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Abstract. This paper introduces a new model checking algorithm that
searches for non-progress cycles, used mainly to check for livelocks. The
algorithm performs an incremental depth-first search, i.e., it searches
through the graph incrementally deeper. It simultaneously constructs
the state space and searches for non-progress cycles. The algorithm is
more efficient than the method the model checker SPIN currently uses,
and finds shortest (w.r.t. progress) counterexamples. Its only downside is
the need for a subsequent reachability depth-first search (which is not the
bottleneck) for constructing a full counterexample. The new algorithm
is better combinable with partial order reduction than SPIN’s method.
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1 Introduction

In Section 1.1, we describe what non-progress cycles (NPCs) are and how SPIN
currently searches for them. Section 1.2 presents SPIN’s method in more detail
and reveals its redundant operation. Hence we apply a new idea (see Section 2.1)
to design two new algorithms (the incremental DFS and DFSFIFO, see Section
2.2), which are the main contribution of this paper. After proving the correctness
of DFSFIFO in Section 2.3, we show in Section 2.4 that it has several advantages
over SPIN’s method. The section ends by depicting the high relevance of partial
order reduction. After describing how this reduction works (see Section 3.1), we
show that its usage by DFSFIFO is correct (see Section 3.2) and yields many
further advantages (see Section 3.3). The paper closes with a conclusion and
future work.

1.1 Non-progress Cycle Checks by SPIN

NPC checks are mainly used to detect livelocks in the system being modeled,
i.e., execution cycles that never make effective progress. NPC checks are often
performed in formal verifications of protocols, where livelocks frequently occur.
Using SPIN, livelocks were found, for instance, in the i-protocol from UUCP (see
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[3]) and GIOP from CORBA (see [10]), whereas DHCP was proved to be free of
livelocks (see [9]). To be able to check for NPCs, desired activities of the system
are marked in PROMELA by labeling the corresponding location in the process
specification with a progress label: ”statementi; progress: statementj ;”. This sets
the local state between statementi and statementj to a local progress state (cf.
Figure 7). A (global) progress state is a global system state in which at least one
of the processes is in a local progress state. SPIN marks global progress states by
setting the global variable np to false. Section 2.4 presents progress transitions
as alternative for modeling progress. If no cycle without any progress-label exists,
then the system definitely makes progress eventually (it never gets stuck in a
livelock).

A non-progress cycle check detects (and returns a path to) a reachable non-
progress cycle, i.e., a reachable cycle with no progress states, iff there exists one
in the state transition system (S, T ) (with S being the set of states and T ⊆ S×S
the set of transitions).

SPIN puts the check into effect with the Büchi automaton for the LTL for-
mula ♦ � np , which translates into the never claim of Listing 1 (cf. [6]).

never { /∗ <>[] np ∗/
do /∗ n o n d e t e r m i n i s t i c a l l y d e l a y or swap to NPC search mode∗/
: : np −> break
: : true /∗ n o n d e t e r m i n i s t i c d e l a y mode∗/
od ;

accept : /∗NPC search mode∗/
do
: : np
od

}
Listing 1. Never claim for NPC checks

The LTL formula is verified with SPIN’s standard acceptance cycle check , the
nested depth-first search (NDFS ) algorithm (see [8,6]): Before the basic depth-
first search (DFS ) backtracks from an accepting state s and removes it from
the stack, a second, nested DFS is started to check whether s can reach itself,
thus resulting in an acceptance cycle. Pseudo-code for the nested DFS is given
in Listing 2.

1.2 Motivation for Improving Non-progress Cycle Checks

The following walkthrough depicts a detailed NPC check in SPIN (cf. Figure 1):
1. When traversal starts at init, the never claim immediately swaps to its NPC

search mode because the never claim process firstly chooses np −> break

in the first do-loop (if the order in this do-loop were swapped, the NPC



proc DFS( s t a t e s)
i f e r r o r (s) then r epor t e r r o r f i ;
add {s ,0} to hash ta b l e ;
push s onto stack ;
for each s u c c e s s o r t o f s do

i f {t ,0} 6∈ hash ta b l e then DFS(t) f i
od ;
i f accept ing (s) then NDFS(s) f i ;
pop s from stack ;

end

proc NDFS( s t a t e s) /∗ the nes ted search ∗/
add {s ,1} to hash t a b l e ;
for each s u c c e s s o r t o f s do

i f {t ,1} 6∈ hash ta b l e
then NDFS(t)
else i f t ∈ s tack then r epor t c y c l e f i
f i

od ;
end

Listing 2. Nested DFS

check would descend the graph as deeply as possible in the nondeterministic
delay mode). Hence a DFS is performed in which all states are marked as
acceptance states by the never claim and progress states are omitted, i.e.,
truncated (see Listing 1).

2. Just before backtracking from each state being traversed in the NPC search
mode DFS, the NDFS (i.e., the nested search) starts an acceptance cycle
search (since all traversed states were marked as acceptance states). For
these acceptance cycle searches, the non-progress states are traversed again.

3. If an acceptance cycle is found, it is also an NPC since only non-progress
states are traversed. If no acceptance cycle is found, the NDFS backtracks
from the state s where the NDFS was initiated, but immediately starts a new
NDFS before the NPC search mode DFS backtracks from the predecessor
of s. Fortunately, states that have already been visited by an NDFS are not
revisited. But the NDFS is repeatedly started many times and at least one
transition has to be considered each time. Eventually, when the NDFS has
been performed for all states of the NPC search mode DFS, the NPC search
mode DFS backtracks to init.

4. No the nondeterministic delay mode DFS constructs the state space once
more. During this, after each forward step, all previous procedures are re-
peated. Since most of the time the states have already been visited, these pro-
cedures are immediately aborted. During this nondeterministic delay mode
DFS, also progress states are traversed.



On the whole, the original state space (i.e., without the never claim) is traversed
three times: in the NPC search mode DFS, in the NDFS and in the nondeter-
ministic delay mode DFS. The state space construction for reaching an NPC
and the NPC search are performed in separate steps.

Fig. 1. Walkthrough of SPIN’s NPC check

2 Better NPC Checks

In this section, we firstly introduce our new approach and then our new al-
gorithms: the incremental DFS and its improvement DFSFIFO. Thereafter, the
correctness of DFSFIFO is proved. Finally, it is compared to SPIN’s method of
NPC checks.

2.1 Approach

The detailed walkthrough in Section 1.2 has shown that SPIN’s NPC check
unnecessarily often initializes procedures, touches transitions, and traverses the
state space. The cause for this inefficiency is the general approach: acceptance
cycle checks in combination with never claims are very powerful and cover more
eventualities and options than necessary for NPC checks. So we are looking for
a more specific algorithm for NPC checks that performs less redundantly and
combines the construction and the NPC search phase.

But with only one traversal of the state space, we have to cope with the
following problem: Simply checking for each cycle found in a basic DFS whether
it makes progress is an incomplete NPC search since the DFS aborts traversal in
states which have already been visited. Hence not all cycles are traversed. Figure
2 shows an example of an NPC that is not traversed and therefore not found
by the DFS: From s1, the DFS first traverses path 1, which contains a progress



state s2. After backtracking from path 1 to s1, the DFS traverses path 2, but
aborts it at s3 before closing the (red, thick) NPC. Hence if an NPC has states
that have already been visited, the cycle will not be found by the basic DFS.

Fig. 2. Not traversed NPC

The idea for our alternative NPC checks is to guarantee that:

(p-stop) After reaching an NPC for the first time, traversal
of progress states is postponed as long as possible.

This constraint enforces that NPCs are traversed before states from the NPC
are visited through some progress cycle and thus break the NPC traversal. The
following section introduces two new algorithms and checks (p-stop) for them.

2.2 The Incremental Depth-First Search Algorithms

Incremental Depth-First Search. This new algorithm searches for NPCs us-
ing a depth-first iterative deepening search with incrementally larger thresholds
for the number of progress states that may be traversed. For this, the incremen-
tal DFS algorithm, described in Listing 3 and 4, repeatedly builds subgraphs
GL where paths (starting from init) with maximally L progress states are tra-
versed, for L = 0, 1 . . . , with a basic DFS algorithm. It terminates either with an
error path (a counterexample to the absence of NPCs) when an NPC is found or
without an error when L becomes big enough for the incremental DFS to build
the complete graph G, i.e., GL = G.

So in each state s we might prune some of the outgoing transitions by omit-
ting those which exceed the current progress limit L, and only consider the
remaining transitions.

We can implement DFSstarting over by using a progress counter for the number
of progress states on the current path. The progress counter is saved for every state
on the stack, but is ignored when states are being compared. This causes an in-
significant increase in memory (maximally log(Lmax)×depth(G) bits). With this
concept, we can firstly update the progress counter when backtracking, secondly
abort traversal when the progress counter exceeds its current limit L, and thirdly



proc DFSstarting over ( s t a t e s)
L:=0;
repeat

DFS pruned:= fa l se ;
DFSprune,NPC (s ) ;
L++;

until ( ! DFS pruned ) ;
end ;

proc main ( )
DFSstarting over ( init ) ;
p r i n t f ( ”LTS does not conta in NPCs” ) ;

end ;

Listing 3. Incremental depth-first search

quickly check for progress whenever a cycle is found. To complete this imple-
mentation, we still have to determine the unsettled functions of DFSprune,NPC,
underlined in listing 4:
– pruned(s, t) returns true iff progress counter = L and t is a progress state.
– pruning action(t) sets DFS pruned to true.
– np cycle(t) returns true iff progress counter = (counter on stack for t).
– The error message can print out the stack, which corresponds to the path

from init to the NPC, inclusively.

Unfortunately, this incremental DFS has several deficiencies:
– The upper part of the graph (of the graph’s computation tree) is traversed

repeatedly. But since we usually have several transitions leaving a state and
relatively few progress states, this makes the incremental DFS require max-
imally twice the time of one complete basic DFS (i.e., of a safety check).

– Depending on the traversal order of the DFS, the progress counter limit might
have to become unnecessarily large until an NPC is found, cf. Figure 3.

– As main disadvantage, the approach of the incremental DFS is not sufficient
to fulfill the condition (p-stop): It can happen that a state s0 on an NPC
is reached the first time for progress counter limit L0 (via path 3), but with
progress counter(s0) < L0. For this to be the case, path 3 was aborted for
L < L0. Hence for L < L0, a state s1 on path 3 was already visited from
another path (path 2) with more progress, see Figure 3. For L0, s0 was
reached via path 3, and thus path 2 was pruned. Therefore a state s2 on
path 2 has already been visited via another path (path 1) for L0, but not
for L < L0. This situation is depicted in Figure 3, with the traversal order
equal to the path number, L0 = 3, progress counter(s0) = 2, and + marking
progress.

Hence we modify the incremental DFS algorithm in the following section.



proc DFSprune,NPC ( s t a t e s)
add s to hash ta b l e ;
push s onto stack ;
for each s u c c e s s o r t o f s do

i f ( t 6∈ hash ta b l e )
then i f ( ! pruned (s, t ) )

then DFSprune,NPC (t)
else prun ing ac t i on (t)
f i

e lse i f (t ∈ s tack && np cyc l e (t ) )
then ha l t with e r ro r mes sage
f i

f i
od ;
pop s from stack ;

end ;

Listing 4. Generic DFS with pruning and NPC check

Fig. 3. (p-stop) is not met for the incremental DFS

Incremental Depth-First Search with FIFO. Instead of repeatedly increas-
ing the progress counter limit L and re-traversing the upper part of the graph’s
computation tree, we save the pruned progress states to jump back to them later
on to continue traversal. Roughly speaking, we perform a breadth-first search
with respect to the progress states, and in-between progress states we perform
DFSs (cf. Listing 5).

To reuse the subgraph already built, we have to save some extra information
to know which transitions have been pruned. One way to track these pruned
transitions is by using a FIFO (or by allowing to push elements under the stack,
not only on top). Hence we name the algorithm incremental DFS with FIFO
(DFSFIFO). Listing 5 shows that we do not repeatedly construct the graph from
scratch, but rather use the graph already built, gradually pick the progress states
out of the FIFO, and expand the graph further by continuing the basic DFS.
When a new progress state is reached, traversal is postponed by putting the
state into the FIFO. When the basic DFS is finished and the FIFO is empty, the
complete graph G is built.



proc DFSFIFO ( s t a t e s)
put s in FIFO ;
repeat

pick f i r s t s out o f FIFO ;
DFSprune,NPC (s)

until (FIFO i s empty ) ;
end ;

proc main ( )
DFSFIFO ( init ) ;
p r i n t f ( ”LTS does not conta in NPCs” ) ;

end ;

Listing 5. Incremental depth-first search with a FIFO

The unsettled functions of DFSprune,NPC are defined for DFSFIFO as follows:
– pruned(s, t) returns true iff t is a progress state.
– pruning action(t) puts t into the FIFO.
– np cycle(t) returns (t != first element of stack), since the first element is a

progress state. (Using progress transitions (see Section 2.4), this exception
becomes unnecessary and the constant true is returned.)

– The error message can print out the stack, which now corresponds to the path
of the NPC found, but no longer contains the path from init to the cycle.

Note. This algorithm does not know which GL is currently constructed. If we
want to clearly separate the different runs, as before, we can use two FIFOs, one
for reading and one for writing. When the FIFO that is read from is empty, the
current run is finished and we swap the FIFOs for the next run.

With this technique, the deficiencies from the original incremental DFS are
avoided: (p-stop) is fulfilled since progress state traversal is postponed as long as
possible, the progress counter limit L does not become unnecessarily large, and
we avoid the redundancy of the original incremental DFS by reusing the part
of the graph already built previously. The consequent postponing guarantees a
constraint stronger than (p-stop): Each state is visited through a path with the
fewest possible progress states. So now GL is the maximal subgraph of G such
that all paths in GL without cycles have at most L progress states.

On the whole, DFSFIFO does not require more memory by using a FIFO
compared to a basic DFS because progress states are stored only temporarily
in the FIFO until they are stored in the hash table (cf. Listing 4). The time
complexity is also about the same as for the basic DFS.

DFSFIFO erases a large part of the stack: everything behind progress states,
i.e. all of the stack between init and the last progress state, is lost. But for
detecting NPCs, this is a feature and not a bug: Exactly the NPCs are detected.
The cycles that go back to states from previous runs are progress cycles and stay
undetected. Thus we no longer need to save a progress counter on the truncated



stack, saving even more memory. A further benefit will arise in combination with
partial order reduction (see Section 3).

If an NPC is detected, the stack from the current run supplies the NPC, but
an additional basic DFS for reaching the NPC is required to obtain a complete
error path as counterexample. The shortest (w.r.t. progress) counterexample
can be found quickly, for instance with the following method, which generally
requires only little additional memory: Instead of storing only the last progress
states in the FIFO, all progress states on the postponed paths are saved, e.g.,
in form of a tree. The shortest counterexample can then easily be reconstructed
using the progress states on the error path as guidance for the additional basic
DFS.

2.3 Correctness of DFSFIFO

Constructively proving that DFSFIFO finds a certain NPC is difficult: We would
require to consider various complex situations and the technical details of the
algorithm, e.g., the order in which the transitions are traversed (cf. Figure 6).
Hence we prefer a pure existence proof.

Theorem 1. DFSFIFO finds an NPC if one exists and otherwise outputs that
no NPC exists. An NPC is found at the smallest depth w.r.t. progress, i.e., after
the smallest number (L0) of progress states that have to be traversed.

Proof. DFSFIFO only postpones transitions, but does not generate new ones. It
checks for NPCs by searching through the stack (except the first state), i.e., it
only considers non-progress states. Thus it is sound, i.e., it does not output false
negatives.

To prove completeness, i.e., that NPCs are found if they exist, let there
be an NPC. As long as DFSFIFO constructs GL for L < L0, all paths leading
to an NPC are pruned. Let L = L0, s be the first state reached in the DFS
which is on an NPC, tbegin be the time the DFS reaches s (the first time), and
π1 = 〈 s11=s, s12, . . . , s

1
n1

=s 〉 be an NPC containing s. Because of (p-stop), the
DFS stops traversing progress states while all non-progress states reachable from
s are being traversed.

We assume no NPC is found in GL0 . Hence the traversal of π1 must be
aborted because a state s1h1

6= s for h1 ∈ {2, . . . , n1 − 1} is revisited (i.e., visited
when already in the hash table) before π1 is closed, i.e., before s could be reached
the second time. Let tmiddle1 be the time when s1h1

is visited the first time and
tend be the time when s1h1

is revisited and π1 is aborted. s1h1
cannot be twice

on the current path (once at the end and once earlier) at time tend: the first
occurrence cannot be above s (i.e., closer to init) because s is the first visited
state of π1, and not below s, since then an NPC 〈s1h1

, . . . , s1h1
〉 would be found,

see Figure 4. So our algorithm first visits s in tbegin, then visits s1h1
at tmiddle1 ,

then backtracks from s1h1
and finally revisits s1h1

at tend while traversing π1.
Informally, since our algorithm backtracks from s1h1

without having found an
NPC, the traversal of the path from s1h1

to s was aborted because some state on



it was revisited, i.e., the state has already been visited before, but after tbegin.
With this argument, we come successively closer to completing some NPC, which
is a contradiction.

Formally: Let π2 = 〈s21=s, s22, . . . , s
2
n2

=s〉 be the path from s at time tbegin to
s1h1

at time tmiddle1 concatenated with 〈s1h1+1, s
1
h1+2, . . . , s

1
n1

=s 〉, i.e., π2 is also
an NPC containing s, see Figure 5. Therefore we can apply the argumentation
from above to π2 instead of π1 to obtain a state s2k (k ∈ {1, . . . , n2}) on π2 that is
revisited before π2 is closed. Let tmiddle2 be the time when s2k is visited the first
time. Since on π2 the state s1h1

is visited the first time (at tmiddle1), the DFS also
reaches (maybe a revisit) s1h1+1 on π2 (at some time after tmiddle1). So s2k = s1h2

for h2 ∈ {h1 +1, . . . , n1−1}. Let π3 = 〈s31=s, s32, . . . , s
3
n3

=s 〉 be the NPC from s
at time tbegin to s1h2

at time tmiddle2 concatenated with 〈s1h2+1, s
1
h2+2, . . . , s

1
n1

=s〉.
Applying this argumentation iteratively, we get a strictly monotonically increas-
ing sequence (hi)i∈N with all hi ∈ {2, . . . , n1− 1}. Because of this contradiction,
the assumption that no NPC is found in GL0 is wrong.

Fig. 4. s1h1
cannot be twice on the current path at time tend

Fig. 5. Constructing π2 from π1



If all cycles in the LTS make progress, L will eventually be big enough to
contain the complete graph. After traversing it the algorithm terminates with
the correct output that no NPC exists. Thus our algorithm is correct.

Note. The proof shows that DFSFIFO finds an NPC before backtracking from
s. But the NPC does not have to contain s: Figure 6 shows an example if t1 is
traversed ahead of t2. Since our pure existence proof assumed that no NPCs are
found, it also covers this case (cf. Figure 4).

Fig. 6. The found NPC does not contain s

2.4 Comparison

We firstly compare SPIN’s NPC checks with DFSFIFO by relating their perfor-
mances to that of the basic DFS (which corresponds to a safety check): The
runtime for a basic DFS, denoted tsafety, is linear in the number of reachable
states and transitions, the memory requirement ssafety is linear in the number of
reachable states. For SPIN’s NPC checks, the memory required in the worst case
is about 2× ssafety because of the never claim. The runtime is about 3× tsafety
because of the nested search and the doubled state space. For DFSFIFO, both
time and memory requirements are about the same as for the basic DFS. To
construct a full counterexample, maximally tsafety is required, but usually far
less.

But this asymptotic analysis only gives rough complexities. For a more precise
comparison, we look at the steps in detail and see that the inefficiencies of the
NDFS algorithm are eliminated for DFSFIFO: The redundancy is completely
avoided as all states are traversed only once by a simultaneous construction and
NPC search.

Furthermore, only paths with minimal progress are traversed. Since many
livelocks in practice occur after very little progress – e.g., for the i-protocol (cf.
[3]) after 2 sends and 1 acknowledge – DFSFIFO comprises an efficient search
heuristic. Additionally, shortest (w.r.t. progress) counterexamples are easier to
understand and often reveal more relevant errors.



Finally, we can also model progress in a better way using progress tran-
sitions instead of progress states. SPIN’s NPC check needs to mark states
as having progress because never claims are used: The never claim process
is executed in lockstep with the remaining automaton and thus only sees the
states of the remaining automaton, not its transitions. Since our DFSFIFO does
not require never claims, we can mark transitions (e.g., those switching np
from false to true in the original semantics) as having progress. The most
fundamental implementation of progress transitions is to change the seman-
tics of PROMELA so that a progress label marks the following statement as
a progress transition. If we do not want to change the PROMELA semantics,
we can use the construct ”statementi; atomic {skip; progress: statementj}” instead
of ”statementi; progress: statementj ;”. Figure 7 shows the difference in the au-
tomata: The progress moves from state s to the following composite transi-
tion. ”atomic{...}” guarantees that the progress state is left immediately af-
ter it was entered. Unfortunately, SPIN does not interleave atomic sequences
with the never claim process, so this technique cannot be used for SPIN’s NPC
checks. Trying nevertheless, SPIN sometimes claims to find an NPC, but re-
turns a trace which has a progress cycle; At other times, SPIN gives the warn-
ing that a ”progress label inside atomic - is invisible”. SPIN’s incon-
sequent warning suggests that it does not always detect progress labels inside
atomic.

Fig. 7. Progress transition with atomic

Using progress transitions, we can model more faithfully since in reality ac-
tions, not states, make progress. For example in Figure 8, if the action cor-
responding to the transition from a state s2 to a state s1 causes progress,
PROMELA models s2 as progress state. So the cycle between (s2, t1) and (s2, t2)
in the global automaton is considered as progress cycle, although the system does
not perform any progress within the cycle. The other case of a path with sev-
eral different local progress states visited simultaneously or directly after one
another cannot be distinguished from one persistent local progress state as in
Figure 8. Using progress transitions, all these cases can be differentiated and are
simpler: The number of progresses on a path π is simply its number of progress



transitions, denoted |π|p. The biggest advantages of using progress transitions
emerge in combination with partial order reduction (see Section 3).

Fig. 8. Faked progress

The performance comparison from this section has to be considered with
caution, though, as the effectiveness of a verification usually stands and falls with
the strength of the additional optimization techniques involved, especially partial
order reduction (cf. Section 3). The reduction strength can significantly decrease
when changing from safety to liveness checks because the traversal algorithm
changes and the visibility constraint C2 (cf. Section 3) becomes stricter. For
instance, in a case study that verified leader election protocols (cf. [4]), the
safety checks with partial order reduction were performed in quadratic time and
memory (i.e., easily up to SPIN’s default limit of 255 processes), whereas the
NPC checks could only be performed up to the problem size 6 (see Table 1). So
a very critical aspect of NPC checks is how strongly partial order reduction can
reduce the state space.

Table 1. Big difference between safety and NPC checks

Problem safety checks NPC checks via NDFS
Size time depth states time depth states

3 5” 33 66 5” 387 1400
4 5” 40 103 5” 2185 18716
5 5” 47 148 6” 30615 276779
6 5” 54 201 70” 335635 4.3e+06
7 5” 61 262 memory overflow (> 1GB)

254 100” 1790 260353 memory overflow (> 1GB)

In the next section, we show that DFSFIFO is compatible with partial order
reduction and that the elimination of redundancy in DFSFIFO – as well as
its further advantages (see Section 3.3) – enhance the strength of partial order
reduction.



3 Compatibility with Partial Order Reduction

SPIN’s various reduction methods contribute strongly to its power and success.
Many of them are on a technical level and easily combinable with our NPC
checks, for instance Bitstate Hashing, Hash-compact and compression.

One of the most powerful reduction methods is partial order reduction (POR).
In this section, we firstly introduce SPIN’s POR, which uses the technique of
ample sets (see [1,2], for technical details [7]). Thereafter, we prove that DFSFIFO

can be correctly combined with POR. Finally, we again compare SPIN’s NPC
checks with DFSFIFO, this time also considering POR.

3.1 Introduction

One of the main reasons for state space explosion is the interleaving technique
of model checking to cover all possible executions of the asynchronous product
of the system’s component automata. These combined executions usually cause
an exponential blowup of the number of transitions and intermediate states. But
often statements of concurrent processes are independent:

α, β ∈ S are
independent iff

∀s ∈ S : α, β ∈ enabled(s) =⇒
α ∈ enabled(β(s)) and β ∈ enabled(α(s)) (enabledness)
and α(β(s)) = β(α(s)) (commutativity)

α, β ∈ S are
dependent iff α, β are not independent

with enabled : S → P(S) and S being the set of all statements (we regard a
statement as the subset of those global transitions T in which a specific local
transition is taken).

So the different combinations of their interleaving have the same effect. POR
tries to select only few of the interleavings having the same result. This is done
by choosing in each state s a subset ample(s) ⊆ enabled(s), called the ample set
of s in [11]. The choice of ample(s) must meet the conditions C0 to C3 listed
in Table 2. C3’ is a sufficient condition for C3 and can be checked locally in the
current state. Since SPIN is an on-the-fly model checker, it uses C3’.

If these conditions are met, then the original graph G and the partial order
reduced graph G′ are stuttering equivalent : For each path π ∈ G there exists a
path π′ ∈ G′ (and vice versa) such that π and π′ are stuttering equivalent (cf.
[11] and [2]). In our special case of NPCs, two paths π and π′ are stuttering
equivalent (π ∼st π

′) iff they make the same amount of progress.

3.2 Correctness of DFSFIFO in Combination with POR

For proving the correctness of DFSFIFO with POR activated, we have to look
at the conditions for POR first. C3’ no longer implies C3 if DFSFIFO is used:
Since a large part of the stack gets lost by postponing the traversal at pro-
gresses (progress states or progress transitions), progress cycles are not de-
tected. To guarantee C3 for progress cycles being traversed, we traverse all



Table 2. Constraints on ample(s)

C0 : Emptiness
ample(s) = ∅ ⇔ enabled(s) = ∅

C1 : Ample decom-
position

No statement α ∈ S\ample(s) that is dependent on some state-
ment from ample(s) can be executed in the original, complete
graph after reaching the state s and before some statement in
ample(s) is executed.

C2 : Invisibility ample(s) 6= enabled(s) =⇒ ∀α ∈ ample(s) : α is invisi-
ble, which means that α is not a progress transition, or, when
progress states are being used, that α does not change np .

C3 : Cycle closing
condition

If a cycle contains a state s s.t. α ∈ enabled(s) for some state-
ment α, it also contains a state s′ s.t. α ∈ ample(s′).

C3’ : NotInStack
α ∈ ample(s) and α(s) is on the stack⇒ ample(s) = enabled(s)

pending transitions when we are about to destroy the stack by making progress.
So for each state s we fulfill the condition: (∃α ∈ ample(s) : α is visible)
=⇒ (ample(s) = enabled(s)). This is equivalent to C2.

Note. When progress states are being used, C2 is not sufficient to guarantee C3 in
the special case of cycles that solely contain progress states (e.g., as in Figure 8).
Several solutions are possible: Firstly, we can alter C2 to C2’: (∃α ∈ ample(s) :
α(s) is a progress state) =⇒ (ample(s) = enabled(s)). Secondly, these cycles
might be avoidable by weak fairness (which is combinable with our algorithm)
if they are caused by one process remaining in its progress state throughout the
cycle. Thirdly, we can guarantee by hand that these long sequences of progress
states never occur, e.g., by forcing quick exit from progress states (similarly to
Figure 7). But we favor using progress transitions anyway, which is once more
the simplest and most efficient solution.

If DFSFIFO detects a cycle on the stack, it has already found an NPC and is
finished. Hence we no longer need C3’, C2 suffices to fulfill C3. This fact helps
in the following proof.

Theorem 2. DFSFIFO in combination with POR finds an NPC if one exists
and otherwise outputs that no NPC exists. An NPC is found at the smallest
depth w.r.t. progress, i.e., after the smallest number (L0) of progresses that have
to be traversed.

Proof. Partial order reducing the graph G does not create new NPCs. Hence
DFSFIFO still does not output false negatives.

To prove completeness, let there be an NPC in G. If L < L0, all paths leading
to an NPC are pruned before the NPC is reached.

Let L = L0 and π be a counterexample in GL0 . C3’ is unnecessary for
DFSFIFO. C0, C1 and C2 are independent of the path leading to s. There-
fore ample(s) can be determined independently of the path leading to s. So all



conditions C0, C1, C2 and C3 are met and ample(s) is not influenced by the
differing traversal order. Hence stuttering equivalence is preserved. Thus the re-
duced graph from GL0 that DFSFIFO with POR constructs also has an infinite
path with exactly L0 progresses like π, i.e., an NPC. Theorem 1 proves that after
L0 progresses an NPC is found by DFSFIFO in combination with POR.

3.3 Comparison

Now we can do an overall comparison between SPIN’s NPC checks and DFSFIFO,
both with POR activated (pros for DFSFIFO are marked with +):
+ DFSFIFO avoids all redundancies and therefore saves time and memory and

enables stronger POR.
+ The use of progress transitions instead of progress states is possible, spawning

several advantages:
• The faithful modeling not only simplifies the basic algorithms, but also

the application of POR: The visible transitions are exactly the progress
transitions, and π ∼st π

′ iff |π|p = |π′|p. That is why progress transitions
are the easiest solution to get by with C2 instead of C2’.

• Only one of the originally two local transitions is now visible, i.e., we
definitely have fewer visible global transitions.

• In certain situations, this difference in the number of visible global tran-
sitions can get very large: Figure 9 shows that the global automaton
has far more visible transitions when progress states are used instead
of progress transitions. Consequently, also the ample sets strongly differ
in size. The visible transitions are marked with + and -, the ample sets
with circles.

+ The constraint C3’ becomes unnecessary.
– To obtain an error path from the initial state to the NPC, an additional

basic DFS is necessary, but this requires less resources than the main check.
+ A shortest (w.r.t. progress) error path can be given, which is often easier to

understand and more revealing than longer paths.
+ By avoiding progress as much as possible, DFSFIFO exhibits an efficient NPC

search heuristic: In practice, NPCs often occur after only few progresses.
Additionally, by avoiding progress as much as possible, its visibility weakens
POR just as much as necessary. Since the time and memory requirements
of DFSFIFO and the basic DFS are about the same, the performance of our
NPC check is roughly the same as for a safety check if POR stays about as
strong as for safety checks.

+ Our new NPC check is a more direct method. This is in line with SPIN’s
paradigm of choosing the most efficient and direct approach and eases mod-
ifications, such as improvements, additional options and extensions.

+ It might be possible to improve POR: For finding NPCs, we only need to
distinct |π|p =∞ from |π|p <∞ for an infinite path π. Therefore a stronger
reduction that does not guarantee stuttering equivalence is sufficient, as long
as at least one NPC is preserved.



Fig. 9. Smaller ample sets for progress transitions

Note. We can also compare our DFSFIFO with SPIN’s former NPC check. The
old check used the NDFS directly (see [5]). [8] explains that this algorithm is
not compatible with POR because of condition C3. The authors of the paper
”do not know how to modify the algorithm for compatibility with POR” and
suggest the alternative SPIN is now using (cf. Section 1.1). But DFSFIFO can be
regarded as such modification of SPIN’s old NPC check: the state space creation
and the search for an NPC are combined, and C3 is reduced to C2.

4 Closure

4.1 Conclusion

Instead of separately constructing the state space and searching for NPCs, as
SPIN does, DFSFIFO performs both at the same time. To be able to avoid a
nested search, DFSFIFO postpones traversing progress for the (L + 1)-th time
until the combined state space creation and NPC check for the subgraph GL is
finished. Then DFSFIFO retrieves the postponed progresses and continues with
GL+1 \ GL. When an NPC is found or the complete graph is built, DFSFIFO

terminates. DFSFIFO is a more direct NPC check than SPIN’s method, with no
redundancy, and enabling an efficient search heuristic, better counterexamples,
the use of progress transitions, stronger POR and facilitation of improvements.
With these enhancements, the verification by NPC checks becomes more efficient.
As trade-off, DFSFIFO does not deliver an error path from the initial state to
the NPC anymore, only the NPC itself. For a complete error path, an additional
basic DFS is required - whose cost is, however, negligible.



4.2 Future Work and Open Questions

Having proved that DFSFIFO is correct and combinable with POR, we can now
move from these important theoretical questions to the next step of implementing
the algorithm. Thereafter, we will analyze DFSFIFO’s performance. Because of
the mentioned advantages, we are optimistic that DFSFIFO will strongly improve
NPC checks in practice. Section 3.3 posed the open question whether POR can
be further strengthened for our NPC checks by weakening stuttering equivalence
to a constraint that solely preserves NPC existence. Solving this question might
further speed up our NPC check.
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