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Abstract. This paper describes how the PEP tool (Programming En-
vironmnet based on Petri nets) pro�ts from an integration of the Spin
(Simple PROMELA INterpreter) veri�cation package.
Translation methods from three input formalisms (parallel programs,
high-level and low-level Petri nets) into PROMELA (PROtocol MEta
LAnguage) are discussed and the Spin based veri�cation is compared
with a Petri net based partial order model checker using a number of
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1 Introduction

The PEP tool [3, 5, 14] is a tool for the modelling, simulation, analysis and
veri�cation of parallel systems. A number of compilers provide the automatic
generation of low-level Petri nets [4] from other input formalisms:

{ SDL (Speci�cation Description Language) [8]
{ parallel �nite automata (PFA) [15],
{ parallel programs written in B(PN)2 [6],
{ process algebra terms expressed in the PBC [4], and
{ high-level Petri nets [2].

Apart from simulation, also analysis and veri�cation have been based on
Petri net theory. Originally, the core of the veri�cation component of PEP was
a partial order based model checker [10, 16] which takes the �nite pre�x of a
branching process (an optimised version of the McMillan unfolding [21, 11]) of
the low-level Petri net as input. E�ciency was partly gained on the cost of the
expressiveness of the supported logic, S4, a propositional logic on place names,
augmented with 2 for `always' (AG in CTL) and 3 for `possibly at some future
point' (EF in CTL).

? PEP is a joint project between the `Universit�at Hildesheim' and the `Humboldt-
Universit�at zu Berlin' which is �nanced by the DFG (German Research Foundation).



In 1996 we decided to extend the veri�cation component. The main motiva-
tions have been:

{ to have support for stronger logics, such as CTL (Computational Tree Logic
[9]) and LTL (Linear Time temporal Logic [23]), and

{ the conviction that there is no veri�cation method which is always superior.

This paper focuses on the integration [24] of the Spin veri�er [17, 20] into the
PEP tool. In section 2, we describe the translation of low-level Petri nets into
PROMELA. Tool oriented aspects of the integration are discussed in section 3.
Section 4 shows how parallel systems modelled in three di�erent input formalisms
can be veri�ed using the new Spin interface. Expressiveness and e�ciency are the
major criteria for a comparison with the pre�x based model checking approach.
Interesting issues of a translation from high-level Petri nets into PROMELA are
presented in section 5 and a translation from B(PN)2 programs into PROMELA
is analysed in section 6. Finally, we conclude in section 7 and give a list of
references.

2 Translating low-level Petri nets into PROMELA

As mentioned in the introduction, low-level Petri nets play a major role within
the PEP tool. G.J. Holzmann already presented an approach for the translation
of low-level Petri nets into PROMELA programs in [18]. We will now describe
similar solutions.

2.1 1-safe Petri nets

The most simple class of low-level Petri nets (1-safe1 nets without arc weights)
are particularly interesting within the PEP framework because B(PN)2 programs
and SDL speci�cation can be automatically compiled into 1-safe Petri nets [12,
13]. For this reason, it is straightforward to consider these nets �rst.

Fig. 1 shows a small example. A Petri net consists of places (such as P1, P2, P3
and P4) which are marked with tokens (representing resources) and transitions
(such as T1, T2, T3 and T4) which resemble actions. Arcs connect places and
transitions. They determine the resources which are consumed (e.g., T2 consumes
a token from P1 and P2) and produced (e.g., T2 produces a token on P3 and
P4) by the occurrence of a transition.

In Fig. 2 a translation of the 1-safe low-level net (from Fig. 1) is shown. It
can be seen that:

{ one variable of type bool is introduced for each place,
{ a proctype Net is given for the net itself, and
{ each transition is modelled by an atomic sequence.

In comparison with the solution of G.J. Holzmann we mention four di�er-
ences:
1 1-safe means that each place may contain at most one token.



T1 T2 T3 T4

P1 P2

P3 P4

Fig. 1. 1-safe low-level Petri net example.

/* 1-safe */

bool P1=1;

bool P2=1;

bool P3=0;

bool P4=0;

bool DEADLOCK=0;

proctype Net()

f
do

:: atomic f P3 -> P3=0; P1=1; g
:: atomic f P1 && P2 -> P1=0; P2=0; P3=1; P4=1; g
:: atomic f P2 -> P2=0; P4=1; g
:: atomic f P4 -> P4=0; P2=1; g
:: else -> goto dead

od;

dead: DEADLOCK=1

g

initfrun Net()g

Fig. 2. PROMELA program for the example of Fig. 1

1. In the case of a 1-safe Petri net the type bool is su�cient.
2. The initialisation of the variables for the places prevents undesired veri�ca-

tion results.
3. The atomic sequences for the transitions �rst check that the input places are

marked, then set the variables for all input places to 0 and �nally set the
variables for all output places to 1.

4. We introduced an auxiliary variable DEADLOCK and an additional else branch
which covers the case that no transition is enabled and thus a deadlock
occurred.

Fig. 3 shows the general result of a translation of a 1-safe Petri net with the
places P1, ..., Pn and the transitions T1, ..., Tm. We use the following notations:



In(Ti) =̂ Set of input places Pi1
, ..., Pil

of Ti (i 2 f1; � � � ;mg)
Out(To) =̂ Set of output places Po1

, ..., Pot
of To (o 2 f1; � � � ;mg)

Ex(In(Ti)) =̂ (Pi1
&& ... && Pil

)
Clear(In(Ti)) =̂ Pi1

=0; ...; Pil
=0

Set(Out(To)) =̂ Po1
=1; ...; Pot

=1

bool P1=...;
...
bool Pn=...;
bool DEADLOCK=0;

proctype Net()
f
do
:: atomic f Ex(In(T1)) -> Clear(In(T1)); Set(Out(T1)); g
...
:: atomic f Ex(In(Tm)) -> Clear(In(Tm)); Set(Out(Tm)); g
:: else -> goto dead
od;

dead: DEADLOCK=1
g

init f run Net() g

Fig. 3. PROMELA{pseudocode for a 1-safe low-level Petri net

2.2 Non-safe Petri nets

Fig. 4 shows an example of a low-level Petri net which does not belong to the
class of nets considered so far. Already the initial marking shows that, e.g., place
P1 may be marked with more than one token. Moreover, some arcs have a weight
of more than one.

P1 P2

P3 P4

T1 T2 T3 T4

3 2 23

3

Fig. 4. General low-level Petri net example.



The result of a translation of such a general low-level Petri net (with the
places P1, ..., Pn and the transitions T1, ..., Tm) is given in Fig. 5. The arc
weights are denoted as follows:

W(P,T) =̂ weight of arc from place P to transition T.
W(T,P) =̂ weight of arc from transition T to place P.

byte P1=...;
...
byte Pn=...;
bool DEADLOCK=0;

proctype Net()
f

do
:: atomic f (8 Pin2In(T1): (Pin<=W(Pin,T1)) ) {>

(8 Pin2In(T1): Pin=Pin-W(Pin,T1);)
(8 Pout2Out(T1): Pout=Pout+W(T1,Pout);) g

...
:: atomic f (8 Pin2In(Tm): (Pin<=W(Pin,Tm)) ) {>

(8 Pin2In(Tm): Pin=Pin-W(Pin,Tm);)
(8 Pout2Out(Tm): Pout=Pout+W(Tm,Pout);) g

:: else -> goto dead
od;

dead: DEADLOCK=1
g

init f run Net() g

Fig. 5. PROMELA{pseudocode for a low-level Petri net

A number of changes are necessary:

1. The type byte replaces the type bool.
2. The atomic sequences for the transitions �rst check that each input place

is (at least) marked with the number of tokens given by the corresponding
arc weight, then decrement the variables for all input places by the corre-
sponding arc weight, and �nally increment the variables for all output places
appropriately.

3 Tool oriented aspects

In the previous section we explained the translation(s) of low-level Petri nets
into PROMELA programs which provide the basis for an integration of the Spin
veri�cation package into the PEP tool. However, a user-friendly solution requires
several more e�orts. Typically, the user appreciates the following approach:



{ (s)he edits (in a user friendly way) an LTL formula,

{ (s)he chooses the veri�cation options,

{ (s)he pushes a button,

{ (s)he gets the veri�cation result, and

{ maybe (s)he simulates the error trail in the Petri net editor (alternatively in
the B(PN)2 or SDL editor).

We discuss the relevant steps in more detail in the subsequent subsections.

3.1 Never claim generation

In principle, PEP not only allows the veri�cation of Petri net formulae, but also
the veri�cation of B(PN)2 or SDL properties by translating them (transparently)
into Petri net formulae. Nevertheless, for the purpose of this paper it is su�cient
to focus on the steps which are necessary to transform a Petri net formula into
a never claim. We (again) distinguish the cases of a 1-safe or non-safe net.

1-safe net

Within an LTL formula for the veri�cation of a 1-safe Petri net, place names,
true and false as well as DEADLOCK may be used as predicates. Thus, the
formula [](P1 -> (<>(P2 || DEADLOCK))) is an example for the net of Fig. 1.
In order to be able to use Spin for the never claim generation, we convert the
place names (which are hence restricted to begin with a capital letter) into lower
case. The result of an invocation of Spin { such as

spin -f "[](p1 -> (<>(p2 || deadlock)))"

is then added, together with de�nes like

#define p1 P1

#define deadlock DEADLOCK,

to the PROMELA program for the Petri net. All these steps are performed
transparently for the user.

non-safe net

In this case, the user typically wants to use predicates such as P3 >= 1 or
P2 == 3 in formulae like

[](!((P3 >= 1) && (P2 == 3))).

In order to support formulae of this kind, these predicates are extracted and
replaced by predicate names p1, p2, ... which are conform with Spin. Thus, this
time Spin may be invoked as follows:

spin -f "[](!((p1) && (p2)))"

and the result is then added, together with de�nes like

#define p1 (P3 >= 1)

#define p2 (P2 == 3),

to the PROMELA program for the Petri net.



3.2 Spin veri�cation options

The Spin veri�cation package supports a modest number of compile-time as well
as run-time options. We have chosen to provide the user with an interface to
these options which is almost identical to the interface provided by Xspin (the
graphical user interface for the Spin veri�er). Like this, the user may, for instance,
switch from exhaustive to supertrace mode, decide whether the veri�cation is
stopped after a certain number of errors, or restrict the search depth. The C
code generation, the compilation of an executable and the run of the veri�er are
then started in the same way as within Xspin.

3.3 Spin result transformation

Two post calculation steps are necessary to transform the result of the veri�ca-
tion run.

Veri�cation result extraction

In a �rst step, the overall result is determined. Fig. 6 shows the corresponding
decision procedure for which the output of the veri�er is scanned for various
patterns.

error: max search depth too small

Bit statespace search

pan: out of memory errors:

errors: 0

YES UNKNOWN NO

no

yes

yes

yesno

no

no

yes

yesno

Fig. 6. Veri�cation result extraction scheme

Error trace extraction

In a second step, the error trail (which is produced by the veri�er in the case that
the answer is no) is analysed. For this purpose the Spin simulator is invoked with
the options -p -t and the output is redirected into a �le. An auxiliary program
uses this output together with some additional information (the compiler from
Petri nets into PROMELA produces a list which summarises for each transition
the line in the PROMELA �le and the number of steps in the corresponding
atomic sequence) in order to generate a Petri net transition sequence.



SEQUENCE:
T1,T2,T4
LOOP:
T1,T3

is a typical result which may then be simulated in the low-level Petri net editor
(or optionally in the B(PN)2 or SDL editor).

4 Examples

In this section we discuss bene�ts and drawbacks of the described integration of
Spin in PEP by considering three di�erent examples.

4.1 Production control example (with Petri nets)

The �rst example deals with production planning systems as proposed by J. von
Steinaecker in [25]. Fig. 7 shows a part of the Petri net based modelling. It focuses
on one machine within the manufacturing process. The bottom part displays
that the machine may perform three di�erent tasks (Process A, Process B and
Process C). Each task requires pre- as well as post-preparation steps (e.g., Pre A),
consumes resources (e.g., from S1) and produces outcome (e.g., on S5). Moreover,
additional actions are necessary to change from one process to another (e.g,
Change AB).

A whole system is composed of machines of various types. One of the main
questions is whether it is possible to produce a certain amount of products
given a certain amount of resources. Furthermore, optimal scheduling plans are
requested.

We have chosen this example because it shows one strength of the Spin
veri�er. In contrast to the pre�x based model checker not only 1-safe low-level
nets, but also more general bounded nets may be analysed. In the given example,
the amount of resources of a certain type may thus be modelled using that
number of black tokens.

Of course, the system may also be modelled di�erently. Fig. 8 shows that
high-level Petri nets provide an alternative way to model, e.g., a part of the
component shown in Fig 7:

{ The places for the resources and products now have subranges of cardinals
as type (e.g., f0::5g) and carry the number of resources as token.

{ The adjacent arcs are now inscribed with variables (such as 'S1 or S1').
{ The transitions which consumes or produces resources are inscribed with
occurrence conditions (like S1'='S1-1 & S2'='S2-1 & S5'='S5+1), which de-
termine how many resources are consumed or produced.

However, this produces considerably more complex low-level Petri nets. For in-
stance, the place S1 is unfolded into six low-level places and the transition Pro-
cess A into 5 � 5 � 5 = 125 low-level transitions.
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Fig. 7. Production planning example.

As a consequence, veri�cation becomes infeasible with the pre�x based model
checker because already the calculation of the �nite pre�x of the branching
process is impossible for reasonably sized production systems. As an example,
we give the results for a system with three di�erent types of machines:

{ The calculation of a reduced pre�x (without con�guration2 information) took
approximately 80 minutes3. This reduced pre�x contained almost 52,000 cut-
o� events. Taking the intermediate results of the �rst hours of the calcula-
tion of the full pre�x into account we can estimate a number of more than
1,000,000 con�gurations. This is (at least for the time being) far beyond the
limits of the algorithm.

{ We were able to verify a number of reachability problems (i.e., whether or
not a certain number of products may be produced with a given number of
resources) using the integration of the Spin veri�er. In the cases where the

2 We refer the interested reader to [11] for the details of the pre�x calculation.
3 All tests have been performed on a Pentium II 266 MHz with 128 MB memory.
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Fig. 8. Production planning example (alternative solution).

products were producable, the veri�cation took between 4 and 10 seconds
(including the generation of the veri�er). Otherwise, the whole state spaces
(up to 3,430,620 states) had to be exploited, which took up to 26 minutes.

4.2 Communication protocol example (with SDL)

As a second example we use an SDL speci�cation in order to show that:

{ The integration of Spin in PEP also extends the �eld of applications which
may be veri�ed with Spin. This is particularly interesting because the early
work on SDL veri�cation [19] was not continued.

{ The expressive power of LTL formulae which is provided by the Spin veri�er
is an interesting extension of the pre�x based model checking approach.

We have chosen a simple ARQ (Automatic Repeat reQuest) communication
protocol with alternating acknowledgement (which was taken from [13]). The
top-level speci�cation in Fig. 9 shows that the system comprises processes of
two di�erent types (up to two instances of the Client process and one instance
of the Server process) which exchange signals with parameters 0 and 1 via two
signal routes, a and d.

signal data ({0,1});
signal ack ({0,1})

d [data]

a [ack]
Server (1,1)

Client (1,2)

Fig. 9. The ARQ-System.

Without going too much into the details, we mention that each Client in-
stance is responsible for the transmission of exactly one data package. Using the
procedure SendPackage this package is send until the correct acknowledgement



data (x)
via d

SendPackage
Procedure

dcl y {0,1};SendPackage

send

wait

SendPackage

noneparent

x := 0

sendsend

parent = nullparent = null

wait

y

ack (y)

send

receive

receive

via a to sender
ack (0)

via a to sender
ack (1)

receive receive

Process Client fpar x {0,1};

y = x y = x

Process Server

true true

z

data (z)

dcl z {0,1};

Client (y)

Fig. 10. The Client and the Server Process.

is received. Then, a new Client instance is created and the instance terminates
itself.

From the veri�cation point of view there are two interesting issues:

1. The speci�cation contains a non-trivial deadlock which is related to the non-
atomicity of the SDL state transition which �rst creates (or better tries to
create) a new Client instance and then terminates without checking whether
the process creation was successful. This deadlock may be found using the
pre�x based approach within 0.1 second (including the calculation of the
pre�x) and with the Spin veri�er within approximately 0.1 second plus 9.3
seconds for the generation of the veri�er.

2. The Server process non-deterministically returns either the correct or a wrong
acknowledgement. This means that (without fairness assumptions) it is not
ensured that a data package is eventually acknowledged correctly. Properties
of this kind cannot be expressed in the logic which is supported by the pre�x
based model checker. Using the integrated Spin veri�er we were able to detect
this behaviour within approximately 6.9 seconds (including 6.7 seconds for
the generation of the veri�er). As mentioned above the integration o�ered
the possibility to simulate the corresponding failure trace in the SDL editor.

4.3 Alternating-bit example (with parallel programs)

As a last example we consider a modelling of the `alternating-bit' protocol [1]
in the parallel programming language B(PN)2. We have chosen this example in
order to illustrate potential impacts of scaling on the e�ciency of the di�er-
ent veri�cation approaches. Furthermore, we use it to prepare the discussion in
section 6.

This protocol has been designed to ensure reliable transmission of messages
even if the communication media looses or duplicates messages or acknowledge-
ments. Fig. 11 shows that the B(PN)2 program comprises four named blocks,
i.e. one for each process:



begin

const CAPACITY 3;
var send trans, trans reply, ack reply, send ack: chan 0 of f0..1g;

begin Send
do hsend trans! = 1i; // action 1 Send message

do hsend ack? = 0i; repeat // action 2 Receive superuous ack
hsend trans! = 1i; repeat // action 3 Send message again
hsend ack? = 1i; exit // action 4 Receive correct ack

od; hsend trans! = 0i; // action 5 Send message
do hsend ack? = 1i; repeat // action 6 Receive superuous ack

hsend trans! = 0i; repeat // action 7 Send message again
hsend ack? = 0i; exit // action 8 Receive correct ack

od; repeat
od

end Send
k begin Trans

var trans: chan CAPACITY of f0..1g;
var helpt: f0..1g init 1;

hsend trans? = trans!i; // action 9 Receive �rst message
hhelpt0 = trans?i; // action 10 Initialise auxiliary variable
do hhelpt0 = trans?i; repeat // action 11 Forget message

hsend trans? = trans!i; repeat // action 12 Receive new message
htrans reply! = helpti; repeat // action 13 (Re-)transmit message

od

end Trans
k begin Reply

do hack reply! = 1i;
do htrans reply? = 1i; repeat

hack reply! = 1i; repeat
htrans reply? = 0i; exit

od; hack reply! = 0i;
do htrans reply? = 0i; repeat

hack reply! = 0i; repeat
htrans reply? = 1i; exit

od; repeat
od

end Reply
k begin Ack

var ack: chan CAPACITY of f0..1g;
var helpa: f0..1g init 1;

hack reply? = ack!i;
hhelpa0 = ack?i;
do hhelpa0 = ack?i; repeat

hack reply? = ack!i; repeat
hsend ack! = helpai; repeat

od

end Ack
end

Fig. 11. Modelling the alternating bit protocol with B(PN)2



1. Send tries to send an alternating sequence of `0' and `1' messages;

2. Reply acknowledges them with `0' and `1' acknowledgements, respectively;

3. Trans is the communication media from Send to Reply; and

4. Ack is the communication media from Reply to Send.

Instead of explaining the details of the algorithm (the comments in the pro-
gram should be self-explanatory), we only mention some interesting features of
the language B(PN)2:

{ B(PN)2 supports (nested) parallelism.

{ A general do-od construct combines usual loop and if-then-else features with
non-determinism.

{ Channels (as well as stacks) with arbitrary capacity are provided (a full
channel blocks).

{ Variables can be accessed in three di�erent ways { post primed (value after
execution), preprimed (before) and unprimed (before equals after). The type
of a variable is always respected.

{ Atomic actions (within hi brackets) may change an arbitrary number of
variables at the same time. Moreover, multiway synchronisations and non-
determinism is supported. Each atomic action can also be seen as a condition.

We used pre�x based algorithms (a special purpose deadlock-checker [22]
and the model checker) as well as the Spin LTL veri�er to check some properties
of the alternating-bit protocol. Table 1 and Table 2 summarise the results. We
briey mention some interesting observations:

{ Low-level Petri nets are not appropriate to model channels. As a conse-
quence, more e�orts should be taken to include special objects for channels
into low-level nets and to handle them di�erently within the veri�cation
algorithms (cf. [7]).

{ Some liveness properties (whether it is always `possible' to reach a state, or
whether a state is always `eventually' reached) are only expressible in one of
the supported logics.

{ In the given example, the state spaces as well as the complexity of the pre�x
tends to grow too quickly. Starting from a capacity of 8 (for the bu�ers trans
and ack), this has the consequences that, the construction of the pre�x (and
thus all model checking) becomes too complex, and Spin veri�cations which
have to exploit the whole state space also become infeasible. (Note that
the deadlock-freeness test for a capacity of 7 was not possible { even with
memory reduction methods { using 256 MB of memory).

{ Pre�x based methods are superior for the detection of non-reachable states
(in this case Spin needs as long as for the deadlock-freeness check), whereas
the Spin on-the-y veri�cation performs dramatically better in cases where
an error can be found early.



Capacity Pre�x Deadlock Reachability `possible'

C E Cuto�s Con�gs Time Liveness

1 1308 471 186 153 0.1 2.3 0.1 10.5

2 3326 1200 511 537 1.0 58.2 0.1 303.7

3 7223 2604 1159 1411 6.4 639.4 0.4 10923.0

4 13485 4851 2185 2886 38.5 11146.0 1.0

5 22995 8253 3734 5219 193.4 2.4

6 36682 13133 5954 8693 883.1 5.8

7 55609 19864 9012 13600 3870.3 12.3

Table 1. Alternating bit protocol: pre�x based analysis

Capacity Deadlock Reachability `eventually'

States Depth Time Liveness

1 4978 2863 3.7 3.5 3.6

2 12102 8573 4.4 3.6 3.8

3 35914 39721 6.0 3.9 4.0

4 126142 157861 14.4 4.1 4.2

5 491826 756193 42.4 4.3 4.4

6 2022500 3327829 328.4 4.4 4.6

7 8518430 14723059 1200.0 4.6 4.7

Table 2. Alternating bit protocol: Spin based analysis

5 Translating high-level Petri nets into PROMELA

So far, we have described how a relatively simple translation of low-level Petri
nets into PROMELA allows the veri�cation of input formalisms (which are sup-
ported by PEP) using the Spin veri�er. However, it is straightforward to look for
translations of more high-level formalisms into PROMELA, in order to improve
e�ciency. This takes into account that each translation step introduces some
overhead. It is natural to consider high-level Petri nets �rst, because parallel
programs as well as SDL speci�cations are translated via high-level Petri nets
into low-level Petri nets.

Within PEP a special class of high-level Petri nets, M-nets (for modular
multilabelled nets) [2], is used. We briey summarise the most relevant charac-
teristics:

{ Places have a type which may be a cross-product of sets which contain
integers, booleans or the black token.

{ Transitions are annotated with an occurrence condition.
{ Arcs are inscribed with multisets of variables.

Fig. 12 shows a small net which may serve to give an intuition and to stress
some of the features which impose problems for the translation into PROMELA:



{ It is di�cult to model the various types of places appropriately. Sets like
fdot,3,6g and cross-products impose severe problems as far as, e.g, type
checking is concerned.

{ An occurrence condition may comprise almost arbitrary conditions. Non-
determinism is one of the major problems.

{ Bindings for the variables, or even tuples, on arcs have to respect the type
of output places and are restricted by the available tokens on input places.

T1 (d>=a) & (c=b)

P1
{1..4} x {dot,3,6}

P2
{0..2}

P3
{0..2}

(c,d)

(b,a)
id,1

id,b

condition

Type

Occurrence

Fig. 12. A small high-level net example.

In Fig. 13 we give a PROMELA pseudocode translation for a general high-
level Petri net. As for low-level Petri nets, there is (within a loop) one atomic
sequence for each transition. This time the entrance is controlled by a single
variable enabled transitioni.

A key problem is that all possible bindings (of all transitions) have to be
checked, i.e. an almost general high-level Petri net simulator must be encoded
in PROMELA.

For this purpose we introduce one variable enabled bindingij for each bind-
ing of transition i. An inner loop tries all these bindings until either an enabling
binding is found or all bindings have been tested without success. A binding
is enabling, if the occurrence condition evaluates to true, the input places are
marked su�ciently and the types of the output places are respected. If no en-
abling binding for the transition under consideration was found, the transition
is marked as not enabled (in this step). Otherwise, the transition is �red and all
transitions are marked as potentially enabled for the next step. Finally, all in-
termediate bindings are reset and all bindings are marked as potentially enabled
for the next check.

In principle, it is possible to translate high-level Petri nets this way. However,
some tests have shown that, on the one hand an implementation is tedious and
on the other hand this general solution is not appropriate to improve e�ciency.



proctype Net()

f
Initialisation
...

do

::atomic fenabled transition1
�> do

::enabled binding11
�> Bind variables;

enabled binding11=0
...

::enabled binding1p
�> Bind variables;

enabled binding1p=0
od

unless f ( Occurrence condition true &&

Check tokens on input places &&

Respect types of output places ) ||

( !(enabled binding11 || ... ||

enabled binding1p ) g;
if

::!(enabled binding11 || ... || enabled binding1p )
�> enabled transition1=0

::else

�> Fire transition;
enabled transition1= ... =enabled transitionn=1

fi;

Reset all bindings;
enabled binding11= ... =enabled binding1p=1;

g
...

::atomic fenabled transitionn
...

g
::!(enabled transition1 || ... || enabled transitionn) �> goto dead

od;

dead: deadlock=1

g

Fig. 13. PROMELA pseudocode for a general high-level Petri net



6 Translating B(PN)2 programs into PROMELA

In the previous section we have seen that a translation of high-level Petri nets
into PROMELA imposes a number of problems. In this section we will see that
a compilation of B(PN)2 programs is even more di�cult. Some of the main
problems are related to the distinguishing features of B(PN)2 (compared with
PROMELA) which have already been summarised in subsection 4.3.

Let us �rst consider an atomic action hc1! = x' i. This action is executable
if there is a value in the type of the variable x which can be sent to the channel
c1 . A translation into PROMELA must contain a type check and it must cover
the sending of all possible values which respect both types (i.e., it must generate
random values).

The situation becomes more complicated if channel inputs are engaged. In
this case, the �rst value which is stored in the channel must, e.g., be compared
with the type of a variable. This means, that a translation of B(PN)2 channels
into PROMELA channels is at least complicated, because there is no test mech-
anism which does not remove a value from the channel. Arrays may overcome
this problem.

Synchronous communication via channels with capacity zero is another dif-
�cult issue. In B(PN)2 an action hc0? = 'x i may be the guard of an alterna-
tive. Such an action may synchronise with an arbitrary number of (di�erent)
send actions. Multiway synchronisation is possible as well. This means that a
PROMELA program must check at run-time whether a synchronisation is possi-
ble. These checks imply that variables which are used within the corresponding
actions are changed. In the case that such a check gives the result that the syn-
chronisation was not possible, the original state must be recovered. This includes
the values of variables as well as the positions in the control ow.

Moreover, the fact that the veri�cation of the PROMELA code should yield
correct model checking results, demands sophisticated introduction of progress
labels and fairness assumptions in order to avoid in�nite test sequences.

Probably the most severe problem is to give a solution which covers the
possibility to change an arbitrary number of variables within one single action.
We refer the reader to [24] where a detailed analysis of the problems is given, a
restriction of the language B(PN)2 is proposed, and a PROMELA semantics for
the restricted language is de�ned.

Finally, we mention that B(PN)2 o�ers a procedure concept which includes
value, value-result and reference parameters and supports also recursion [12].
Covering this in full generality (and full compatibility) is a problem which is at
least out of the scope of this paper.

7 Conclusion

This paper briey described a transparent integration of Spin into PEP which is
based on a translation from Petri nets into PROMELA. We used three examples
to demonstrate the main bene�ts of this approach:



{ Spin may now be applied to B(PN)2 programs, SDL speci�cations, parallel
�nite automata, process algebra terms, high-level and low-level Petri nets.

{ PEP gained an LTL model checker.
{ As no veri�cation method is always superior, PEP can thus o�er more e�-
cient veri�cation for a number of applications.

For a more detailed overview of the PEP system we refer the reader to the
various papers which are available together with the tool at

http://theoretica.informatik.uni-oldenburg.de/�pep.

Acknowledgement:We would like to thank Michael Kater, Stephan Ptak and
Stefan Schwoon for their contributions to the integration of Spin in PEP.
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