
State Space Compression in spin with GETSs

J.-Ch. Gr�egoire
INRS-T�el�ecommunications
gregoire@inrs-telecom.uquebec.ca

Abstract

We explore the application of a state space compression algorithm to spin. Com-
pression techniques are notably unpredictable: we tend to use them when they work
well for us (e.g. zip),but we tend to forget that, according to the theory, they can also
result in an expansion (e.g., ziptwice).

How well a compression algorithm work in a given context is typically discovered
experimentally. In this paper, we describe such an experiment, where a compression
algorithm based on sharing of state information in a graph structure is used as a state
store for a spin-generated veri�cation programs.

The positive results are encouraging for further investigation of the use of this
technique in spin-like tools.

keywords state space compression, reachability analysis, Graph Encoded Tuple Sets,
arbres partag�es, spin.

Contents

1 Introduction 3

2 De�nitions 4

3 Behavior of GETSs 5

4 Operations on GETSs 8

4.1 Operators . 8
4.2 Normalized insertion . 8
4.3 Normalized deletion . 9
4.4 Other Operators . 9

5 Application to spin and Analysis 10

5.1 State Coding . 10
5.2 Stack Presence Coding . 11
5.3 snoopy . 11

1

5.4 pftp . 11
5.5 gsm . 12
5.6 Observations . 15
5.7 Discussion . 16
5.8 spin's Compression . 17

6 Conclusion 18

2

1 Introduction

The amount of main storage available on a given computer is the usual bottleneck in
the veri�cation of �nite state systems. In spin [Holzmann91], this obstacle is alleviated
somewhat in two di�erent ways. The �rst is through the use of \partial order" tech-
niques [Holzmann et al.94], which reduce the size of the system to explore while preserv-
ing the properties we want to verify. The second consists of changing the search from
an exhaustive one to a partial, stochastic one, but without guaranteing a complete explo-
ration [Holzmann91]. Those two techniques are orthogonal and can be combined.

We explore here the use of a data structure, called Graph Encoded Tuple Sets

(GETS) 1 to support the computations of spin. This data structure acts as a compression
mechanism for the state space. By encoding the state representation, it has the potential of
reducing the amount of storage required to hold the state space. However, since it acts as a
compression mechanism, it also has the potential of actually using more storage than would
be required without compression.

In earlier work [Gagnon et al.95], we have already studied GETS in the context of a
custom reachability analysis tool. Here our focus is on spin, and on whether or not this
algorithm will behave favorably (i.e. achieve major compression in reasonable time) in the
context of spin, and with \partial order" reduced explorations. Our results in this experiment
have been largely positive, but we should stress they are only the �rst step towards a GETS-
based spin.

Next, the data structure is de�ned, and its properties illustrated. We then de�ne a few
of its operators. We go on to explore how they can be used in spin, and show the results we
have obtained in a few experiments. Some observations are made and discussed.

1the original french name of the data structure was Arbres Partag�es, or \shared trees", and dubbed in
english \sharing trees" by original authors. In practice, we have found the name to be misleading, and prefer
the GETS terminology; GETS however are indeed Arbres Partag�es.

3

2 De�nitions

Let us begin with a formal de�nition of the data structure. This de�nition is important to
highlight some critical properties.

De�nition A GETS is a rooted acyclic graph (N;V; val; succ) such that N = N0 [: : : [
Nk; k � 0, is a �nite set called the set of nodes (the nodes are organized in layers, Ni is the
set of nodes of layer i), V is a set of values, val : N �! V +f>;?g is the valuation function,
succ : N �! P(N) 2 gives the successors (i.e. sons, on the next layer) of a node; and the
following properties hold:

1. 8i s:t: 0 � i < k;8n 2 Ni; succ(n) � Ni+1: each node has all its successors on the next
layer;

2. 8i s:t: 0 � i � k;8n1&n2 2 Ni; n1 6= n2; val(n1) = val(n2)) succ(n1) 6= succ(n2): two
nodes holding equal values in the same layer do not have the same set of sons;

3. 8n 2 N;8s1&s2 2 succ(n); s1 6= s2) val(s1) 6= val(s2): a node does not have two sons
with equal values;

4. jN0j = 1 and 8n 2 N; val(n) = > , n 2 N0: the �rst layer N0 contains only one
element (called the root), the only one with value >;

5. val(n) = ?) succ(n) = ; and
succ(n) = ;) (val(n) = ? _ val(n) = >).

Let us now consider that each component of a tuple is mapped to a speci�c layer, accord-
ing to some (total) order. The second condition guarantees that there will be su�x merging
of tuples that share equal ends, while the third condition guarantees the pre�x merging of
tuples that share equal beginnings. This condition furthermore imposes that the creation of
the longest sharable pre�xes, or in other words, every pre�x is unique.

Any path starting from the root node r 2 N0 and terminated by ? represents one tuple
of values encoded in the GETS.

The following GETS (�g. 1) represents the set f(a; b; d; e), (a; b; d; f), (a; b), (a; c),
(a; c; d; f)g. Note that tuples of di�erent lengths can be represented in the same GETS.
Notice also the repetition of a node with value d in the 3rd layer, which is legitimate since
the set of su�xes is di�erent for the two nodes.

A fundamental property of GETSs is the canonicity of the coding: there is a unique
representation for any set of tuples. This, however, does not imply minimality; it may often
be possible to �nd graph codings of tuples which would have a smaller number of nodes
and/or vertices.

The canonicity property derives from the uniqueness of the pre�xes (like tries), and the
sharing of identical su�xes on the same level. Imagine 3 two GETSs holding the same set
of tuples. Let us also imagine that, following a path simultaneously through both GETSs,

2
P(N) is the powerset of N.

3A more formal proof is given in [Zampunieris et al.95].

4

a

e

d

c

d

b

f

Figure 1: Example GETS

we encounter a node which has a di�erent number of sons in each GETS. This would mean
that, in one of the two GETSs, there would have to be another path leading to (one of) the
son(s) missing in the other, since both GETSs hold the same information. This however
would break the rule of the sharing of the longuest pre�x. The same reasoning applies to
su�xes.

GETSs have other interesting properties:

explicitness each contribution to the tuple is present in the graph;

constant time projection all projections of the set of tuples on any component of the
tuple can be done in constant time;

heterogeneity the domains of the components of the tuples can be di�erent and the tuples
can have varying lengths;

insertion order independence since the representation is canonical, it does not depend
on the order in which the tuples are inserted in the GETS;

isomorphism again, because of the canonicity property, two GETSs containing the same
set of tuples are isomorphic.

3 Behavior of GETSs

The following example will further illustrate the behavior of GETSs and the problem we
have to consider for their implementation. Consider the following GETS holding the set
f(a; b; b; a), (a; b; b; b), (b; b; b; a) and (b; b; b; b)g. This structure is represented on �gure 2. We
add to it the tuple (a; b; b; c). The structure of the graph changes signi�cantly, as it is split
to isolate the two longest pre�xes (a; b; b) and (b; b; b) as shown on �gure 3.

We see that, to preserve canonicity, it was necessary to perform a splitting operation on
the tree: a shared pre�x was split to create the longest shared unique pre�x (a; b; b) for the
three su�xes (a), (b) or (c).

5

a

a

b

b

b

b

Figure 2: Simple GETS

a

a

a a

a

b

b

b

b

b

b b b

bb

b

b

cc

Figure 3: First addition

Observe also that this structure is not minimal in the number of node and links. Figure 4
shows an alternate graph holding the same information, with the same number of nodes, but
less links. It is however not a GETS since the pre�x (a; b; b) is duplicated.

Let us now add the tuple (b; b; b; c) to the previous GETS. Observe on �gure 5 that the
result is more compact. The addition of the tuple has allowed su�x merging: the creation of
a common sharable su�x, its merging and, in this case, the recursive merging of the paths
leading to it in a common one.

6

a

b b

bb

b

bac

Figure 4: Smaller graph

b

b

c

a

a

b

b

b

b

a

a

b b

bb

b

b

c

b

c

Figure 5: Second addition

7

4 Operations on GETSs

We present here a few operators to manipulate GETSs. In this presentation, we will use
a mix of terminology derived from graph and language theory. A GETS is an undirected
graph structure organized along layers, where vertices connect only nodes on adjacent layers.
We have already indicated that any path between the top layer of a GETS and terminated
by the special ? value corresponds to a tuple of information stored in. Any path is composed
of an pre�x, a body and a su�x, any of which might be empty. When we'll talk about the
insertion of a tuple of values into a GETS, we'll have to take into account existing pre�xes
and su�xes which can be shared to some extend. A pre�x here is the part of a path starting
at > leading to a node with more than one parent. A su�x is the part of the path ending
at ? which has nodes with single sons only.

4.1 Operators

GETSs can support all the operators of set manipulation [Zampunieris et al.95]. For the
purpose of this presentation, however, there are only three basic operators needed, namely
membership, insertion and deletion. An important issue, however, is whether an insertion or
removal operation should preserve the GETS, or some of the constraints could be relaxed
for a while, until some normalization operation is performed. In fact, one original imple-
mentation of GETSs was designed exactly that way. However, our analysis of several tests
cases have convinced us that, on any number of repetitions, using an operation preserving
the GETS resulted in general better performance than a non-GETS preserving operation,
followed by a normalization [Gagnon et al.95].

4.2 Normalized insertion

1. identify in the GETS the longest pre�x, the body and the longest su�x matching the
tuple of values to insert; the pre�x and the body are contiguous, but the su�x may be
detached; if either the pre�x or the body end with ?, then the tuple already exists in
the GETS and we can terminate, otherwise:

2. if the pre�x isn't empty, then duplicate and split the body on its whole length; the
body is adequate otherwise;

3. expand the path from the end of the body (or the pre�x if the body is empty, or from
> if both are empty) to the start of the longest su�x or to ? if this latter is empty,
and

4. merge su�xes upward.

In the previous example (�g. 3), the pre�x was (a; b), the body (b; b), and the su�x was
empty. The body was duplicated to create a (longest) pre�x (a; b; b) in the GETS. A new
su�x was then added. In the second example (�g. 5), the pre�x was (b; b; b), the body was
empty, and the su�x was (c). A link was added from the end of the pre�x to (c), then the
nodes were merged upwards.

8

Adding new su�xes creates an opportunity for sharing similar su�xes. We must identify,
from the point where the path merges with the su�x if another node with the same set of
sons already exists. If it is the case, the nodes can be merged, and we renew the operation
upward.

It is quite clear that this algorithm terminates. Once we have completed the upward
merge, nothing is left to do since the longest unique pre�x constraint was established from
the start, and is not invalidated by a merge. We see also that the procedure is linear in the
number of layers.

4.3 Normalized deletion

Normalized deletion operates similarly to normalized insertion.

1. identify a complete (i.e. to ?) path matching the tuple of values we want to remove,
terminate if it is not found; otherwise:

2. decompose the path into longest pre�x, body and su�x;

3. if the pre�x isn't empty, split the path from the beginning of the pre�x to, and including
the node where the su�x starts;

4. remove the su�x from that node and

5. merge the su�xes upward.

The intuition behind this algorithm is quite simple. We must isolate the tree holding
the path to be removed from the e�ects of sharing, then we remove its distinctive part,
preserving the longest pre�x distinguishing the tuple to be removed, and normalize the new
resulting su�x.

4.4 Other Operators

Membership is done trivially by looking for the tuple in the GETS. We have also imple-
mented an iterator on GETS. An iterator call successively returns all the tuple instances
held in a GETS. Our iterators are robust in the presence of modi�cations to the GETS,
but do not guarantee that all the tuple stored will be found in that case.

For our purposes, we do not require operators to merge GETSs together or to extract
subsets of them.

9

5 Application to spin and Analysis

To analyze the performance of GETS in a \real" context, we have modi�ed analyzers gen-
erated by spin (i.e. \pan" programs) so that they would use this data structure rather than
the hash table storage. Since this was only a feasibility study, we haven't made any attempt
at guaranteing that the substitution was compatible with all the algorithms supported by
spin in full state search mode. We have focused only on safety properties, with or without
partial orders reduction.

We have analysed three examples: two tests from the spin distribution, namely snoopy
and pftp, and gsm, a development of our group, inspired by one of the GSM protocols.

We �rst explore the issues we were confronted with, namely state coding and stack pres-
ence coding. We then cover the examples, report the performance measured, make some
observations and discuss them.

5.1 State Coding

The most signi�cant di�culty of using GETS is to de�ne an encoding for state informa-
tion. The most straightforward is, of course, to allocate a layer to every variable in the
PROMELA model, as well as the bookkeeping variables of spin (e.g. the \ process coun-
ters" p).

In our experiments, we have done some clustering of the variables. The simple rule has
been to cluster variables in each of the global-queue-process groups to keep the size of the
domain of the cluster to less then 216 (a short word).

The clusters have been assigned to layers following simple rules: put all the clusters of a
group item together and try to put in close proximity the group items interacting together.

Our implementation of GETS uses a static allocation of pointers for each element of the
domain of clusters. Having a sparse cluster thus leads to a waste of space. When variables
with a sparse domain are combined together in a cluster, the wastefullness is compounded.
Independently of the (PROMELA) model itself, transitions identi�ers typically have a
sparse domain in spin. This phenomenon is thus real. However, its importance is relative:
the waste in pointer space may or may not not be very signi�cant, depending on the size of
the domain, and the degree of sparseness.

How clustering is done is another possible contributor to space or time overhead. The
most straightforward form of clustering is to compose the declared (i.e. in the model) do-
mains of the variables. PROMELA is however notably de�cient in this respect, since
declared domains can be much larger than the reachable domains. We have tried instead
to use the number of bits required to store the reachable domains. Support for such an
iden�cation exists in spin (VAR RANGES). It could also largely be done by a static analy-
sis of the PROMELA model. In practice, on our examples, this identi�cation has been
straightforward 4. The domains are rounded up to the next power of two and the clusters
are assembled through shifting and \or"-ing.

More complex solutions exist which would involve a look-up to compress sparse domains,
and clustering by multiplication rather than by shifting, for a most compact clustering. We

4Encoding and implementation were done in the course of a couple of hours in all cases.

10

haven't used these techniques in our experiments.

5.2 Stack Presence Coding

Supporting partial orders has been challenging since the algorithm used in spin requires the
recognition of whether or not a state already encountered is on the stack. In full state search
mode in spin, this is done by tagging the state information in the store. The value is the
tag is set when the state is met the �rst time, and reset when it is popped from the stack.

We have found two alternatives to support such a mechanism with GETS. The �rst,
obvious one is to have another GETS to hold a copy of the states currently on the stack.
For any state, we would have threeGETS operations: addition to the store and to the stack,
deletion from the stack. We have however tried another method, borrowing from the idea
of tagging the state. We store the state twice in the state store, with di�erent tag values
appended: one, with a tag value of 0, when the state is �rst encountered and thus is on the
stack, and another, with a tag value of 1, when it is popped from the stack. Except in the
reachvariation, where the state space is always going to be explored at some speci�c depth,
and we need to memorize the depth information with the state, this is su�cient to quickly
decide whether or not a state is on the stack.

The cost of this algorithm is two insertions, rather than one, and a doubling of the
amount of states stored in the GETS. However, since we know that both instances of the
state will end up being in the store, this doubling practically involves a lot of sharing and
shouldn't lead to signi�cant space overhead.

5.3 snoopy

We have tested snoopy only in noreduce 'd mode. The amount of memory required other-
wise is too small to give signi�cant results. The encoding uses 21 layers, the largest domain
used, for the cache processes is 2560.

states memory (M) time (s)
FS, spin 91920 9.934 13.45
FS, GETSs 91920 0.55(GETS) + 0.375(spin) 45.52

The memory contribution for GETS is broken down in two parts: GETS per se and
spin which is mostly the memory required for the stack. We have a compression factor
speci�cally for the state space of about 18 in this case.

5.4 pftp

This example being larger, we have been able to test it both in reduce'd and in noreduce'd
form. We have 19 layers, and the largest domain is 4096.

states memory (M) time (s)
FS, spin 439895 54.49 86.71
FS, GETSs 439895 2.25(GETS) + 0.334(spin) 179.59
RS, spin 95241 13.33 10.41
RS, GETSs 95241 1.864(GETS) + 0.334(spin) 42

11

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 50 100 150 200 250 300 350 400 450

Memory (Mb)

States (in 1000)

pftp, full 3

3

3

3
3
3

3

3
3

3

3
3
3
3 3 3 3

3 3 3 3 3
3
3

pftp, reduced +

+

+

++
+

+

+
++

++

Figure 6: pftp, spin & GETS, memory behaviour

We achieve here a compression rate of 24 for the noreduce 'd mode, and about 7 for the
reduce 'd mode. Note also that, in reduce 'd mode, the di�erence in time performance is
a factor of about 4, but we store twice at many states in the store!

The static part of the GETS is only about 135k.
The following �gures represent the evolution in the memory and time requirements of

the computation as a function of the number of states for the GETS-based examples. The
time results are also represented for spin: in this case, the use of memory is always linear
as a function of the states 5.

The memory consumption behavior represented in �gure 6 is quite interesting. The
use of memory isn't linear, but presents a bit of a quirk. This means that the use of
memory improves at higher capacities in this case. Both the reduce 'd and non-reduce 'd
explorations present the same phenomenon, although it is more distinct in the non-reduce 'd
case. Predictably, reducing the number of states has removed some opportunities for sharing.

The time behaviors are interestingly enough almost linear in both cases (�g. 7) and also
for the spin versions (�g. 7). The linearity is somewhat surprising, since we could have
expected the quirk to show up in the time measurements. spin 's behavior is also linear in
terms of the number of states, which means that, in general, the rate of discovery of new
states tends to remain constant. This rule also applies to the GETS version.

5.5 gsm

This last example is not a \classic" of the spin distribution. It is a small, simpli�ed model of
a call set-up for a mobile in a GSM system. The state vector is 144 bytes wide, the maximum

5variations can be due to the memory used by the stack, but this one tends to be allocated early in the
execution.

12

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450

Time (s)

States (in 1000)

pftp, full 3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

pftp, reduced +

++++
+

++
+++

Figure 7: pftp, spin & GETS, time behaviour

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450

Time (s)

States (in 1000)

pftp, reduced 3

3333
3333
3333
3333
333

pftp, full +

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

Figure 8: pftp, pure spin, time behaviour

13

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200

Memory (Mb)

States (in 1000)

gsm, total 3

3

3
3
3
3
3
3

3

3

3
3
3 33333 3 33 33

gsm, e�ective +

+

+
+
+
+
+
+

+

+
+
+
+

+

+
+
+
+

+
+
+

++

Figure 9: gsm, GETS, memory behavior

depth reached in a reduce 'd search is 196999. The GETS has 20 layers, and the largest
domain size is 16384.

states memory (M) time (s)
RS, spin 1004630 140.267 251.780
RS, GETS 1004630 4.022(GETS) + 6.4(spin) 634.92

We see that the compression factor achieved here was over 33, with an execution time less
than the double, and twice the states, since we are in reduce 'd mode. The runtime behavior
is even more interesting. The memory vs. states graph (�g. 9) shows that halfway through
the exploration, the program had allocated all the storage it required, and the rest of the
time was spent recycling storage. The wide variations in the use of memory do not however
show in the time vs. states graph (�g. 10), which is, once again mostly linear.

For a comparison, a comparable 6 bitstate search gave the following results 7, after 192s:

./pan -m200000 -w25

(Spin Version 2.8.6 -- 17 May 1996)

+ Partial Order Reduction

Bit statespace search for:

never-claim - (none specified)

assertion violations +

cycle checks - (disabled by -DSAFETY)

6at least in terms of the amount of storage used.
7The depth reached in this case is indeed greater than a full search's; this is not unreasonable, since the

greatest depth may be reached through a di�erent path.

14

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200

Time (s)

States (in 1000)

gsm 3

3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3 33

Figure 10: gsm, GETS, time behaviour

invalid endstates +

State-vector 144 byte, depth reached 197683, errors: 0

1.00088e+06 states, stored

6.15347e+06 states, matched

7.15435e+06 transitions (= stored+matched)

5.56773e+07 atomic steps

hash factor: 33.5248 (expected coverage: >= 98% on avg.)

(max size 2^25 states)

1.49727e+08 equivalent memory usage in bytes (stored*vector + stack)

1.55943e+07 actual memory usage

...

We see that the bitstate mode search does indeed give us a fairly good approximation in a
good time. It is actually signi�cantly better than the 98% expected coverage (20000 vs.
4000 states) would lead us to know. Of course, in most practical cases, we wouldn't have
the full search results.

5.6 Observations

Those few experiments have con�rmed some observations we had already made in a di�erent
context, and given new insights on the use of GETS.

15

Compression It is possible to achieve compression of the state space with GETS, for
typical spin applications. This is a non-trivial statement: GETS are a compression tech-
nique which could very well result in a stored space larger than the number of bits required
to record the plain data, according to Hamming.

Evolution of gains Gains increase as state space get larger. In earlier work, not directly
related to spin we had observed compression factor of over 100.

Time There is a performance penalty in the use of GETS. The run time cost appears also
to decrease as state spaces become larger.

Partial Orders Compression is achieved even in the case of a reduce'd search. The
highest reported compression factor achieved here were actually realized in such a search.
This would tend to show that the type of regularity exploited in GETS is distinct from what
\partial order" techniques exploit. This is worthwhile to note because a di�erent behavior
had been observed with ROBDDs [Visser95].

Sample Set All our examples are \vintage PROMELA", namely processes communicat-
ing through asynchronous communication channels. The success we experience with such
models bodes well for the possibilities of signi�cant compression rates with GETSs in gen-
eral.

5.7 Discussion

Where do GETS �t in the spin veri�cation philosophy? Their runtime cost, plus the added
cost of generating an encoding do not make them a convenient replacement for either full
state or bit state search modes. They would have to be viewed in a complementary way.
The other search modes are the most appropriate to start debugging a speci�cation, when
the probability of �nding an error is high and the duration of the runs low. GETS-based
search should come at the end, to try to achieve a \last", complete run, if it cannot be done
in full state, and if we do have enough memory to do it, based on estimates of achievable
compression and of the number of states (from bit state runs).

The early runs could also give critical information to de�ne the clustering and the domain
coding of GETS layers. The automation of such a procedure is possible.

Finally, as we said earlier, we make no claim at this stage that all the algorithms avail-
able in spin in full state search can be supported as are. spin tends to store \marking"
information with the state, which can be later modi�ed in situ. Such a technique cannot be
applied here, but rather would require the manipulation of a another GETS when exploring
loops. spin's current philosophy is to mark data on the stack to avoid multiple copies of
the state space, which was the case originally. We do not have such concern, since multiple
copies introduce an opportunity for sharing. GETSs thus give another perspective on the
classical veri�cation problems, one for which spin's current solutions may not be entirely
adequate.

16

5.8 spin's Compression

To make this comparison more complete, we should apply clustering to \vintage" spin to
see which bene�ts we could derive from it. However, spin already has an experimental
compression mode for the state vector, called \collapse"8. The principle is quite elegant, but
straightforward. For each proctype, each state con�guration is memorized and identi�ed.
What is stored in the global state vector is no longer the whole information, but the sequence
of identi�ers for each proctype con�guration. Identi�ers have to be a (compile-time) �xed
multiple of 8 bits, from one to four.

The e�ect of collapsing on the gsm example are quite interesting. The amount of memory
required was reduced from 140Mbytes (in 271s) to 38Mbytes (in 281s). The e�ective size of
state vector was 14 bytes, down from 144! While the GETS-based results remain better, the
compression rate achieved has dropped to about 7.8 . The collapsing also has the advantage
of being computed \on-the-
y", in true spin philosophy.

One could wonder if it might be worthwhile to combine GETS and collapse compression.
However, a quick computation shows that only half the storage space is used by the full state
vector, while the other half is used to store the unique proctype con�gurations. We would
have to code both to achieve any improvement over our previous results.

8the existence of this mode was pointed out to the author by G. Holzmann.

17

6 Conclusion

We have presented a data structure optimised for a compact encoding of state spaces, and
shown how well it performs in the context of spin. Our results show that there are major
memory gains when a GETS is used to store the state space, at the cost of a signi�cant
increase in execution time. The gains are not predictable a priori. The execution times tend
to be linear in our observations.

The use of GETS is also not entirely compatible with spin, in its current instance. They
require tighter control over the real domains of variables, and the possibility of clustering
variables together. On the algorithmic side, we haven't implemented all the algorithms
supported by spin in full state search mode. While some could probably be easily adapted, it
seems more appropriate to reengineer them to take advantage of the possibilities of GETSs,
including the fact that replication is cheap in terms of storage space.

Acknowledgments Our own original GETSs implementation was done by F. Gagnon, with
improvements contributed over time by the author and J. Collette. Thanks to Prof. M. Fer-
guson for pointing out the Hamming argument about compression. Credit is due to D. Zam-
puni�eris who gave us the initial inspiration to apply his Arbres Partag�es to reachability
analysis.

18

References

[Gagnon et al.95] Gagnon (F.), Gr�egoire (J-Ch.) et Zampuni�eris (D.). { Sharing trees
for \on-the-
y" Veri�cation. In : Proceedings of FORTE'95.

[Holzmann et al.94] Holzmann (G.) et Peled (D.). { An improvement in formal veri�ca-
tion. In : Proceedings of FORTE'94.

[Holzmann91] Holzmann (G.). { Design and validation of computer protocols. {
Prentice Hall Software Series, 1991.

[Visser95] Visser (W.). { Memory e�cient state storage in spin.
In : Proceedings of the 1995 SPIN Workshop. { URL:
http://netlib.att.com/netlib/spin/ws95/spin95 abstracts.html.

[Zampunieris et al.95] Zampuni�eris (D.) et Le Charlier (B.). { E�cient handling of large
sets of tuples with sharing trees. In : Proceedings of the Data Com-
pression Conference (DCC'95).

19

