
7 else

8 for s ∈ Ci do H.insert(s, false)
9 for s ∈ Vi do H.delete(s)
10 for (s,) ∈ H do Vi.write(s)
11 Ci := ∅
12 for (s, exp) ∈ H do

13 if exp then Qi.write(s)

expand ()
1 for i ∈ 1..N do Ti := ∅
2 for i ∈ 1..N, s ∈ Qi, s

′ ∈ succ(s) do

3 if s′ /∈ Cache then

4 if Cache.isFull() then

5 s′′ := Cache.choose()
6 if ¬s′′.stored then

7 Th(s′′).write(s′′)
8 Cache.delete(s′′)
9 Cache.insert(s′)
10 s′.stored := false
11 for s ∈ Cache do

12 if ¬s.stored then

13 Th(s).write(s)
14 s.stored := true

Fig. 3. The bfs-dddd algorithm based on dynamic delayed duplicate detection.

be later read again. To estimate both alternatives, the algorithm assigns a cost
to each of these basic operations: ec for expansions, rc for read accesses and wc

for write accesses4. We can thus approximate the cost of visiting a duplicate by
ec+(rc+wc) · (2+deg) where deg is the average degree of the graph. Note that,
due to cache effect, not all the successors may be written in the temporary files,
but we will still use the average degree as an over approximation.

Since duplicate detection implies the read of the whole visited and candidate
files we can therefore estimate that delaying detection should be preferred if:

(|C| + |V|) · rc > |duplicates| · (ec + (rc + wc) · (2 + deg)) (1)

where |duplicates| is the total number of duplicates in candidate and temporary
files.

This is naturally a rather coarse approximation. What really matters in our
sense is that the decision procedure makes its choice on the basis of:

– the size of the candidate and visited sets: looking for duplicates is very cheap
on the first levels and its cost increase as we go deeper into the graph.

– the proportion of backward transitions, which has a direct impact on the
number of duplicates: numerous backward transitions will naturally intro-
duce many useless state revisits which in turn mean additional disk accesses.

generation of successors and insertion of the successors into the cache usually via an
encoding into bit strings.

4 In our implementation we arbitrarily set rc = 1, wc = 2 and ec = 2 which is clearly
not the best solution. We propose in section 4.5 a method to set these parameters.

9

=

of L (l + 1) of level l + 1
Candidates

R(l)

Estimation
L (l − 2) L (l − 1) L (l)

Estimation

of duplicates

Fig. 4. Estimating the number of duplicates in the candidate set.

– the average degree of the graph. This third factor is perhaps less intuitive
but still should be considered. A high degree weighs down the cost of visiting
duplicates insofar as such a revisit may, in the worst case, lead to approxi-
mately deg read/write accesses to temporary files.

Some parameters of formula (1) are available, like |V|, |C| or the average
degree deg that can be estimated from our partial exploration of the graph.
Computing |duplicates| is more problematic as it requires to actually perform
duplicate detection which is exactly what we want to avoid. Instead, we approx-
imate it using observation 3 from the previous section: the size of levels does
usually progress in a regular way. Thus, we can roughly forecast the size of a
level from previous ones. We can then reasonably assume that the difference be-
tween what we expected and the actual size of the candidate set can be explained
by the presence of duplicate candidates.

This forecast process can be illustrated with the help of figure 4. We notice
a decrease in previous levels l − 2, l − 1 and l. By making the hypothesis that
this trend will continue we forecast the size of level l + 1. We then deduce from
this forecast an estimation of the number of duplicates.

Thereafter, we shall denote by lpri = |L (i+1)|
L (i) the level progression rate of

level i, l the level of the last detection and l+n the current level. The estimation of
some value v will be denoted by v. The number of duplicates stored in candidate
and temporary files is estimated as follows.

|duplicates| =
n

∑

i=1

crl+i · min(0, |Ri(l)| − |L (l + i)|) (2)

A correction rate crl+i, which purpose will be made clear thereafter, is used to
over-approximate our estimation.

The size of some level l + i is then estimated from the last level we actually
measured, i.e., level l, by combining it with the successive (estimated) progression
rates lprl, . . . , lprl+i−1.

|L (l + i)| = |L (l)| ·

l+i−1
∏

j=l

lprj (3)

This simplifies our task since the level progression rate can be estimated
from the data previously collected on the graph structure and the size of Ri(l)
is available.

10

α+ = 0.9, α− = 0.3
α+ = 0.3, α− = 0.9
α+ = 0.5, α− = 0.5

♦

♦

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
♦

♦
♦

♦
♦ ♦

♦
α+ = 0.7, α− = 0.2

+

+
+ +

+

Fig. 5. Curve used to estimate the progression of levels

Estimation of |Ri(l)| For any i < n, Ri(l) is stored in candidate files and
we can hence easily know its size. Rn(l) is stored in temporary files and as the
cache may not be large enough, T is actually a multi-set of Rn(l). Computing
the actual size of R

n(l) would require to merge temporary files, i.e., remove
duplicate in these, before calling doDetection, which is a non trivial operation.
The solution we implemented is to only merge a few files in order to have an
idea of the average multiplicity of each state of Rn(l) in T and hence, a more
accurate estimation of |Rn(l)|. Note that if the cache is large enough to contain
Rn(l) then |T | = |Rn(l)| and this operation is not necessary.

Estimation of the level progression rate Using observation 3 made in
Section 3, we will assume that the progression rate evolves in a regular way
and can be captured through the following formula.

lpri+1 =

{

lpri · (lpri + ǫ)−α+

if lpri ≥ 1

lpri · (lpri − ǫ)+α−

else
(4)

where α+ ∈ [0, 1] (resp. α− ∈ [0, 1]) determines how fast a progression rate
greater than 1 (less than 1) drops down to 1 (0); and ǫ is used, first to ensure
that the rate will eventually reach 1 and later 0, and second to determine how
long the progression rate will stay around 1. In our implementation, we set its
value to 0.01.

We use two different values α+ and α− as, in general, the progression rate
decreases faster when it is above 1 than below. Therefore it is preferable that
α+ > α−. In our implementation, we set α+ = 0.7 and α− = 0.2 as, on the
average, these gave us the best results. To give to the reader an idea of the
progression induced by this formula, we have plotted in figure 5 the curves for
some values of α− and α+.

The progression rate of the current level can then be forecasted from the
previous one using formula (4). If a detection occurred on the current level k,
the forecast is made from the actual rate since we measured L (k − 1) and L (k).
Otherwise, it is based on the forecasts made on previous levels.

11

Correcting the estimation It is clear that the quality of our estimations will
degrade as we move away from the level of the last detection. As a defensive
approach we will over-approximate our estimation of the number of duplicates
by a correction factor that grows exponentially as we delay detection:

crl+i = (1 + β)i−1 (5)

Hence, we will avoid long series of levels without detection. As on the first levels
following a detection the estimation is usually satisfactory (see experience 1 in
Section 5), β should be set to a very small value, e.g, 0.02 in our implementation.

4.4 Performing partial duplicate detections

A strategy allowing to reduce revisits is, when detection is delayed, to select a
subset of disk states and perform a partial duplicate detection. The question is
how to select these states in such a way that it helps us to delete many duplicates
while still not asking for too much work with respect to a full duplicate detection.

In [17], it was suggested to select states randomly according to the local-
ity principle. As previously suggested by Pelánek in [14], our algorithm rather
exploits the second statistical fact described in section 3: backward transitions
usually have a few typical lengths. Hence, using our knowledge of the graph we
know in which part of the file we should look to delete many duplicates. To this
end, the algorithm records for each partition p and level l the position in the
visited or candidate file of the first state of level l in partition p. States of a given
level can then be recovered using a seek operation in the appropriate file. After
each full duplicate detection we then select the k most typical lengths observed
so far (k being a user defined parameter) and use these to select stored states
during the next partial duplicate detections.

4.5 Extensions

We discuss in this section two possible extensions to the method.

Sampling the state space bfs-dddd assigns a cost to each basic operation
(wc for a write access, rc for a read access and ec for a state expansion) to
decide when to perform duplicate detection. For ideal performance these should
be tuned according to the specific characteristics of the model. The value rc

and wc should indeed reflect the size of the state vector while ec should be set
according to the state generation speed. A possible way to address this problem
is to perform a first “training run” using only RAM, as in [6], to collect some data
on the model that can be used for a second run using bfs-dddd. Not only is it
useful to tune these parameters, but it can also give us some precious knowledge
of the graph structure, e.g., on the length of backward transitions, that could
later be exploited by bfs-dddd.

12

Profiting from a static analysis of the model Backward transitions are of-
ten triggered by some specific higher level transitions in the system specification.
For instance, end loop statements often close cycles and hence are the source of
backward transitions. On the opposite, some actions, such as variable incremen-
tations, will never generate backward transitions. It could thus be interesting to
perform a static analysis of the model prior to state space exploration to identify
actions that could potentially lead to such transitions. These data can then be
used by bfs-dddd to estimate the probability of a newly generated candidate to
be a duplicate, depending on the actions associated to the incoming arcs of the
state. For states marked as “probably duplicate” it may be interesting to delay
their expansion to the next duplicate detection (if the detection revealed that it
is actually not a duplicate) rather than expanding them at the next expansion
phase. Once again, a first training run may be useful to identify more accurately
those actions in the models.

5 Experiments

The bfs-dddd algorithm has been integrated into the ASAP verification tool
[13]. We report in this section the results of a series of experiments. All models
are taken from the BEEM database. Some additional data on experience 3 and
4 may be found in [3].

Experiment 1 One may wonder how the algorithm used to estimate the number
of duplicates works in practice. To this end, we first selected 204 instances (all
instances with at most 5,000,000 states) and compared their BFS level graphs
with the graphs forecasted during the search. We measured the error rate

err =

∑

i∈{1,...,n} abs
(

∑li
j=li−1+1 |L (j)| − |L (j)|

)

∑

i |L (i)|

where l0 = −1 and l1, . . . , ln denote levels where detections were performed. The
principle of this rate is to observe for each slice [li + 1, li+1] of levels closed by a
duplicate detection the distance between the number of states estimated and the
number of states actually measured. If detections are performed on each level,
using bfs-hddd, we obtain an average error rate of 0.10 which basically means
that our method to evaluate duplicates is viable: it is possible to accurately eval-
uate a BFS level based on prior levels. With bfs-dddd the average goes up to
around 0.18 which is still rather good. Figure 6 presents some comparisons be-
tween the actual BFS level graph (plain curve) and the graph forecasted (dotted
curve) using bfs-dddd. We drew a vertical line for each level with a detection.
The graph of cambridge.4 has a regular bell shape and a large proportion of
backward transitions which leads to frequent detections. Our estimation is thus
excellent and we can estimate that detection frequency is almost optimal. On
the contrary, for firewire link.2, we often over-approximate levels. As a con-
sequence, detections are too largely spaced and too many states are revisited.

13

cambridge.4 - 60 463 states, err = 0.05 bopdp.3 - 1 040 953 states, err = 0.13

pgm protocol.5 - 382 731 states, err = 0.20 firewire link.2 - 55 887 states, err = 0.46

Fig. 6. Experiment 1: comparison of the BFS level graph with our forecast.

However, the opposite situation is much more frequent: we generally tend to
under-approximate levels (and forecast too much duplicates) and perform un-
necessary detections. Hence, our strategy is perhaps not aggressive enough.

Experiment 2 bfs-dddd was then compared to bfs-hddd. We selected all
the non trivial (with more than 500.000 states) instances of the database and
measured the execution times with both algorithms. We plotted the results in
figure 7. Each point corresponds to an instance. Data collected confirm our
initial expectations: bfs-dddd is especially interesting for long graphs, i.e.,
with a large height. This is however not the only parameter: the proportion
of backward transitions also plays an important role. For example, in the case
of cambridge.7, it is not so interesting to use bfs-dddd: even though its graph
is long, it has a high proportion of backward transitions (> 50%) which leads us
to perform many duplicate detections; whereas we observe good performances
for leader election.5 which has the opposite characteristics. Rates observed
go from 1.10 (reader writer.3) to 0.05 (iprotocol.6). The average is around
0.6. This does not look like an important improvement but, as we shall see it, the
major interest of our algorithm is that is scales much better than bfs-hddd to
large state spaces. Moreover the next experiment shows that partial detections
often allow to delete many duplicates at a low cost.

14

average

leader election.5

cambridge.7

reader writer.3

iprotocol.6

Height

b
f
s
-
d
d
d
d

ti
m

e
/

b
f
s
-
h
d
d
d

ti
m

e

7006005004003002001000

1.25

1

0.75

0.6
0.5

0.25

0

Fig. 7. Experiment 2: comparison of bfs-dddd and bfs-hddd

Experiment 3 We then compared our algorithm to part [1], based on a parti-
tioned hash table. This choice is mostly motivated by the fact that, according to
our experiments and the ones of Bao and Jones, it outperforms the algorithms of
[2] and [17] that can be considered, roughly speaking, as parents of bfs-dddd.

To compare these algorithms we tried to select a representative set of models
according to these parameters: average degree, width and height, proportion of
backward transitions, distribution of backward transition lengths. As we previ-
ously saw these may have a certain impact on the performance of our algorithm.

Table 1 presents the results of this experiment. For each instance we per-
formed one run with part and several runs with bfs-dddd, first without partial
detection and then with partial detections with different values for parameter k
(number of lengths considered). Each run was given the same amount of mem-
ory, that is, the ability to keep at most 16·106 states in memory. This represents,
in most cases, a small fraction of the state space. Execution times are expressed
in the form hours:minutes for part and as a fraction of this time for bfs-dddd.
Best times have been written in bold. The last row indicates average values.

We noticed that part is very sensitive to the graph structure: it is best suited
to wide and short graphs. In this case queues associated with partitions are filled
with many states meaning that few partition swaps will occur although disk
queues will be accessed more frequently. Therefore, we can basically make the
same observations as in the previous experiment: bfs-dddd is comparatively
better on long graphs (e.g., brp2, iprotocol, rether), with preferably, few
backward transitions. Loading/unloading partitions is a major time consuming
operation of part for these kinds of graphs, especially if the state vector is large,
e.g., for rether. telephony is typically the worst input we can think of for bfs-

dddd. It is short and has 16 levels with more states than the cache can hold.
Since its average degree is high this leads to a huge amount of disk accesses in
temporary files. To a lesser extent, the same remark also applies to elevator.

15

Table 1. Experiment 3: comparison of bfs-dddd and part

Instance States part bfs-dddd bfs-dddd + partial DD
k=2 k=4 k=8

anderson 538 M 17 : 56 0.80 0.28 0.28 0.28

bakery 403 M 7 : 36 0.65 0.47 0.47 0.47

brp2 145 M 20 : 08 0.20 0.20 0.21 0.22

cambridge 255 M 32 : 28 0.62 0.44 0.28 0.30

collision 972 M 25 : 34 0.71 0.67 0.69 0.69

elevator 833 M 17 : 23 1.16 0.86 0.85 0.82

iprotocol 706 M 31 : 01 0.35 0.30 0.29 0.32

lann 421 M 23 : 28 0.47 0.47 0.49 0.52

leader filters 431 M 7 : 24 0.38 0.38 0.38 0.38

lup 379 M 8 : 21 1.03 0.29 0.31 0.32

peterson 142 M 3 : 20 0.76 0.71 0.73 0.77

rether 151 M 54 : 08 0.07 0.07 0.07 0.08

telephony 534 M 12 : 57 1.01 0.98 0.95 0.95

train-gate 478 M 26 : 34 0.24 0.24 0.25 0.31

0.60 0.45 0.45 0.46

Performing partial detections is especially interesting when backward tran-
sitions have very few typical lengths. anderson is a caricatural case as all its
backward transitions have the same length. Therefore partial detections helped
us to divide the execution time by almost three. This also applies to lup which
graph has two lengths that cover more than 90% of backward transitions. For
graphs that do not have typical lengths, e.g., train-gate or brp2, this optimiza-
tion does not bring any improvement. Hence, it should always be turned on: at
worst, we will not gain anything.

Experience 4 The last experiments were done with 6 real life protocols: brp,
brp2 (timed version of brp), cambridge, iprotocol, pgm protocol and rether.
Our goal was to evaluate how part, bfs-hddd and bfs-dddd behave as the
graph gets larger and the height increases.

Figure 8 presents our results. We gave each algorithm the same amount of
memory and for bfs-dddd, we set parameter k to 4 as it gave us the best
results in previous experiment. For some fixed parameters we progressively in-
creased another parameter (on the x-axis, see [3] for details) and recorded the
search speed as nodes of the graph

search time (on the y-axis). We remark that part is more
efficient for small graphs although there is no huge difference. However, above
a certain point bfs-dddd becomes more interesting. In addition, even though
there generally is a moment where the speed decreases for all algorithms, this
instant occurs later for bfs-dddd. At last, many communication protocols have
in common that their BFS level graphs are terminated by a long series of very
small levels - that possibly correspond to the termination phase of the protocol.
This property also explains why bfs-dddd evolves better on such models.

16

bfs-hddd

bfs-dddd

part

brp

4035302520151050

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

bfs-hddd

bfs-dddd

part

brp2

161412108642

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

bfs-hddd

bfs-dddd

part

cambridge

20181614121086420

7000

6000

5000

4000

3000

2000

1000

0

bfs-hddd

bfs-dddd

part

iprotocol

121086420

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

bfs-hddd

bfs-dddd

part

pgm protocol

161412108642

12000

10000

8000

6000

4000

2000

0

bfs-hddd

bfs-dddd

part

rether

1098765432

16000

14000

12000

10000

8000

6000

4000

2000

0

Fig. 8. Experiment 4: Comparison of part, bfs-hddd and bfs-dddd.

6 Conclusion

We proposed in this work an adaptive duplicate detection scheme for external
memory model checking that borrows several ideas from the literature: [10,14,17].
Its principle is to collect during the search some data that help us to determine
when detection should be performed or postponed. We evaluated this method on
several models of different families and complexities and find out that the new
algorithm is especially well suited to communication protocols with long graphs
and few backward transitions that are quite common in model checking.

Besides the extensions described in Section 4.5, we plan to refine the way
lengths are selected during partial duplicate detections. Our scheme assumes
that these lengths do not evolve during the search. This assumption is apparently
invalid in many cases where lengths are function of the level.

17

References

1. T. Bao and M. Jones. Time-efficient model checking with magnetic disk. In Proc.

of TACAS, LNCS vol. 3440, p. 526–540. Springer, 2005.
2. D. L. Dill and U. Stern. Using magnetic disk instead of main memory in the Murφ

verifier. In Proc. of CAV, LNCS vol. 1427, p. 172–183. Springer, 1998.
3. S. Evangelista. Dynamic delayed duplicate detection for external memory model

checking. Technical report, DAIMI, University of Aarhus, Denmark, 2008.
http://daimi.au.dk/∼evangeli/doc/dddd.pdf.

4. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems -

An Approach to the State-Explosion Problem, LNCS vol. 1032. Springer, 1996.
5. M. Hammer and M. Weber. “To store or not to store reloaded”: Reclaiming memory

on demand. In Proc. of FMICS, LNCS vol. 4346, p. 51–66. Springer, 2006.
6. G. J. Holzmann. State compression in spin: Recursive indexing and compression

training runs. In Proceedings of the Third Spin Workshop, 1997.
7. S. Jabbar and S. Edelkamp. I/O efficient directed model checking. In Proc. of

VMCAI, LNCS vol. 3385, p. 313–329. Springer, 2005.
8. S. Jabbar and S. Edelkamp. Parallel external directed model checking with linear

I/O. In Proc. of VMCAI, LNCS vol. 3855, p. 237–251. Springer, 2006.
9. R. E. Korf. Delayed duplicate detection: Extended abstract. In Proc. of IJCAI, p.

1539–1541. Morgan Kaufmann, 2003.
10. R. E. Korf. Best-first frontier search with delayed duplicate detection. In Proc. of

AAAI, p. 650–657. AAAI Press/The MIT Press, 2004.
11. R. E. Korf and P. Schultze. Large-scale parallel breadth-first search. In Proc. of

AAAI, p. 1380–1385. AAAI Press/The MIT Press, 2005.
12. R. E. Korf, W. Zhang, I. Thayer, and H. Hohwald. Frontier search. J. ACM,

52(5):715–748, 2005.
13. L.M. Kristensen and M. Westergaard. The ascoveco state space analysis platform.

In Proc. of 8th CPN Workshop, volume 584 of DAIMI-PB, p. 1–6, 2007.
14. R. Pelánek. Typical structural properties of state spaces. In Proc. of SPIN, LNCS

vol. 2989, p. 5–22. Springer, 2004.
15. R. Pelánek. BEEM: Benchmarks for explicit model checkers. In Proc. of SPIN,

LNCS vol. 4595, p. 263–267. Springer, 2007.
16. R. Pelánek. Model classifications and automated verification. In Proc. of FMICS,

LNCS. Springer, 2007.
17. G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli. Exploiting transition

locality in the disk based Murphi verifier. In Proc. of FMCAD, LNCS vol. 2517,
p. 202–219. Springer, 2002.

18. E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. Exploiting transition
locality in automatic verification. In Proc. of CHARME, LNCS vol. 2144, p. 259–
274. Springer, 2001.

19. A. Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic

Models, volume 1491 of LNCS, p. 429–528. Springer, 1998.
20. R. Zhou and E. A. Hansen. Structured duplicate detection in external-memory

graph search. In Proc. of AAAI, p. 683–689. AAAI Press/The MIT Press, 2004.
21. R. Zhou and E. A. Hansen. A breadth-first approach to memory-efficient graph

search. In Proc. of AAAI. AAAI Press/The MIT Press, 2006.
22. R. Zhou and E. A. Hansen. Domain-independent structured duplicate detection.

In Proc. of AAAI. AAAI Press/The MIT Press, 2006.
23. R. Zhou and E. A. Hansen. Edge partitioning in external-memory graph search.

In Proc. of IJCAI, p. 2410–2417, 2007.

18

http://daimi.au.dk/~evangeli/doc/dddd.pdf

	 Dynamic Delayed Duplicate Detection for External Memory Model Checking
	Sami Evangelista evangeli@daimi.au.dk

