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Abstract. The quantitative analysis of concurrent systems requires ex-
pressive and user-friendly property languages combining temporal, data-
handling, and quantitative aspects. In this paper, we aim at facilitating
the quantitative analysis of systems modeled as PTSs (Probabilistic Tran-
sition Systems) labeled by actions containing data values and probabili-
ties. We propose a new regular probabilistic operator that computes the
probability measure of a path specified by a generalized regular formula
involving arbitrary computations on data values. This operator, which
subsumes the Until operators of PCTL and their action-based counter-
parts, can provide useful quantitative information about paths having
certain (e.g., peak) cost values. We integrated the regular probabilistic
operator into MCL (Model Checking Language) and we devised an as-
sociated on-the-fly model checking method, based on a combined local
resolution of linear and Boolean equation systems. We implemented the
method in the EVALUATOR model checker of the CADP toolbox and
experimented it on realistic PTSs modeling concurrent systems.

1 Introduction

Concurrent systems, which are becoming ubiquitous nowadays, are complex soft-
ware artifacts involving qualitative aspects (e.g., concurrent behaviour, synchro-
nization, data communication) as well as quantitative aspects (e.g., costs, prob-
abilities, timing information). The rigorous design of such systems based on
formal methods and model checking techniques requires versatile temporal log-
ics able to specify properties about qualitative and quantitative aspects in a
uniform, user-friendly way. During the past two decades, a wealth of temporal
logics dealing with one or several of these aspects were defined and equipped with
analysis tools [8, 3]. One of the first logics capturing behavioral, discrete-time,
and probabilistic information is PCTL (Probabilistic CTL) [17].

In this paper, we propose a framework for specifying and checking tempo-
ral logic properties combining actions, data, probabilities, and discrete-time on
PTSs (Probabilistic Transition Systems) [22], which are suitable models for rep-
resenting value-passing concurrent systems with interleaving semantics. In PTSs,
transitions between states are labeled by actions that carry, in addition to prob-
abilistic information, also data values sent between concurrent processes during
handshake communication. Our contributions are twofold.
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Regarding the specification of properties, we propose a new regular proba-
bilistic operator, which computes the probability measure of a path (specified
as a regular formula on actions) in a PTS. Several probabilistic logics have been
proposed in the action-based setting. PML (Probabilistic Modal Logic) [22] is a
variant of HML with modalities indexed by probabilities, and was introduced
as a modal characterization of probabilistic bisimulation. GPL (Generalized
Probabilistic Logic) [9] is a probabilistic variant of the alternation-free modal
µ-calculus, able to reason about execution trees, and equipped with a model
checking algorithm relying on the resolution of non-linear equation systems.
Compared to these logics, our probabilistic operator is a natural (action-based)
extension of the Until operator of PCTL: besides paths of the form a∗.b (the
action-based counterpart of Until operators), we consider more general paths,
specified by regular formulas similar to those of PDL (Propositional Dynamic
Logic) [14]. To handle the data values present on PTS actions, we rely on the
regular formulas with counters of MCL (Model Checking Language) [28], which
is an extension of first-order µ-calculus with programming language constructs.
Moreover, we enhance the MCL regular formulas with a generalized iteration
operator parameterized by data values, thus making possible the specification of
arbitrarily complex paths in a PTS.

Regarding the evaluation of regular probabilistic formulas on PTSs, we devise
an on-the-fly model checking method based on translating the problem into the
simultaneous local resolution of a linear equation system (LES) and a Boolean
equation system (BES). For probabilistic operators containing dataless MCL
regular formulas, the sizes of the LES and BES are linear (resp. exponential)
w.r.t. the size of the regular formula, depending whether it is deterministic or
not. In the action-based setting, the determinism of formulas is essential for a
sound translation of the verification problem to a LES. For general data han-
dling MCL regular formulas, the termination of the model checking procedure is
guaranteed for a large class of formulas (e.g., counting, bounded iteration, aggre-
gation of values, computation of costs over paths, etc.) and the sizes of the equa-
tion systems depend on the data parameters occurring in formulas. It is worth
noticing that on-the-fly verification algorithms for PCTL were proposed only
recently [23], all previous implementations, e.g., in PRISM [20] having focused
on global algorithms. Our method provides on-the-fly verification for PCTL and
its action-based variant PACTL, and also for PPDL (Probabilistic PDL) [19],
which are subsumed by the regular probabilistic operator of MCL. We imple-
mented the method in the EVALUATOR [28] on-the-fly model checker of the
CADP toolbox [16] and experimented it on various examples of value-passing
concurrent systems.

The paper is organized as follows. Section 2 defines the dataless regular prob-
abilistic operator and Section 3 presents the on-the-fly model checking method.
Section 4 is devoted to the data handling extensions. Section 5 briefly describes
the implementation of the method within CADP and illustrates it for the quanti-
tative analysis of mutual exclusion protocols. Finally, Section 6 gives concluding
remarks and directions of future work.
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2 Dataless Regular Probabilistic Operator

As interpretation models, we consider PTSs (Probabilistic Transition Sys-
tems) [22], in which transitions between states carry both action and proba-
bilistic information. A PTS M =

〈
S,A, T, L, si

〉
comprises a set of states S, a

set of actions A, a transition relation T ⊆ S × A × S, a probability labeling
L : T → (0, 1], and an initial state si ∈ S. A transition (s1, a, s2) ∈ T (also

written s1
a→ s2) indicates that the system can move from state s1 to state s2

by performing action a with probability L(s1, a, s2). For each state s ∈ S, the
probability sum

∑
s

a→s′ L(s, a, s′) = 1.

A path σ = s(= s0)
a0→ s1

a1→ · · · an−1→ sn · · · going out of a state s is an
infinite sequence of transitions in M . The i-th state and i-th action of a path
σ are noted σ[i] and σa[i], respectively. An interval σ[i, j] with 0 ≤ i ≤ j is the

subsequence σ[i]
ai→ · · · aj−1→ σ[j], which is empty if i = j. The suffix starting

at the i-th state of a path σ is noted σi. The set of paths going out from s is
noted pathsM (s). The probability measure of a set of paths sharing a common

prefix is defined as µM ({σ ∈ pathsM (s) | σ[0, n] = s0
a0→ · · · an−1→ sn}) =

L(s0, a0, s1)× · · · × L(sn−1, an−1, sn).
The regular probabilistic operator that we propose computes the probability

measure of paths characterized by regular formulas. For the dataless version
of the operator, we use the regular formulas of PDL (Propositional Dynamic
Logic) [14], defined over the action formulas of ACTL (Action-based CTL) [29].
Figure 1 shows the syntax and semantics of the operators.

Action formulas α are built over the set of actions by using standard Boolean
connectors. Derived action operators can be defined as usual: true = ¬false,
α1∧α2 = ¬(¬α1∨¬α2), etc. Regular formulas β are built from action formulas by
using the testing (?), concatenation (.), choice (|), and transitive reflexive closure
(∗) operators. Derived regular operators can be defined as usual: nil = false∗ is
the empty sequence operator, β+ = β.β∗ is the transitive closure operator, etc.
State formulas ϕ are built from Boolean connectors, the possibility modality (〈 〉)
and the probabilistic operators ({ }≥p and { }>p) containing regular formulas.
Derived state operators can be defined as usual: true = ¬false, ϕ1∧ϕ2 = ¬(¬ϕ1∨
¬ϕ2), and [β]ϕ = ¬ 〈β〉 ¬ϕ is the necessity modality.

Action formulas are interpreted on the set of actions A in the usual way.
A path satisfies a regular formula β if it has a prefix belonging to the regular
language defined by β. The testing operator specifies state formulas that must
hold in the intermediate states of a path. Boolean connectors on states are
defined as usual. A state s satisfies the possibility modality 〈β〉ϕ1 (resp. the
necessity modality [β]ϕ1) iff some (resp. all) of the paths in pathsM (s) have
a prefix satisfying β and leading to a state satisfying ϕ1. A state s satisfies
the probabilistic operator {β}≥p iff the probability measure of the paths in
pathsM (s) with a prefix satisfying β is greater or equal to p (and similarly
for the strict version of the operator). A PTS M =

〈
S,A, T, L, si

〉
satisfies a

formula ϕ, denoted by M |= ϕ, iff si |=M ϕ (the subscript M will be omitted
when it is clear from the context).
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Action formulas:
α ::= a
| false
| ¬α1

| α1 ∨ α2

b |=A a iff b = a
b |=A false iff false
b |=A ¬α1 iff b 6|=M α1

b |=A α1 ∨ α2 iff b |=M α1 or b |=M α2

Regular formulas:
β ::= α
| ϕ?
| β1.β2
| β1|β2
| β∗1

σ[i, j] |=M α iff i+ 1 = j and σa[i] |=A α
σ[i, j] |=M ϕ? iff σ[i] |=M ϕ
σ[i, j] |=M β1.β2 iff ∃k ∈ [i, j].σ[i, k] |=M β1 and σ[k, j] |=M β2
σ[i, j] |=M β1|β2 iff σ[i, j] |=M β1 or σ[i, j] |=M β2
σ[i, j] |=M β∗1 iff ∃k ≥ 0.σ[i, j] |=M βk1

State formulas:
ϕ ::= false
| ¬ϕ1

| ϕ1 ∨ ϕ2

| 〈β〉ϕ1

| {β}≥p
| {β}>p

s |=M false iff false
s |=M ¬ϕ1 iff s 6|=M ϕ1

s |=M ϕ1 ∨ ϕ2 iff s |=M ϕ1 or s |=M ϕ2

s |=M 〈β〉ϕ1 iff ∃σ ∈ pathsM (s).∃i ≥ 0.
σ[0, i] |=M β and σ[i] |=M ϕ

s |=M {β}≥p iff µM ({σ ∈ pathsM (s) | σ |=M β}) ≥ p
s |=M {β}>p iff µM ({σ ∈ pathsM (s) | σ |=M β}) > p

Fig. 1: Modal and probabilistic operators over regular paths

The operator {β}≥p generalizes naturally the Until operators of classical
probabilistic branching-time logics. The Until operator of PCTL [17], and prob-
abilistic versions of the two Until operators of ACTL are expressed as follows:

[ϕ1 U ϕ2]≥p = {(ϕ1?.true)∗.ϕ2?}≥p[
ϕ1α1

U ϕ2

]
≥p = {(ϕ1?.α1)∗.ϕ2?}≥p[

ϕ1α1
Uα2 ϕ2

]
≥p = {(ϕ1?.α1)∗.ϕ2?.α2.ϕ2?}≥p

In addition, regular formulas are strictly more expressive than Until operators,
enabling to specify more complex paths in the PTS. For example, the formula:

Ψ1 = {send .(true∗.retry)∗.recv}≥0.9

unexpressible in (P)ACTL due to the nested ∗-operators, specifies that the prob-
ability of receiving a message after zero or more retransmissions is at least 90%.

3 Model Checking Method

We propose below a method for checking a regular probabilistic formula on a
PTS on the fly, by reformulating the problem as the simultaneous resolution
of a linear equation system (LES) and a Boolean equation system (BES). The
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method consists of five steps, each one translating the problem into an increas-
ingly concrete intermediate formalism. The first four steps operate syntactically
on formulas and their intermediate representations, whereas the fifth step makes
use of semantic information contained in the PTS. A detailed formalization of
the first four steps, in a state-based setting, can be found in [25]. We illustrate the
method by checking the formula Ψ1 on the PTS of a very simple communication
protocol adapted from [3, Chap. 10], shown in Figure 2.
1. Translation to PDL with recursion. To evaluate an operator {β}≥p on a PTS
M =

〈
S,A, T, L, si

〉
on the fly, one needs to determine the set of paths going

out of si and satisfying β, to compute the probability measure of this set, and to
compare it with p. For this purpose, it is more appropriate to use an equational
representation of β, namely PDLR (PDL with recursion), which already served
for model checking PDL formulas in the non-probabilistic setting [27]. A PDLR
specification is a system of fixed point equations having propositional variables
X ∈ X in their left hand side and PDL formulas ϕ in their right hand side:

{Xi = ϕi}1≤i≤n

where ϕi are modal state formulas (see Fig. 1) and X1 is the variable of in-
terest corresponding to the desired property. Since formulas ϕi may be open
(i.e., contain occurrences of variables Xj), their interpretation is defined w.r.t.
a propositional context δ : X → 2S , which assigns state sets to all variables
occurring in ϕi. The interpretation of a PDLR specification is the value of X1

in the least fixed point µΦ of the functional Φ : (2S)n → (2S)n defined by:

Φ(U1, ..., Un) = 〈[[ϕi]] δ[U1/X1, ..., Un/Xn]〉1≤i≤n

where [[ϕi]] δ = {s ∈ S | s |=δ ϕi}, and the interpretation of ϕi (see Fig. 1) is
extended with the rule s |=δ X = s ∈ δ(X). The notation δ[U1/X1, ..., Un/Xn]
stands for the context δ in which Xi were replaced by Ui.

In the sequel, we consider PDLR specifications in derivative normal form
(RNF), which are the modal logic counterparts of Brzozowski’s (generalized)
derivatives of regular expressions [5]:

{Xi =
∨ni
j=1(ϕij ∧ 〈βij〉Xij) ∨ ϕi}1≤i≤n

where ϕij and ϕi are closed state formulas. Note that, in the right hand side
of equation i, the same variable Xij ∈ {X1, ..., Xn} may occur several times
in the first disjunct. Intuitively, a variable Xi denotes the set of states from
which there exists a path with a prefix satisfying some of the regular formulas
βij and whose last state satisfies Xij . This is formalized using path predicates
Pi : pathsM → bool, defined by the following system of equations:

{Pi(σ) =
∨ni
j=1∃lij ≥ 0.(σ[0] |= ϕij ∧ σ[0, lij ] |= βij ∧ Pij(σlij )) ∨ σ[0] |= ϕi}1≤i≤n

More precisely, (µΦ)i = {s ∈ S | ∃σ ∈ pathsM (s).Pi(σ)}.
The PDLR specification in RNF associated to a formula β is defined below:

{X1 = 〈β〉X2 X2 = true}
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in which the variable of interest X1 denotes the PDL formula 〈β〉 true, expressing
the existence of a path with a prefix satisfying β and leading to some final state
denoted by X2. The corresponding path predicates are:

{P1(σ) = ∃l ≥ 0.(σ[0, l] |= β ∧ P2(σl)) P2(σ) = true}

According to the interpretation of regular formulas (see Fig. 1), the path predi-
cate P1(σ) holds iff σ |= β, and also (µΦ)1 = {s ∈ S | ∃σ ∈ pathsM (s).σ |= β}.
2. Translation to HML with recursion. To bring the PDLR specification closer
to an equation system suitable for verification, one must simplify it by remov-
ing the regular operators occurring in modalities. This yields a HMLR (HML
with recursion) specification [21], which contains only HML modalities on ac-
tion formulas. Regular operators can be eliminated by applying the following
substitutions, which are valid equalities in PDL [14]:

〈ϕ?〉X = ϕ ∧ 〈nil〉X
〈β1.β2〉X = 〈β1〉X ′ where X ′ = 〈β2〉X
〈β1|β2〉X = 〈β1〉X ∨ 〈β2〉X
〈β∗〉X = 〈nil〉X ′ where X ′ = 〈nil〉X ∨ 〈β〉X ′

The rules for the ‘.’ and ‘*’ operators create new equations, necessary for main-
taining the PDLR specification in RNF (the insertion of 〈nil〉X modalities, which
are equivalent to X, serves the same purpose). The rule for the ‘|’ operator cre-
ates two occurrences of the same variable X, reflecting that a same state can
be reached by two different paths. These rules preserve the path predicates Pi
associated to the PDLR specification, and in particular P1(σ), which specifies
that a path σ satisfies the initial formula β.

The size of the resulting HMLR specification (number of variables and op-
erators) is linear w.r.t. the size of β (number of operators and action formulas).
Besides pure HML modalities, the HMLR specification may also contain occur-
rences of 〈nil〉X modalities, which will be eliminated in the next step.

3. Transformation to guarded form. The right hand side of an equation i of the
HMLR specification may contain modalities of the form 〈αij〉Yij and 〈nil〉Yij
(equivalent to Yij), which correspond to guarded and unguarded occurrences of
variables Yij , respectively. To facilitate the formulation of the verification prob-
lem in terms of equation systems, it is useful to remove unguarded occurrences of
variables. The general procedure for transforming arbitrary µ-calculus formulas
to guarded form [18] can be specialized for HMLR specifications by applying the
following actions for each equation i:

1. Remove the unguarded occurrences of Xi in the right hand side of the equa-
tion by replacing them with false, which amounts to apply the µ-calculus
equality µX.(X ∨ ϕ) = µX.ϕ.

2. Substitute all unguarded occurrences of Xi in other equations with the right
hand side formula of equation i, and rearrange the right hand sides to main-
tain the equations in RNF.
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This produces a guarded HMLR specification:

{Xi =
∨ni
j=1(ϕij ∧ 〈αij〉Xij) ∨ ϕi}1≤i≤n

which is the exact modal logic counterpart of Brzozowski’s derivatives of regular
expressions [5] defined on the alphabet of action formulas. The transformation
to guarded form keeps the same number of equations in the HMLR specification,
but may increase the number of operators in the right hand sides.
4. Determinization. A HMLR specification may contain, in the right hand side of
an equation i, several modalities 〈αij〉Xij whose action formulas are not disjoint,
i.e., they can match the same action. This denotes a form of nondeterminism,
meaning that the same transition s

a→ s′ can start a path σ satisfying the path
predicate Pi(σ) in several ways, corresponding to alternative suffixes of the initial
regular formula β. To ensure a correct translation of the verification problem into
a LES, it is necessary to determinize the HMLR specification. This can be done
by applying the classical subset construction, yielding a deterministic HMLR
specification defined on sets of propositional variables:

{XI =
∨
∅⊂J⊆alt(I)((

∧
k∈Jϕk) ∧ 〈

∧
k∈Jαk ∧

∧
l∈alt(I)\J¬αl〉XJ) ∨

∨
i∈Iϕi}I⊆[1,n]

where alt(I) = {ij | i ∈ I ∧ j ∈ [1, ni]}. Basically, each alternative ϕij ∧〈αij〉Xij

in an equation i ∈ I is combined with each alternative in the other equations
having their index in I, taking care that the action formulas in the resulting
modalities are mutually exclusive. As shown in [25] for a similar construction in
the state-based setting, the determinization preserves the path predicate asso-
ciated to the variables of interest X1 and X{1} in the HMLR before and after
determinization, i.e., P1(σ) = P{1}(σ) for any path σ ∈ pathsM .

In the worst case, determinization may yield an exponential increase in the
size of the HMLR specification. However, this happens on pathological examples
of regular formulas, which rarely occur in practice; most of the time, the nonde-
terminism contained in a formula β is caused by a lack of precision regarding the
iteration operators, which can be easily corrected by constraining the action for-
mulas corresponding to iteration “exits”. For example, the regular formula con-
tained in Ψ1 can be made deterministic by specifying precisely the retries and the
fact that they must occur before receptions: send .((¬retry∧¬recv)∗.retry)∗.recv .
The guarded HMLR specification generated from this latter formula coincides
with the determinized one shown in Figure 2. In practice, the number of modali-
ties contained in the determinized HMLR specification can be drastically reduced
by determining contradictory combinations and absorptions of action formulas
(α1 ∧ α2 = false and α1 ∧ ¬α2 = α1 when α1, α2 are disjoint).
5. Translation to linear and Boolean equation systems. Consider a determinized
HMLR specification in RNF corresponding to a regular formula β:

{Xi =
∨ni
j=1(ϕij ∧ 〈αij〉Xij) ∨ ϕi}1≤i≤n (1)

where αij ∧ αik = false for each i ∈ [1, n] and j, k ∈ [1, ni]. The associated path
predicates are defined as follows:

{Pi(σ) =
∨ni
j=1(σ[0] |= ϕij ∧ σa[0] |= αij ∧ Pij(σ1)) ∨ σ[0] |= ϕi}1≤i≤n (2)
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send 1 err 0.1

s0 s1 s2

retry 1recv 0.9

(PTS){
X1 = 〈send .(true∗.retry)∗.recv〉X2

X2 = true

}



X1 = 〈send〉X3

X2 = true
X3 = 〈recv〉X2 ∨ 〈retry〉X3 ∨ 〈true〉X6

X4 = 〈recv〉X2

X5 = 〈retry〉X3

X6 = 〈retry〉X3 ∨ 〈true〉X6


(PDLR) (guarded HMLR)

X1 = 〈send〉X3

X2 = true
X3 = 〈nil〉X4 ∨ 〈nil〉X6

X4 = 〈recv〉X2

X5 = 〈retry〉X3

X6 = 〈nil〉X5 ∨ 〈true〉X6




X1 = 〈send〉X3

X2 = true
X3 = 〈recv〉X2 ∨ 〈retry〉X3 ∨

〈¬recv ∧ ¬retry〉X6

X6 = 〈retry〉X3 ∨ 〈¬retry〉X6


(HMLR) (deterministic HMLR)

X1,0 = 1.0 ·X3,1

X2,0 = 1.0
X3,1 = 0.9 ·X2,0 + 0.1 ·X6,2

X6,2 = 1.0 ·X3,1


(LES)

Fig. 2: Model checking formula ψ1 on a PTS

They are related to the HMLR specification by (µΦ)i = {s ∈ S | ∃σ ∈
pathsM (s).Pi(σ)}, and to the initial regular formula β by P1(σ) = σ |= β.

The last step of the model checking method reformulates the problem of
verifying the determinized HMLR specification on a PTS in terms of solving a
LES (∗) and a BES (∗∗) defined as follows:

Pi(s) = if s 6|= Xi then 0

else if s |= ϕi then 1
else

∑ni
j=1 if s 6|= ϕij then 0

else
∑
s

a→s′,a|=αij
L(s, a, s′)× Pij(s′)

(∗)

Xs
i =

∨ni
j=1(s |= ϕij ∧

∨
s

a→s′(a |= αij ∧Xs′
ij )) ∨ s |= ϕi (∗∗)

The LES (∗) is obtained by a translation similar to the classical one defined
originally for PCTL [17]. A numerical variable Pi(s) denotes the probability
measure of the paths going out of state s and satisfying the path predicate
Pi. Determinization guarantees that the sum of coefficients in the right-hand
side of each equation is at most 1. The BES (∗∗) is produced by the classical
translation employed for model checking modal µ-calculus formulas on LTSs [10,
2]. A Boolean variable Xs

i is true iff state s satisfies the propositional variable Xi

of the HMLR specification. The on-the-fly model checking consists in solving the



Model Checking for Action-Based Probabilistic Operators 9

variable P1(si), which denotes the probability measure of the set of paths going
out of the initial state si of the PTS and satisfying the initial regular formula
β. This is carried out using local LES and BES resolution algorithms, as will be
explained in Section 5. The conditions s |= Xi occurring in the LES (∗) and the
conditions s |= ϕij , s |= ϕi occurring in both equation systems are checked by
applying the on-the-fly model checking method for solving the variable Xs

i of
the BES (∗∗) and evaluating the closed state formulas ϕij , ϕi on state s.

4 Extension with Data Handling

The regular formulas that we used so far belong to the dataless fragment [27] of
MCL, which considers actions simply as names of communication channels. In
practice, the analysis of value-passing concurrent systems, whose actions typi-
cally consist of channel names and data values, requires the ability to extract
and manipulate these elements. For this purpose, MCL [28] provides action pred-
icates extracting and/or matching data values, regular formulas involving data
variables, and parameterized fixed point operators. The regular probabilistic op-
erator {β}≥p can be naturally extended with the data handling regular formulas
of MCL, which enable to characterize complex paths in a PTS modeling a value-
passing concurrent system.

To improve versatility, we extend the regular formulas of MCL with a general
iteration operator “loop”, which subsumes the classical regular operators with
counters, and can also specify paths having a certain cost calculated from the
data values carried by its actions. After briefly recalling the main data handling
operators of MCL, we define below the “loop” operator, illustrate its expressive-
ness, and show how the on-the-fly model checking procedure previously described
is generalized to deal with the data handling probabilistic operator.

4.1 Overview of data handling MCL operators

In the PTSs modeling value-passing systems, actions are of the form
“C v1 . . . vn”, where C is a channel name and v1, ..., vn are the data values
exchanged during the rendezvous on C. To handle the data contained in actions,
MCL provides action predicates of the form “{C ... !e ?x:T where b}”, where “...”
is a wildcard matching zero or more data values of an action, e is an expression
whose value matches the corresponding data value, x is a data variable of type T
that is initialized with the corresponding data value extracted from the action,
and b is an optional boolean expression (guard) typically expressing a condition
on x. An action predicate may contain several clauses “!e” and “?x:T”, all vari-
ables defined by “?x:T” clauses being visible in the guard b and also outside
the action predicate. An action satisfies an action predicate if its structure is
compatible with the clauses of the predicate, and the guard evaluates to true in
the context of the data variables extracted from the action.

Regular formulas in MCL are built over action predicates using the classical
operators shown in Section 2, as well as constructs inspired from sequential
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programming languages: conditional (“if-then-else”), counting, iteration (“for”
and “loop”, described in the next subsection), and definition of variables (“let”).
The testing operator of PDL is expressed in MCL as ϕ? = if ¬ϕ then false end if.

Finally, the state formulas of MCL are built using modalities containing regu-
lar formulas, parameterized fixed point operators, quantifiers over finite domains,
and programming language constructs (“if” and “let”).

4.2 Generalized iteration on regular formulas

The general iteration mechanism that we propose on regular formulas consists
of three operators having the following syntax:

β ::= loop (x:T :=e0) : (x′:T ′) in β end loop | continue (e) | exit (e′)

The “loop” operator denotes a path made by concatenation of (zero or more)
path fragments satisfying β, each one corresponding to an iteration of the loop
with the current value of variable x. Variable x, which is visible inside β, is
initialized with the value of expression e0 at the first loop iteration and can be
updated to the value of e by using the operator “continue (e)”, which starts a
new iteration of the loop. The loop is terminated by means of the “exit (e′)”
operator, which sets the return variable x′, visible outside the “loop” formula,
to the value of e′.

The iteration and return variables (x and x′) are both optional; if they are
absent, the “in” keyword is also omitted. For simplicity, we used only one vari-
able x and x′, but several variables of each kind are allowed. The arguments of
the operators “continue” and “exit” invoked in the loop body β must be compat-
ible with the declarations of iteration and return variables, respectively. Every
occurrence of “continue” and “exit” refers to the immediately enclosing “loop”,
which enforces a specification style similar to structured programming.

For brevity, we define the semantics of the “loop” operator by translating it
to plain MCL in the context of an enclosing diamond modality. The translation
is parameterized by a profile Z/x:T/x′:T ′, where x and x′ are the iteration and
return data variables of the immediately enclosing “loop”, and Z is a propo-
sitional variable associated to it. We show below the translation of the three
general iteration operators, the other regular operators being left unchanged.〈 loop (x:T :=e0) : (x′:T ′) in

β
end loop

〉
ϕ


Z/x:T/x′:T ′

def
= µW (x:T :=e0).

〈
(β)W/x:T/x′:T ′

〉
ϕ

(〈continue (e)〉ϕ)Z/x:T/x′:T ′
def
= Z(e)

(〈exit (e′)〉ϕ)Z/x:T/x′:T ′
def
= let x′:T ′ := e′ in ϕ end let

Basically, a possibility modality enclosing a “loop” operator is translated into
a minimal fixed point operator parameterized by the iteration variable(s). The
occurrences of “continue” in the body of the loop are translated into invoca-
tions of the propositional variable with the corresponding arguments, and the
occurrences of “exit” are translated into “let” state formulas defining the return
variables and setting them to the corresponding return values.
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Syntax Meaning Encoding using “loop”

β∗ ≥ 0 times loop exit | β . continue end loop

β+ ≥ 1 times loop β . (exit | continue) end loop

β{e1 ... e2} between loop (c1:nat := e1, c2:nat := e2 − e1) in
e1 and e2 if c1 > 0 then β . continue (c1 − 1, c2)
times elsif c2 > 0 then exit | β . continue (c1, c2 − 1)

else exit end if
end loop

for n:nat from e1 to e2 stepwise loop (n:nat := e1) in
step e3 do if n < e2 then β . continue (n+ e3)
β else exit end if

end for end loop

All iteration operators on MCL regular formulas can be expressed in terms of
the “loop” operator, as shown in the table above. For simplicity, we omitted the
definitions of β{e} (iteration e times) and β{... e} (iteration at most e times),
which are equivalent to β{e ... e} and β{0 ... e}, respectively. To illustrate
the semantics of general iteration, consider the formula 〈β{e}〉 true stating the
existence of a path made of e path fragments satisfying β. By applying the
encoding of bounded iteration in terms of “loop” and the translation rules of
general iteration, we obtain:

〈β{e}〉 true =

〈 loop (c:nat := e) in
if c > 0 then

β . continue (c− 1)
else exit end if

end loop

〉
true =

µZ(c:nat := e).
if c > 0 then 〈β〉Z(c− 1)
else

true
end if

The bounded iteration operators β{e}, β{... e}, and β{e1 ... e2} are natural
means for counting actions (ticks), and hence describing discrete-time properties.
The full Until operator of PCTL, and its action-based counterparts derived from
ACTL, can be expressed as follows (t ≥ 0 is the number of ticks until ϕ2):

[ϕ1 U ϕ2]≤t≥p = {(ϕ1?.true){0 ... t}.ϕ2?}≥p[
ϕ1α1

U ϕ2

]≤t
≥p = {(ϕ1?.α1){0 ... t}.ϕ2?}≥p[

ϕ1α1
Uα2 ϕ2

]≤t
≥p = {(ϕ1?.α1){0 ... t}.ϕ2?.α2.ϕ2?}≥p

Besides counting, the general iteration operators are able to characterize complex
paths in a PTS, by collecting the data values (costs) present on actions and using
them in arbitrary computations (see the examples in Section 5).

4.3 Model checking method with data handling

The on-the-fly model checking method shown in Section 3 can be generalized
to deal with the data handling constructs of MCL by adding data parameters
to the various equation systems used as intermediate forms. We illustrate the
complete method by checking the formula Ψ2 on the PTS shown on Figure 2:

Ψ2 = {send .((¬retry ∧ ¬recv)∗.retry){... n}.recv}≥0.9
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send 1 err 0.1

s0 s1 s2

retry 1recv 0.9

(a) PTS


X1 = 〈send .((¬retry ∧ ¬recv)∗.

retry){... n}.recv〉X2

X2 = true





X1 = 〈send〉X3

X2 = true
X3 = 〈nil〉X5(n)
X4 = 〈recv〉X2

X5(c) = if c > 0 then
〈nil〉X4 ∨ 〈nil〉X6(c− 1)

else 〈nil〉X4 end if
X6(c) = 〈nil〉X8(c)
X7(c) = 〈retry〉X5(c)
X8(c) = 〈nil〉X7(c) ∨ 〈¬retry ∧ ¬recv〉X8(c)


(b) PDLR (e) HMLR

X1 = 〈send〉X3

X2 = true
X3 = 〈((¬retry ∧ ¬recv)∗.

retry){... n}〉X4

X4 = 〈recv〉X2





X1 = 〈send〉X5(n)
X2 = true

X5(c) = if c > 0 then
〈recv〉X2 ∨ 〈retry〉X5(c− 1) ∨
〈¬retry ∧ ¬recv〉X8(c− 1)

else 〈recv〉X2 end if
X8(c) = 〈retry〉X5(c) ∨ 〈¬retry ∧ ¬recv〉X8(c)


(c) PDLR (f) guarded HMLR

X1 = 〈send〉X3

X2 = true
X3 = 〈loop (c:nat:=n) in

if c > 0 then
exit |
(¬retry ∧ ¬recv)∗.
retry .continue (c− 1)

else exit end if
end loop〉X4

X4 = 〈recv〉X2





X1,0 = 1.0 ·X5,1(n)
X2,0 = 1.0

X5,1(c) = if c > 0 then
0.9 ·X2,0 + 0.1 ·X8,2(c− 1)

else 0.9 ·X2,0 end if
X8,2(c) = 1.0 ·X5,1(c)


(d) PDLR (g) parameterized LES

X1,0 = 1.0 ·X5,1(2)
X5,1(2) = 0.9 + 0.1 ·X5,1(1)
X5,1(1) = 0.9 + 0.1 ·X5,1(0)
X5,1(0) = 0.9


(h) LES instantiated for n = 2

Fig. 3: Model checking formula ψ2 on a PTS
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Formula Ψ2, which is a determinized data-based variant of Ψ1, specifies that the
probability of receiving a message after at most n retransmissions (where n is a
parameter to be instantiated) is at least 90%.

The various translation phases are illustrated on Figure 3. The translation
rules for standard regular operators given in Section 3 are applied for eliminat-
ing the “.” operators in the PDLR specification (Fig. 3(c)). Then, the iteration
at most n times is translated into a “loop” operator (Fig. 3(d)), and the corre-
sponding modality is further refined using the semantics of “loop” defined in Sec-
tion 4.2, yielding a HMLR specification parameterized by a counter (Fig. 3(e)).
After bringing this specification to guarded form (Fig. 3(f)), a parameterized
LES is produced by applying the translation scheme given in Section 3 extended
to handle data parameters. For instance, variable X5,1(v) in the LES denotes the
probability measure of the paths starting from state s1 and satisfying the path
predicate denoted by X5 with the parameter c set to value v. Finally, a plain
LES is generated (Fig. 3(g)) by instantiating n = 2 in the parameterized LES.
Note that the guarded HMLR specification was already deterministic (since the
regular formula in Ψ2 was determinized), and hence the LES has a unique so-
lution. By solving this LES (e.g., using substitution), we obtain X1,0 = 0.999,
which is the probability measure of the paths starting from the initial state s0
of the PTS and satisfying the regular formula specified in Ψ2. In other words,
n = 2 retransmissions ensure that a message is received with 99.9% probability.
Termination. The presence of data parameters (with infinite domains) implies
that the whole model checking procedure relies on the termination of the instan-
tiation phase, which must create a finite LES solvable using numerical methods.
This is in general undecidable, similarly to the termination of term rewriting [12].
Such situations happen for “pathological” formulas, which carry on divergent
computations on data unrelated to the data values contained in the PTS actions.
For example, the modality 〈loop (k:nat:=0) in a . continue (k + 1) end loop〉 true
will not converge on the PTS consisting of a single loop s

a→ s, since it will
entail the construction of an infinite LES {Xs(0) = Xs(1), Xs(1) = Xs(2), ...}.
However, the model checking procedure terminates for most practical cases of
data handling regular formulas (counting, accumulating or aggregating values,
computing costs over paths).

5 Tool Support and Use

In this section, we show how the on-the-fly model checking method for the regular
probabilistic operator works in practice. After briefly presenting the implemen-
tation of the method within the CADP toolbox [16], we illustrate its application
for the quantitative analysis of shared-memory mutual exclusion protocols.

5.1 Implementation

We extended MCL with the general iteration operator “loop” on regular formu-
las and the regular probabilistic operator {β}./ p, where ./ ∈ {<,≤, >,≥,=}.
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Temporal and probabilistic operators can be freely combined, e.g., [β1] {β2}≥p
specifies that, from all states reached after a path satisfying β1, the probability
measure of an outgoing path satisfying β2 is at least p.

We also enhanced the EVALUATOR [28] on-the-fly model checker with the
translation of {β}./ p formulas into BESs (for checking the existence of path
suffixes) and LESs (for computing probability measures) as described in Sec-
tions 3 and 4. The on-the-fly resolution of BESs is carried out by the algorithms
of the CAESAR SOLVE library [24], which already serves as verification back-
end for (non-probabilistic) MCL formulas. For the on-the-fly resolution of LESs,
we designed a local algorithm operating on the associated Signal Flow Graphs
(SFG) [7], in a way similar to the BES resolution algorithms, which operate on
the associated Boolean graphs [2]. The LES resolution algorithm consists of a
forward exploration of the SFG to build dependencies between variables, followed
by a backward variable elimination (a.k.a. substitution) and a final propagation
to update the right-hand sides of equations with the solutions of variables. The
number of floating-point operations is reduced by a careful bookkeeping of de-
pendencies between variables. This substitution method performs well on LESs
resulting from {β}./ p operators, which exhibit a high degree of sparsity (typi-
cally, for a PTS with a branching factor of 10 and having 106 states, there are
about 10−5 = 0.001% non-null elements in the LES matrix).

5.2 Case study: analysis of mutual exclusion protocols

We illustrate the application of the regular probabilistic operator by carrying
out a quantitative analysis of several shared-memory mutual exclusion proto-
cols, using their formal descriptions in LNT [6] given in [26]. We focus here on a
subset of the 27 protocols studied in [26], namely the CLH, MCS, Burns&Lynch
(BL), TAS and TTAS protocols, by considering configurations of up to N = 4
concurrent processes competing to access the critical section. Each process exe-
cutes cyclically a sequence of four sections: non critical, entry, critical, and exit.
The entry and exit sections represent the algorithm specific to each protocol
for demanding and releasing the access to the critical section, respectively. In
the PTS models of the protocols, all transitions going out from each state are
assumed to have equal probabilities. We formulate four probabilistic properties
using MCL and evaluate them on the fly on each LNT protocol description. To
compute probabilities, we also use the fact that, besides the Boolean verdict, the
model checker also yields the value of the probability measure for the MCL for-
mulas consisting of a single {β}./ p operator. For each property requiring several
invocations of the model checker with different values for the data parameters
in the MCL formula, we automate the analysis using SVL scripts [15].

Critical section. First of all, for each i ∈ [0, N − 1], we compute the probability
that process Pi is the first one to enter its critical section. For this purpose, we
use the following MCL formula:

{(¬{CS !”ENTER”...})∗.{CS !”ENTER” !i}}≥0
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which computes the probability that, from the initial state, process Pi accesses
its critical section before any (other) process. Symmetric protocols guarantee
that this probability is equal to 1/N for all processes, while asymmetric protocols
(such as BL) may favor certain processes w.r.t. the others. This is indeed reflected
by the results of model checking the above formula for N = 3: for the BL
protocol, which gives higher priority to processes of lower index, the probabilities
computed are 72.59% (for P0), 21.66% (for P1), and 5.73% (for P2), whereas they
are equal to 33.33% for the other protocols, which are symmetric.
Memory latency. The analysis of critical section reachability can be refined by
taking into account the cost of memory accesses (e.g., read, write, test-and-set
operations on shared variables) that a process Pi must perform before enter-
ing its critical section. The protocol modeling provided in [26] also considers
non-uniform memory accesses, assuming that concurrent processes execute on a
cache-coherent multiprocessor architecture. The cost c (or latency) of a memory
access depends on the placement of the memory in the hierarchy (local caches,
shared RAM, remote disks) and is captured in the PTS by means of additional
actions “MU !c” [26].

The MCL formula below computes the probability that a process Pi performs
memory accesses of a total cost max before entering its critical section:

{ (¬{NCS !i})∗.{NCS !i}.
loop (total cost :nat:=0) in

(¬({MU ... !i} ∨ {CS !”ENTER” !i}))∗.
if total cost < max then
{MU ... ?c:nat !i} . continue (total cost + c)

else
exit

end if
end loop .
{CS !”ENTER” !i} }≥0

The regular formula above expresses that, after executing its non critical section
for the first time, process Pi begins its entry section and, after a number of
memory accesses, enters its critical section. The “loop” subformula denotes the
entry section of Pi and ensures that this section terminates as soon as the cost
of all memory accesses performed by Pi (accumulated in the iteration parameter
total cost) exceeds a given value max. The other processes can execute freely
during the entry section of Pi, in particular (depending on the protocol) they
can overtake Pi by accessing their critical sections before it. Figure 4(a) shows
the probability of entering the critical section for various values of max.

Due to the presence of waiting loops in the entry section, the maximal num-
ber of memory accesses of Pi before entering its critical section is unbounded
(and hence, also the cost max). However, the probability that a process waits
indefinitely before entering its critical section tends to zero in long-term runs of
starvation-free protocols. This explains why an asymptotic probability of 1.0 is
observed in Figure 4(a): a process has better chances to reach its critical section
when the memory cost of its entry section increases.
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We can further refine the MCL formula above to infer the steady-state be-
havior by imposing a number of protocol executions before the entry section of
Pi (i.e., start accumulating the memory access cost after the r-th “NCS !i” ac-
tion). For the TAS protocol, we observed a convergence of the probability when
r = 5 for values of max between 5 (steady-state probability of 42.66%) and
30 (steady-state probability of 96.41%). Other properties involving the memory
latency can be expressed similarly, e.g., compute the probability to enter the
critical section after executing an entry section that maximizes the ratio of local
versus remote memory accesses.

(a)

(c)

(b)

Fig. 4: Probabilities computed using on-the-fly model checking. (a) Accessing the
critical section after memory accesses of cost MAX. (b) Overtaking of Pi by Pj
(Pj Pi) in the BL protocol. (c) Standalone execution of Pi.

Overtaking. Even if a mutual exclusion protocol is starvation-free, a process Pi
that begins its entry section (and hence, starts requesting the access to the
critical section) may be overtaken one or several times by another process Pj
that accesses its own critical section before Pi does so. A qualitative measure of a
starvation-free protocol is given by its overtaking degree, which is the maximum
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number of overtakes per couple of processes. This number should be as small as
possible, and may vary among process couples for asymmetric protocols.

A qualitative study of the overtaking degree was carried out in [26] using
MCL regular formulas with counters. Here we use the same property in the
probabilistic setting, which enables to compute the probability that process Pj
overtakes Pi a given number of times. Figure 4(b) shows the results for the
BL protocol, which outline its intrinsic asymmetry: lower index processes, with
higher priority, also have better chances to overtake the other processes.
Standalone execution. As opposed to overtaking, it is also interesting to examine
the dual situation, in which a process Pi executes its cycle in standalone, i.e.,
without any interference with the other processes. This situation was explicitly
formulated in [13] as the independent progress requirement, which should be
satisfied by any mutual exclusion protocol. We can analyze this situation by
computing the probability measure of a complete execution of process Pi without
any other action being performed meanwhile by other processes. This execution
can be specified using the MCL formula below:

{ ((¬{CS ... ?j:nat where j 6= i})∗.{NCS !i}.
(¬{... ?j:nat where j 6= i})∗.{CS !”ENTER” !i}.
(¬{... ?j:nat where j 6= i})∗.{CS !”LEAVE” !i}.
) {max} }≥0

where max denotes the number of consecutive executions of Pi. Figure 4(c) shows
that the probabilities of standalone execution of Pi in a pool of four processes
decrease with max, which reflects the starvation-free nature of the protocols.
Performance of analysis. All model checking experiments have been carried out
in a single core of an Intel(R) Xeon(R) E5-2630v3 @2.4GHz with 128 GBytes
of RAM and Linux Debian 7.9 within a cluster of Grid’5000 [4]. The sizes of
the PTSs, including the additional transitions representing the memory access
costs, range from 3 252 states and 6 444 transitions (for the TAS protocol) to
18 317 849 states and 31 849 616 transitions (for the CLH protocol).

The computing resources needed for on-the-fly verification are variable de-
pending on the complexity of the MCL regular formulas, and in particular the
number and domains of their data parameters. For example, the analysis of
the first access to the critical section takes between 3.25-5.5 seconds and 36.5-
77 MBytes for all protocol configurations considered. For other properties, such
as those concerning the memory latency or the overtaking, some peaks arrive
up to 2-3 hours and 12-14 GBytes because of the manipulation of data (cost
of memory accesses) and iterations (number of overtakes). The analysis of the
standalone execution of Pi may take up to 285 seconds and 1 230 MBytes for the
BL protocol because of the complex cycles present in the PTS, while the same
analysis takes less than 100 seconds (or even 10 seconds) for the other protocols.

6 Conclusion and Future Work

We proposed a regular probabilistic operator for computing the probability mea-
sure of complex paths in a PTS whose actions contain data values. Paths are
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specified using the action-based, data handling regular formulas of MCL [28] that
we extended with a general iteration operator “loop” enabling the specification
of arbitrarily complex paths. These new operators subsume those of P(A)CTL,
and make possible the study of paths whose associated cost (calculated from the
data values present on their actions) has a given value. We defined an on-the-fly
model checking method based on reformulating the problem as the resolution
of a linear equation system (LES) and a Boolean equation system (BES), and
implemented it in the EVALUATOR model checker of the CADP toolbox.

Regarding future work, we plan to investigate the adequacy of MCL frag-
ments w.r.t. probabilistic branching bisimulation, which would enable the
(property-preserving) compositional construction and minimization of PTSs de-
scribed as Interactive Probabilistic Chains [11]. We also plan to bring distributed
capabilities to the on-the-fly analysis back-end (which is currently sequential),
by connecting the model checker with the MUMPS distributed solver [1] for
sparse LESs. Finally, we will seek to extend the proposed approach to handle in-
finite sequences, described in MCL by means of data handling fairness operators
similar to generalized Büchi automata.
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