
Experience with Model Checking Linearizability

Martin Vechev, Eran Yahav, and Greta Yorsh

IBM T.J. Watson Research Center

Non-blocking concurrent algorithms offer significant performance advantages, but
are very difficult to construct and verify. In this paper, we describe our experience in us-
ing SPIN to check linearizability of non-blocking concurrent data-structure algorithms
that manipulate dynamically allocated memory. In particular, this is the first work that
describes a method for checking linearizability with non-fixed linearization points.

1 Introduction

Concurrent data-structure algorithms are becoming increasingly popular as they pro-
vide an unequaled mechanism for achieving high performance on multi-core hardware.
Typically, to achieve high performance, these algorithms use fine-grained synchroniza-
tion techniques. This leads to complex interaction between processes that concurrently
execute operations on the data structure. Such interaction presents serious challenges
both for the construction of an algorithm and for its verification.

Linearizability [10] is a widely accepted correctness criterion for implementations
of concurrent data-structures. It guarantees that a concurrent data structure appears to
the programmer as a sequential data structure. Intuitively, linearizability provides the
illusion that any operation performed on a concurrent data structure takes effect in-
stantaneously at some point between its invocation and its response. Such points are
commonly referred to as linearization points.

Automatic verification and checking of linearizability (e.g., [6, 7, 1, 19, 17, 2]) and
of related correctness conditions (e.g., [4, 3]) is an active area of research. Most of
these methods rely on the user to specify linearization points, which typically requires
an insight on how the algorithm operates.

Our study of checking linearizability is motivated by our work on systematic con-
struction of concurrent algorithms, and in particular our work on the PARAGLIDER tool.
The goal of the PARAGLIDER tool, described in [18], is to assist the programmer in
systematic derivation of linearizable fine-grained concurrent data-structure algorithms.
PARAGLIDER explores a (huge) space of algorithms derived from a schema that the
programmer provides, and checks each of these algorithms for linearizability.

Since PARAGLIDER automatically explores a space of thousands of algorithms, the
user cannot specify the linearization points for each of the explored algorithms. Fur-
ther, some of the explored algorithms might not have fixed linearization points (see
Section 4). This motivated us to study approaches for checking the algorithms also in
the case when linearization points are not specified, as well as when linearization points
are not fixed. We also consider checking of the algorithms using alternative correctness
criteria such as sequential consistency.

While [18] has focused on the derivation process, and on the algorithms, this pa-
per focuses on our experience with checking linearizability of the algorithms, and the
lessons we have learned from this experience.

1.1 Highly-Concurrent Data-Structure Algorithms

Using PARAGLIDER, we checked a variety of highly-concurrent data-structure al-
gorithms based on linked lists, ranging (with increasing complexity) from lock-
free concurrent stacks [16], through concurrent queues and concurrent work-stealing
queues [15], to concurrent sets [18].

In this paper, we will focus on concurrent set algorithms, which are the most com-
plex algorithms that we have considered so far. Intuitively, a set implementation requires
searching through the underlying structure (for example, correctly inserting an item into
a sorted linked list), while queues and stacks only operate on the endpoints of the un-
derlying structure. For example, in a stack implemented as linked list, push and pop
operations involve only the head of the list; in a queue implemented as a linked list,
enqueue and dequeue involve only the head and the tail of the list.

We believe that our experience with concurrent sets will be useful to anyone trying
to check properties of even more complex concurrent algorithms, such as concurrent
trees or concurrent hash tables [13] which actually use concurrent sets in their imple-
mentation.

1.2 Linearizability and Other Correctness Criteria

The linearizability of a concurrent object (data-structure) is checked with respect to a
specification of the desired behavior of the object in a sequential setting. This sequential
specification defines a set of permitted sequential executions. Informally, a concurrent
object is linearizable if each concurrent execution of operations on the object is equiv-
alent to some permitted sequential execution, in which the real-time order between
non-overlapping operations is preserved. The equivalence is based on comparing the
arguments of operation invocations, and the results of operations (responses).

Other correctness criteria in the literature, such as sequential consistency [12] also
require that a concurrent history be equivalent to some sequential history in which op-
erations appear to have executed atomically (i.e., without interleaving). However, these
criteria differ on the requirements on ordering of operations. Sequential consistency
requires that operations in the sequential history appear in an order that is consistent
with the order seen at individual threads. Compared to these correctness criteria, lin-
earizability is more intuitive, as it preserves the real-time ordering of non-overlapping
operations.

In this paper, we focus on checking linearizability, as it is the appropriate condi-
tion for the domain of concurrent objects [10]. Our tool can also check operation-level
serializability, sequential consistency and commit-atomicity [7]. In addition, we also
checked data-structure invariants (e.g., list is acyclic and sorted) and other safety prop-
erties (e.g., absence of null dereferences and memory leaks).

Checking linearizability is challenging because it requires correlating any concur-
rent execution with a corresponding permitted sequential execution (linearization). Note

that even though there could be many possible linearizations of a concurrent history,
finding a single linearization is enough to declare the history correct.

There are two alternative ways to check linearizability: (i) automatic linearization—
explore all permutations of a concurrent history to find a permitted linearization; (ii) lin-
earization points—the linearization point of each operation is a program statement at
which the operation appears to take place. When the linearization points of a concurrent
object are known, they induce an order between overlapping operations of a concurrent
history. This obviates the need to enumerate all possible permutation for finding a lin-
earization.

For simpler algorithms, the linearization point for an operation is usually a statement
in the code of the operation. For more complex fine-grained algorithms such as the one
considered in this paper, the linearization point may reside in method(s) other than
the executing operation and may depend on the actual concurrent history. We classify
linearization points as either fixed or non-fixed respectively. This work is the first to
describe in detail the challenges and choices that arise when checking linearizability of
algorithms with non-fixed linearization points. As explained in Section 4, this requires
program instrumentation.

1.3 Overview of PARAGLIDER

Fig. 1 shows a high-level structure of PARAGLIDER. Given a sequential specification
of the algorithm and a schema, the generator explores all concurrent algorithms repre-
sented by the schema. For each algorithm, it invokes the SPIN model checker to check
linearizability. The generator performs domain-specific exploration that leverages the
relationship between algorithms in the space defined by the schema to reduce the num-
ber of algorithms that have to be checked by the model checker.

The Promela model, described in detail in Section 5, consists of the algorithm and a
client that non-deterministically invokes operations of the algorithm. The model records
the entire history of the concurrent execution as part of the state. SPIN explores the
state space of the algorithm, and for every new state that it reaches, it invokes the lin-
earization checker, describes in Section 4, which checks if the history is linearizable.
Essentially, it enumerates all possible linearizations of the history and checks each one
against the sequential specification. This method is entirely automatic, requires no user
annotations, which is the key for the success of the systematic derivation process. The
main shortcoming of this method is that it records the entire history as part of the state,
which limits the state space that can be explored in practice. Therefore, we limit the
length of the history by placing a bound on the number of operations the client can
invoke.

PARAGLIDER supports both automatic checking, described above, and checking
with linearization points. The latter requires algorithm-specific annotations to be pro-
vided by the user, but allows the model checker to explore a larger state space of the
algorithm than the first approach.

The generator produces a small set of candidate algorithms, which pass the auto-
matic linearizability checker. This process is shown in the top half of Fig. 1. The user
can perform a more through checking of individual candidate algorithms by providing

generator SPIN lin checkerschema

sequential
specification

program

linearizable? yes/nolinearizable? yes/no

concurrent
execution

candidate
programs

instrument
with history

promela
model

SPIN

promela
model

linearization points
linearizable?

yes/no
instrument
on-the-fly
checking

Fig. 1. Overview of PARAGLIDER tool.

PARAGLIDER with linearization points. The linearization is built and checked on-the-
fly in SPIN using linearization points. Thus, we no longer need to record the history as
part of the state. This process is shown in the bottom half of Fig. 1.

In both methods, the most general client is a program that non-deterministically
selects the operations and key values that are used with the concurrent object. However,
with the linearization point method, we can now check algorithms with each thread
executing this most general client, but without a bound on the number of operations
(the automatic method requires that bound).

1.4 Main Contributions

Here we briefly summarize the experience and insights that will be elaborated on in the
rest of the paper.

Garbage collection garbage collection (GC) support in a verification tool is crucial for
verifying an increasing number of important concurrent algorithms. Because SPIN
does not provide GC support, we implemented GC in the actual model. We discuss
the challenges and choices that we made in this process.

Non-fixed linearization points For many advanced concurrent algorithms the lin-
earization point of an operation is not in the code of that operation. Checking such
algorithms introduces another set of challenges not present in simpler algorithms
such as queues or stacks, typically considered in the literature. We discuss the un-
derlying issues as well as our solution to checking algorithms with non-fixed lin-
earization points.

Models We discuss why we used specific finite models and how this choice is related
to the optimistic algorithms we are checking. We discuss different methods for
checking linearizability and how each method inherently affects the size of the
state space the model checker can explore.

Data structure invariants vs. Linearizability We discuss our experience in finding
algorithms that are linearizable but do not satisfy structural invariants. This mo-
tivates further work on simplifying formal proofs of linearizable algorithms.

Sequential consistency vs. Linearizability We discuss our experience trying to find
concurrent data structure algorithms which are sequentially consistent but not lin-
earizable.

2 Running Example

1 boolean add (i n t key) {
2 E n t r y ∗pred ,∗ c u r r ,∗ e n t r y ;
3 r e s t a r t :
4 LOCATE(pred , c u r r , key)
5 k = (c u r r−>key==key)
6 i f (k) re turn f a l s e
7 e n t r y = new E n t r y (key)
8 e n t r y−>n e x t = c u r r
9 a to mi c {

10 mp = ! pred−>marked
11 v a l = (pred−>n e x t == c u r r)
12 &&mp
13 i f (! v a l) goto r e s t a r t
14 pred−>n e x t = e n t r y
15 }
16 re turn true
17 }

18 boolean remove (i n t key) {
19 E n t r y ∗pred ,∗ c u r r ,∗ r
20 r e s t a r t :
21 LOCATE(pred , c u r r , key)
22 k= (c u r r−>key==key)
23 i f (k) re turn f a l s e
24 c u r r−>marked = t rue
25 r = c u r r−>n e x t
26 a t om ic {
27 mp = ! pred−>marked
28 v a l = (pred−>n e x t == c u r r)
29 &&mp
30 i f (! v a l) goto r e s t a r t
31 pred−>n e x t = r
32 }
33 re turn t rue
34 }

35 boolean c o n t a i n s (i n t key) {
36 E n t r y ∗pred ,∗ c u r r ;
37 LOCATE(pred , c u r r , key)
38 k =(c u r r−>key==key)
39 i f (! k) re turn f a l s e
40 i f (k) re turn true
41 }
42

43 LOCATE(pred , c u r r , key) {
44 pred =Head
45 c u r r =Head−>n e x t
46 whi le (c u r r−>key < key) {
47 pred = c u r r
48 c u r r = c u r r−>n e x t
49 }
50 }

Fig. 2. A set algorithm using a marked bit to mark deleted nodes. A variation of [8] that uses a
weaker validation condition.

To illustrate the challenges which arise when checking linearization of highly-
concurrent algorithms, we use the concurrent set algorithm shown in Fig. 2.

This algorithm is based on a singly linked list with sentinel nodes Head and Tail.
Each node in the list contains three fields: an integer variable key, a pointer variable next
and a boolean variable marked. The list is intended to be maintained in a sorted manner
using the key field. The Head node always contains the minimal possible key, and the
Tail node always contains the maximal possible key. The keys in these two sentinel
nodes are never modified, but are only read and used for comparison. Initially the set is
empty, that is, in the linked list, the next field of Head points to Tail and the next field
of Tail points to null. The marked fields of both sentinel nodes are initialized to false.
This algorithm consists of three methods: add, remove and contains.

To keep the list sorted, the add method first optimistically searches over the list
until it finds the position where the key should be inserted. This search traversal (shown
in the LOCATE macro) is performed optimistically without any locking. If a key is
already in the set, then the method returns false. Otherwise, the thread tries to insert the
key. However, in between the optimistic traversal and the insertion, the key may have
been removed, or the predecessor which should point to the new key has been removed.
In either of these two cases, the algorithm does not perform the insertion and restarts its
operation from the beginning of the list. Otherwise, the key is inserted and the method
returns true. The operation of the removemethod is similar. It iterates over the list, and
if it does not find the key it is looking for, it returns false. Otherwise, it checks whether
the shared invariants are violated and if they are, it restarts. If they are not violated,
it physically removes the node and sets its marked field to true. The marked field and
setting it to true are important because they consistute a communication mechanism
to tell other threads that this node has been removed in case they end up with it after
the optimistic traversal. The last method is contains. It simply iterates over the heap

without any kind of synchronization, and if it finds the key it is looking for, it returns
true. Otherwise, it returns false.

It is important to note that when add or remove return false, they do not use any
kind of synchronization. Similarly, for the contains method. That is, these methods
complete successfully without using any synchronization, even though as they iterate,
the list can be modified significantly by add and remove operations executed by other
threads. It is exactly this kind of iteration over the linked list without any synchroniza-
tion that distinguishes the concurrent set algorithms from concurrent stack and queues,
and makes verification of concurrent sets significantly more involved.

Memory Management This algorithm requires the presence of a garbage collector.
That is, the memory (the nodes of the linked list) is only managed by the garbage
collector and not via manual memory management. To understand why a garbage col-
lector is required, consider for example execution of remove right after the node is
disconnected from the list, in line 31. It would be incorrect to free the removed node
immediately at this point, because another thread may have a reference to this node.
For example, a contains method may be iterating over the list optimistically and just
when it is about to read the next field of a node, that node is freed. Then, in the next step
of contains, it will try to dereference a freed node — a memory error which might
cause a system crash.

There are various ways to deal with this issue, including techniques such as hazard
pointers [14]. In practice, garbage collection is becoming more popular via managed
safe languages such as Java, X10, C# which provide concurrent data-structure algo-
rithms such as Fig. 2 user-level libraries. In this paper, we focus on algorithms that
assume garbage collection.

3 Background: Linearizability

linearizability is verified with respect to a sequential specification (pre/post conditions).
A concurrent object is linearizable if each execution of its operations is equivalent to a
permitted sequential execution in which the order between non-overlapping operations
is preserved.

Formally, an operation op is a pair of invocation and a response events. An invoca-
tion event is a triple (tid, op, args) where tid is the thread identifier, op is the operation
identifier, and args are the arguments. Similarly, a response event is triple (tid, op, val)
where tid and op are as defined earlier, and val is the value returned from the operation.
For an operation op, we denote its invocation by inv(op) and its response by res(op).
A history is a sequence of invoke and response events. A sequential history is one in
which each invocation is immediately followed by a matching response. A thread sub-
history, h|tid is the subsequence of all events in h that have thread id tid. Two histories
h1, h2 are equivalent when for every tid, h1|tid = h2|tid. An operation op1 precedes
op2 in h, and write op1 <h op2, if res(op1) appears before inv(op2) in h. A history h is
linearizable, when there exists an equivalent sequential history s, called a linearization,
such that for every two operations op1, op2, if op1 <h op2 then op1 <s op2. That is, s
is equivalent to h, and respects the global ordering of non-overlapping operations in h.

inv a(4) a(4)/true inv c(4) c(4)/false inv a(7) a(7)/true

inv r(4) r(4)/true inv c(7) c(7)/false inv c(7) c(7)/true

inv a(4) a(4)/true inv c(4) c(4)/false inv a(7) a(7)/trueinv r(4) r(4)/true inv c(7) c(7)/false inv c(7) c(7)/true

(H1)

(L1)

inv a(4) a(4)/true inv c(4) c(4)/true inv a(7) a(7)/true

inv r(4) r(4)/true c(7) c(7)/false inv c(7) c(7)/true

(H2)

�

�

�

�

�

�

Fig. 3. Concurrent histories and possible sequential histories corresponding to them.

Example 31 Fig. 3 shows two concurrent histories H1 and H2, and a sequential his-
tory L1. All histories involve two threads invoking operations on a shared concurrent
set. In the figure, we abbreviate names of operations, and use a,r, and c, for add,
remove, and contains, respectively. We use inv op(x) to denote the invocation
of an operation op with an argument value x, and op/val to denote the response op
with return value val.

Consider the history H1. For now, ignore the star symbols. In this history, add(4)
is overlapping with remove(4), and add(7) overlaps contains(7). The his-
tory H1 is linearizable. We can find an equivalent sequential history that preserves the
global order of non-overlapping operations. The history L1 is a possible linearization
of H1 (in general, a concurrent history may have multiple linearizations).

In contrast, the history H2 is non-linearizable. This is because remove(4) returns
true (removal succeeded), and contains(4) that appears after remove(4) in H2

also returns true.However, the history H2 is sequentially consistent.

We know from the definition of linearizability that for every operation op, there
exists a point between its invocation inv(op) and response res(op) in the history h
where op appears to take effect. This point is typically referred to as the linearization
point lp(op) of the operation op. Given a concurrent history h, the (total) ordering
between these points induces a linearization.

Example 32 Consider the history H1 of Fig. 3, the star symbols in the figure denote the
occurrence of a user-specified linearization point in each operation. Using the relative
ordering between these points determines the order between overlapping operations,
and therefore determines a unique linearization of H1, shown as L1.

4 Checking Linearizability

4.1 Automatic Linearization

A straightforward way to automatically check whether a concurrent history has a cor-
responding linearization is to simply try all possible permutations of the concurrent

history until we either find a linearization and stop, or fail to find one and report that
the concurrent history is not linearizable. We refer to this approach as Automatic Lin-
earization. While this approach is conceptually simple, its worst-case time and space
complexity is exponential in the length of the concurrent history. Despite its inherent
complexity costs, we do use this method for checking concurrent histories of small
length (e.g. less than 20). In practice, the space used for incorrect algorithms is typi-
cally small because incorrect algorithms often exhibit an incorrect concurrent history
that is already almost sequential. We use this approach when we need a fast way to
automatically filter through a massive search space, as part of the process of exploring
algorithms, but this approach can be used in stand-alone mode as well.

Example 1 (Enumeration). Fig. 4 demonstrates how the checking procedure works for
a simple history (H1). This history is an example for the kind of histories recorded
inside a single state that is explored by the model checker. There are two threads in
the history: one thread executes two add(5) operations, both of which return true
while the second thread executes a remove(5) operation that also returns true. To
check linearizability of H1, our procedure enumerates all possible linearizations of H1.
In this case, these are (L1), (L2) and (L3). These histories are obtained by re-ordering
only overlapping operations of H1. For each of these three potential linearizations, we
execute the operations over the (executable) specification, and compare the return value
of each operation to its corresponding return value in the concurrent history. In this
example, (L1) is not a valid linearization of (H1) as its remove(5) returns false.
Similarly, (L3) is not a valid linearization of (H1) as its second add(5) returns false.
The sequential history (L2) is a valid linearization of (H1) as its invocation and response
values match the ones in the concurrent history.

inv a(5) a(5)/true inv a(5)

inv r(5) r(5)/true

a(5)/true

inv a(5) a(5)/true inv a(5)inv r(5) r(5)/true a(5)/true

inv a(5) a(5)/true inv a(5)inv r(5) r(5)/false a(5)/false

inv a(5) a(5)/true inv a(5) inv r(5) r(5)/truea(5)/false

(H1)

(L1)

(L2)

(L3)

Fig. 4. Enumeration of linearizations. (H1) is a concurrent history, and (L1),(L2), and (L3) are its
three potential linearizations.

4.2 Checking Linearizability using Linearization Points

An alternative approach provides linear time and space complexity but requires the lin-
earization points as input. Usually, the user provides linearization points by explicitly
defining them as statements in the code of the algorithm. Typically, these linearization
points are at program locations that update a globally visible shared variable. For exam-
ple, in Fig. 2, the linearization point of a successful remove operation returning true
is the instruction pred->next = r. Once the linearization point of an operation is
known, and we encounter that point during model checking, we execute the correspond-
ing sequential operation and record its result. When the concurrent operation completes,
we compare its result to the (recorded) result of the sequential operation.

In the algorithms we checked, the linearization point is immediately before the re-
turn of the concurrent operation, and the return value of the concurrent operation is
known. Therefore, we can immediately compare the result of the concurrent operation
to that of the sequential, without recording the latter.

Non-fixed Linearization Points For many concurrent algorithms, the linearization
point of an operation is not fixed, i.e., it may appear outside of the code of the oper-
ation. Consider again the remove operation of the set algorithm from Fig. 2. In the
case where the operation returns false, the linearization point is not always in the same
thread. For example, let us assume the linearization point of the operation is the state-
ment return false. The problem is that at this point, the key which we are trying
to remove may actually already be in the list, although remove did not find it. This can
occur because, just after the traversal of the list is finished, another concurrent thread
adds the key that remove is looking for. Hence, at the time when remove returns
false, the key is already in the list and thus the sequential operation returns true, failing
the linearization check.

In fact, it is impossible to describe the linearization point as a single, fixed, program
location for the cases when add or remove return false, and for both return value
of contains. Intuitively, to describe the linearization point in such cases, we need
to take into account the relevant operations performed by other threads. Further, the
choice of linearization points is not unique. For example, consider the case of remove
returning false. We can informally describe the linearization point in either one of the
following ways:
(1) The linearization point for an executing remove operation which returns false

for key k is the earliest of two events: either before a successful addition of key
k by another concurrent thread or the statement which compares key k to curr’s
key in the current execution of remove. (Note how the linearization point of one
operation can now be found in the execution of another operation.)

(2) The linearization point for an executing remove operation which returns false for
key k is either before a successful addition of key k by another concurrent thread or
after a successful removal of key k by another thread, or the statement which com-
pares key k to curr’s key in the current execution of remove. (That is, if another
thread removes the key k that this method is trying to remove, we can linearize the
current method at the point right after the key is removed successfully by the other
thread.)

The second definition is a more refined than the first, including the possibility of having
the linearization point of a failed remove be the linearization point of a successful re-
moval of the same key by another thread. We can keep refining this definition by adding
longer sequences of add’s and remove’s of the same key by other threads.

Example 2 (Non-fixed Linearization Points). Consider the example concurrent history
show in Fig. 5 in which one thread is performing remove with key 5 and another
thread performs a sequence of adding and removing that key. The star symbol denotes
a successful linearization point of adding or removing 5 from the set. The figure shows
the three possible linearizations of remove, e.g. either before a successful addition or
after a successful removal of key 5 by another thread.

xx
xx

x
x

xx
xxinv a(5) a(5)/true inv r(5)

inv r(5) r(5)/false

r(5)/true

(H1)

(L1)

(L2)

(L3)

inv a(5) a(5)/true inv r(5) r(5)/true

� � � �

inv a(5) a(5)/true inv r(5) r(5)/true inv a(5) a(5)/true inv r(5) r(5)/trueinv r(5) r(5)/false

inv a(5) a(5)/true inv r(5) r(5)/true inv a(5) a(5)/true inv r(5) r(5)/trueinv r(5) r(5)/false

inv a(5) a(5)/true inv r(5) r(5)/true inv a(5) a(5)/true inv r(5) r(5)/true inv r(5) r(5)/false

Fig. 5. Non-fixed linearization point of remove: (H1) is a concurrent history, and (L1),(L2), and
(L3) are its three valid linearizations.

To summarize, for the cases of add and remove returning false, and for
contains, not only can the linearization point of an operation be in different thread
than the one executing the operation, but there may be multiple choices for describing
these points. Furthermore, small changes in the algorithm can cause it to have dra-
matically different linearization points. In general, the more fine-grained the algorithm
is, the more complex its linearization points are. From a verification standpoint, it is
challenging to identify that a non-fixed linearization point is encountered during model
checking, and to invoke the corresponding sequential operation.

Instrumenting for Non-fixed Linearization Points To deal with non-fixed lineariza-
tion points, we instrument the program with enough information to know whether an-
other thread is manipulating the list with the same key as the current thread. For exam-
ple, in the case of the remove operation returning false, we can now check whether
there was another thread executing a concurrent add operation with the same key. If

this is true, then we know we can linearize the current remove operation before that
successful add execution.

We find it instructive to think about this instrumentation as an abstraction of the
concurrent history. Specifically, this abstraction records whether there is an overlapping
concurrent operation that uses the same key as the operation of interest. In effect, in the
instrumented version of the original program, all the linearization points are once again
in the same thread. The instrumentation allows us to observe enough information about
actions of other threads and deal with linearization points only in the same thread.

Algorithms such as concurrent stack or queues usually have fixed linearization
points. This work advances the state of the art towards dealing with more complex
algorithms. In particular, highly-concurrent algorithms that have read-only operations
(e.g. contains in the concurrent sets) are likely to have non-fixed linearization points
for these operations, and can be checked using the instrumentation described here. We
are not aware of any other tool or published work that is able to check the linearizability
of concurrent algorithms with non-fixed linearization points.

5 Modeling Algorithms

We construct a Promela model that is sound with respect to the algorithm up to the
bound we explore, i.e., for every execution of the algorithm which respect the bound, in
any legal environment, there is also an execution in the model. The goal is to construct
an accurate Promela model which is as faithful as possible to the algorithm and its
environment (e.g., assumption of a garbage collector). In this section, we explain the
main issues we faced when modeling the algorithms.

5.1 Modeling the Heap

The first issue that arises is that our algorithms make heavy use of dynamically allocated
heap data structures. However, the Promela language used by SPIN does not provide
any support for manipulating dynamically allocated memory (e.g. creating new objects
as dereferencing their pointers). Our desire was to stay with the latest versions of the
SPIN tool as they are likely to be most stable and include the latest optimizations such as
partial order reduction. Therefore, from the start we omitted the use of variants of SPIN
such as dSPIN which are not actively maintained. Hence, in order to model dynamically
allocated memory, we pre-allocated a global array of structures, where each structure is
a node. Then, pointers are modeled as indices into the array.

5.2 Garbage Collection

Having modeled the heap with flat arrays and specified the algorithm in that way in
Promela, the next problem was dealing with garbage collection. As mentioned already,
the algorithms we consider as well as many highly-concurrent optimistic algorithms
(e.g.,[9]) assume garbage collection. If no garbage collection is used, then the algo-
rithm will leak an unbounded amount of memory, while manual memory management is
tricky and requires external mechanisms. Assuming garbage collection alleviates these

problems. However, the SPIN system does not provide support for garbage collection.
Hence, we define a garbage collector at the Promela model level.

Naturally, our first intuitive choice was to have a simple sequential mark and sweep
collector that would run as a separate process and would collect memory whenever it
is invoked. However, the problem with this approach is that it required us to provide
all of the pointers from local variables of all of the threads. Unfortunately, at the model
level, there is no mechanism for a process to inspect all of the local variables of other
processes. We could export these local variables to be shared. However, this would
perturb important optimizations such as partial order reduction. Further, even if it was
possible to find what the local values of all other process variables are, we would still
need to know the type of these variables, that is, whether these values are references or
just pure integer values (e.g. does the variable denote the key value of the node or is
that the pointer value which is also modeled as an integer ?). Further, even if we could
somehow differentiate between what was an integer and what was a value, when would
this garbage collection process run ?

Making all of the thread local variables globally visible, so that the collector process
can find them, is not an ideal solution for two reasons. First, it perturbs partial order op-
timizations. Second, the collector does not run immediately when the object becomes
unreachable, which means that it is now possible to create a large number of distinct
states that are meaningless. That is, two states that should be the same state may differ
only because they contain different unreachable and not yet collected objects. This hy-
pothesis was confirmed by our experiments with the algorithm in Fig. 2 where even on
machines with 16GB of memory, the exploration did not terminate (we tried a variety
of choices for SPIN optimizations).

To address this issue, we concluded that garbage collection should run on every
pointer update, effectively leading us to implement a reference counting algorithm.
Each node now contains another field, the RC field, which is modified on pointer up-
dates. Once the field reaches zero, the object is collected. The collector runs atomically.
Once the object is collected, it is important to clear all of the node fields in order to avoid
creating distinct states that differ only in those object fields. Despite the fact that the size
of a single state increases, the total number of states became manageable. To address
the issue of increasing state size, we experimented with various optimizations tricks
(such as bit-packing all of the object fields). However, at the end we decided against
such optimizations as it was becoming quite difficult to debug the resulting models and
even worse, was obscuring our understanding of them. In general, in order to use this
reference counting approach, the model needs to be augmented with the relevant opera-
tions on every pointer update statement. This requires careful additional work on behalf
of the programmer. It would certainly have saved significant time had the SPIN runtime
provided support for dynamically allocated memory and garbage collection.

5.3 Linearizability

As described already, there are two general ways to check linearizability: automatically
and via user-specified linearization points. The linearization point approach requires
some user annotations, but can check much deeper state spaces. Next, we describe how
both of these approaches are realized in our models.

For the automatic approach, we keep the executed history as part of the state. That
is, each time an operation such as add(k) occurs, it records its start event, its argu-
ment and its return event (and the value of that return event if any). Clearly, with this
approach we need to bound the size of the recorded history a priori, simply because
every time we append an element into the history, we introduce a new state. Therefore,
it is impossible to model check the algorithms using this approach with an unbounded
number of operations. After the model exploration process completes, we invoke an
external checker procedure (the lin. checker component of Fig. 1). This checker then
takes as input the recorded history and verifies whether there is a sequential witness cor-
responding to that history. While automatic and hence useful to filter many algorithms,
the main problem with the automatic approach is that it forces us to bound the maximal
number of operations that the client executes, hence limiting the state space.

If the user is willing to specify the linearization points (and their instrumentation
in the model), then we are able to check the model without an a priori bound on the
maximum number of operations. That is, in this approach, we model check the algo-
rithm with an unbounded number of operations. To deal with non-fixed linearization
points, for each state, we keep the abstracted history. Simply put, for each state, the
abstraction records what operation a given thread is executing and with what argument
is that operation invoked. That is, we do not keep the whole history as the automatic
approach does, but only keep the relevant abstraction of that. Hence, in the linearization
point approach, whenever a linearization point is encountered, the sequential version is
executed and the results are compared. In effect, we build the sequential witness on-
the-fly. In general, one should be careful when instrumenting the program in order to
use this approach, so to make sure that the additional instrumentation does not affect
the behavior of the core model.

Fig. 6 shows a fragment of Promela model for checking linearizability using user-
specified linearization points, including instrumentation of non-fixed points. The array
notify contains for each key and each thread, whether the thread is currently executing
an operation on that key.

5.4 Finite Model Issues

For the case where we use the automatic approach to checking linearizability, there
is only a bounded number of operations allowed for the most general client. If the
user specifies the linearization points then we model check the algorithm using an
unbounded number of operations. In our experiments, we also bound the number of
threads to two or three.

Because our algorithms require unbounded memory, we need to build a finite model
in order to apply SPIN. Our models are parameterized on the maximum number of keys
in the set, rather than the maximum number of objects. That is, the maximum number
of keys will determine the number of objects. The reason for that is that it is difficult to
say a priori what is the maximum number of objects that the algorithm will need. Due
to the high concurrency of the algorithm, situations can arise where for two keys we
may need for example 10 objects. The reason for that is not completely intuitive.

Consider the following example. Thread 1 iterates over the list and holds pointers
to several objects (e.g. via its thread local variables pred and curr). This thread then

gets preempted just after executing the LOCATE operation. Then a second thread starts
and removes from the set all objects that the first thread is holding pointers to. Of course,
these objects cannot be collected yet, because the first thread is still referencing them.
The second thread then continues and inserts more objects with the same keys as the
removed ones (objects holding the same keys are still reachable from the first thread).

Via similar scenarios, one can end up with a surprisingly high number of maximally
reachable objects for a very small number of keys. In fact, initially we were surprised
and had to debug the model in order to observe such situations. Moreover, for different
algorithmic variations the maximum number of objects can vary. Of course, we would
not want to pre-allocate more memory for objects than is required as this would increase
the size of memory required for model checking. Hence, we experimentally determined
the maximum number of objects required for a given number of keys. That is, we start
with a number K of pre-allocated objects and if the algorithm tries to allocate more than
K objects, we trigger an error and stop. Then we increase the value of K and repeat
the process. For example, when model checking linearizability with user specified lin-
earization points (and hence unbounded number of operations), the algorithm in Fig. 2
requires 10 objects when we used only two keys.

6 Experiments

Based on the mechanisms described earlier, we have constructed a large number of
Promela models for a variety of concurrent algorithms including: concurrent stacks,
concurrent queues, concurrent work-stealing queues, and concurrent sets. For each
model, we have checked various properties including linearizability, sequential consis-
tency and structural invariants. We have not discussed sequential consistency in detail
in this paper, but our automatic tool that checks linearizability also has the option to
check sequential consistency. Sequential consistency is a weaker specification than lin-
earizability, i.e., every linearizable algorithm is sequentially consistent. Our structural
invariants usually include that the list remains acyclic (for each run of the client) and
that the algorithm does not leak memory.

All our experiments were done on an 8-core 2.4 GHz AMD Opteron with 16GB of
memory. For the concurrent set algorithm show in Fig. 2 and its variants, we checked
linearizability using the linearization point method (that explores larger state spaces
than the automatic one) for two threads and two keys (recall that this may require up
to 10 objects). This took around 3GB of memory. We did try to increase the number
of threads to three, but the state space was larger than 16GB available on the machine.
However, during the time it took SPIN to reach 16GB, it did not detect an error. Next,
we observe that all of the threads are basically executing the same operations. Hence,
symmetry reduction would be a very valuable optimization here. Unfortunately, SPIN
does not provide symmetry reduction. We did use the Symmetric Spin [5] tool, but for
three threads, it still did not complete in 16GB (although the rate of increase for used
memory that SPIN outputs did decrease significantly). We suspect that if we provide
a machine with more memory it may complete and further, for four or more threads,
we would not see significant (or any) increases in memory. Our limited experience
suggest that including symmetry reduction in the SPIN model checker would certainly

be valuable in our context. (SymmSpin is not actively maintained and also requires
manual effort which can be error prone). There are several variants of the set algorithm
which is shown in Fig. 2. However, none of them managed to complete the model
checking process with three threads. We also tried four and more threads just to see if
some error will be triggered in the 16GB available, but no error was triggered. Next, we
experimented with several questions which are interesting both from a verification as
well as algorithmic perspectives.

6.1 Linearizability vs. Invariants

In all of our experiments, we checked both structural invariants in addition to lineariz-
ability. These check produced the same results, that is, all algorithms rejected due to
linearizability violations also violated structural invariant. This suggests that concur-
rent algorithms are designed with local structural invariants in mind, rather than global
temporal safety properties such as linearizability. Intuitively, this makes sense, as it is
difficult to focus on the interleavings of more than few objects at a time. This suggests
a new approach for formal verification of concurrent algorithms: instead of proving
linearizability directly as recent work has done, it may be beneficial to prove simpler
properties such as structural invariants, and then prove that they imply linearizability.

6.2 Linearizability vs. Sequential Consistency

Once again, because we are generating massive number of algorithmic variations, an-
other interesting question is: Given that theoretically, Sequential consistency permits
more algorithms than linearizability (that is, sequential consistency does not require
preservation of real-time order), are there any algorithms which are sequentially con-
sistent, but not linearizable ?

Interestingly, in our experiments, we did not find any such variations. We speculate
that there is a deeper reason for this result that is worth exploring further. For example,
in the recent work of [11], the intuitive reasons for why linearizability is the preferred
correctness criteria over weaker criteria such as sequential consistency from the view-
point of the program using the data structure are formalized. However, it would be
interesting to explore this direction from the viewpoint of the algorithm, and not only
from the viewpoint of the client program using that algorithm.

6.3 Inferring Linearization Points

As mentioned already, linearization points can often be tricky to discover and even
when they are captured, additional instrumentation may be necessary. Even in the case
where the linearization points are fixed, it may not be obvious what these points are
immediately. For example, in the algorithm from Fig. 2, the linearization point for a
successful remove operation is not the marking of the node, but the physical removal.
This is different than all of the existing concurrent set algorithms whose linearization
point is the marking of the current node, e.g. [9, 13]. Further, as mentioned already,
slight changes to the algorithm can cause the linearization points to change.

Therefore, one interesting challenge is whether these points can actually be auto-
matically inferred. And after they are discovered, can the instrumentation required to
perform model checking be automatically inferred ? This would be especially helpful
in the case of non-fixed points. First, from the point of view of understanding how the
algorithms work, it is crucial to know where its linearization points are. Second, from
the point of view of verification, this would alleviate the potentially error-prone task of
the programmer having to manually instrument the original model.

7 Conclusion and Future Work

In this paper we presented our experience with modeling and checking linearizability
of complex concurrent data structure algorithms. This is the first work that describes
in detail the challenges and choices that arise in this process. We believe our experi-
ence will be instructive to anyone who attempts to specify and model check interesting
concurrent algorithms.

Based on our experience, we suggest several directions for enhancing the SPIN
model checker to deal with heap based concurrent algorithms such as concurrent sets.
The two critical features include garbage collection support and the symmetry reduc-
tion optimization. Further, we proposed several items for future work in analysis and
verification, including the automated inference of linearization points.

References

1. Daphna Amit, Noam Rinetzky, Thomas W. Reps, Mooly Sagiv, and Eran Yahav. Comparison
under abstraction for verifying linearizability. In CAV, volume 4590 of LNCS, pages 477–
490. Springer, 2007.

2. Josh Berdine, Tal Lev-Ami, Roman Manevich, G. Ramalingam, and Shmuel Sagiv. Thread
quantification for concurrent shape analysis. In CAV, pages 399–413, 2008.

3. Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. Bounded model checking of
concurrent data types on relaxed memory models: A case study. In CAV, 2006.

4. Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. Checkfence: checking consis-
tency of concurrent data types on relaxed memory models. SIGPLAN Not., 42(6):12–21,
2007.

5. Dennis Dams Dragan Bosnacki and Leszek Holenderski. Verifying commit-atomicity using
model-checking. In SPIN, 2000.

6. Tayfun Elmas, Serdar Tasiran, and Shaz Qadeer. Vyrd: verifying concurrent programs by
runtime refinement-violation detection. In PLDI, pages 27–37, 2005.

7. Cormac Flanagan. Verifying commit-atomicity using model-checking. In SPIN, 2004.
8. S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. Scherer, and N. Shavit. A lazy concurrent

list-based set algorithm. In Proc. of conf. On Principles Of Distributed Systems (OPODIS
2005), pages 3–16, 2005.

9. Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, Bill Scherer, and Nir Shavit.
A lazy concurrent list-based set algorithm. In OPODIS, 2005.

10. Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for con-
current objects. Trans. on Prog. Lang. and Syst., 12(3), 1990.

11. Noam Rinetzky Ivana Mijajlovic, Peter O’Hearn and Hongseok Yang. Abstraction for con-
current objects. In TACAS’09, York, UK, 2009. Springer.

12. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
progranm. IEEE Trans. Comput., 28(9):690–691, 1979.

13. Maged M. Michael. High performance dynamic lock-free hash tables and list-based sets. In
SPAA, pages 73–82, 2002.

14. Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst., 15(6), 2004.

15. Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. Idempotent work stealing. In
PPOPP, pages 45–54, 2009.

16. R. K. Treiber. Systems programming: Coping with parallelism. Technical Report RJ 5118,
IBM Almaden Research Center, April 1986.

17. Viktor Vafeiadis. Shape-value abstraction for verifying linearizability. In VMCAI, pages
335–348, 2009.

18. Martin T. Vechev and Eran Yahav. Deriving linearizable fine-grained concurrent objects. In
PLDI, pages 125–135, 2008.

19. Jeannette M. Wing and C. Gong. Testing and verifying concurrent objects. J. Parallel Distrib.
Comput., 17(1-2):164–182, 1993.

/∗∗ most g e n e r a l c l i e n t ∗ /
i n l i n e e x e c u t e (){

do : : {
s e l e c t o p a n d k e y () ;
e x e c o p e r a t i o n (op , key) ;
} : : break ; od ;

}
i n l i n e s e l e c t o p a n d k e y (){

a to mi c
{

i f : : op = ADD;
: : op = REMOVE;

: : op = CONTAINS ; f i ;
}
g e t r a n d o m k e y () ;

}
/∗∗ a l g o r i t h m ∗∗ /
i n l i n e e x e c o p e r a t i o n (op , key) {

s t a r t o p () ;
do : : (t rue) −> {

a s s e r t (p r ed == 0) ;
p r ed = HEAD; / / o p t i m i z e d
g e t n e x t s t m t (c u r r , HEAD) ;
a s s e r t (c u r r != 0) ;
v a l a = g e t k e y (c u r r) ;
r e t v a l = RET RESTART ;
do : : (v a l a < key) −> {

a s s i g n (pred , c u r r) ;
g e t n e x t s t m t (c u r r , c u r r) ;
v a l a = g e t k e y (c u r r) ;

}
: : (v a l a >= key) −>

{ v a l a = 0 ; break ; }
od ;
i f : : (op == ADD) −> {add (key) ; }

: : e l s e f i ;
i f : : (op == REMOVE) −> {remove (key) ; }

: : e l s e f i ;
i f : : (op == CONTAINS) −> { c o n t a i n s (key) ; }

: : e l s e f i ;

ENDOP:
a to mi c {

/ / some c l e a n u p come here
i f : : (r e t v a l != RET RESTART) −> {

/∗∗∗ L i n e a r i z a t i o n P o i n t Check ing . ∗ /
s e q i n l i s t (key) ;
i f : : (op == REMOVE && r e t v a l == RET FALSE) −>
{ a s s e r t (i w a s n o t i f i e d (key) | | v a l f == 1) ;}
: : e l s e f i ;
i f : : (op == ADD && r e t v a l == RET FALSE) −>
{ a s s e r t (i w a s n o t i f i e d (key) | | v a l f == 2) ;}
: : e l s e f i ;
i f : : (op == CONTAINS && r e t v a l == RET FALSE) −>
{ a s s e r t (i w a s n o t i f i e d (key) | | v a l f == 1) ;}
: : e l s e f i ;
i f : : (op == CONTAINS && r e t v a l == RET TRUE) −>
{ a s s e r t (i w a s n o t i f i e d (key) | | v a l f == 2) ;}
: : e l s e f i ;
v a l f = 0 ;
break ;
}
: : e l s e v a l f = 0 f i ;
} ;
} od ;
end op () ;
}

/∗ i n s t r u m e n t a t i o n f o r non−f i x e d
l i n e a r i z a t i o n p o i n t s ∗ /

t y p e d e f i d t {
b i t v a l [2] ; / / 2 p r o c e s s e s
} ;
i d t n o t i f y [NODES] ;
i n l i n e n o t i f y o t h e r s (k) {

a s s e r t (k < NODES) ;
i f : : (p i d == 0) −> n o t i f y [k] . v a l [1] = 1 ;

: : e l s e −> { a s s e r t (p i d == 1) ;
n o t i f y [k] . v a l [0] = 1;}

f i ;
}
d e f i n e i w a s n o t i f i e d (k) n o t i f y [k] . v a l [p i d]
i n l i n e ze ro my key (k)
{ n o t i f y [k] . v a l [p i d] = 0;}

i n l i n e s t a r t o p () {
a t om ic {

i n i t l o c a l s () ;
ze ro my key (key) ;
} ;
} ;
i n l i n e end op () {

a t om ic {
a s s e r t (r e t v a l == RET FALSE

| | r e t v a l == RET TRUE) ;
i n i t l o c a l s () ;
ze ro my key (key) ;
op = 0 ;
key = 0 ;
} ;
} ;
i n l i n e add (key) {

. . . / / make g l o b a l change
n o t i f y o t h e r s (key)
. . .

}

/∗ e x e c u t a b l e s e q u e n t i a l s p e c i f i c a t i o n ∗ /
i n l i n e s e q a d d (e n t r y , key) {

c h e c k k e y (key) ;
i f : : (s e q s e t [key] == 0) −>
s e q s e t [key] = 1 : : e l s e −>
a s s e r t (f a l s e) ; f i ;
}
i n l i n e seq remove (key){

c h e c k k e y (key) ;
i f : : (s e q s e t [key] == 1) −>
s e q s e t [key] = 0 : : e l s e −>
a s s e r t (f a l s e) ; f i ;
}
i n l i n e s e q c o n t a i n s (key , found){

c h e c k k e y (key) ;
i f : : (found == 1) −>
a s s e r t (s e q s e t [key] == 1) ; : : e l s e −>
a s s e r t (s e q s e t [key] == 0) ; f i ;
}
i n l i n e s e q i n l i s t (key){

i f : : (s e q s e t [key] == 1) −>
v a l f = 2 ; : : e l s e−>
v a l f = 1 ; f i ;
}

Fig. 6. A fragment of Promela model for checking linearizability using user-specified lineariza-
tion points, including instrumentation of non-fixed points.

