
Minimal counter-example generation for SPIN

Paul Gastin1 and Pierre Moro2

1 LSV, ENS Cachan & CNRS
61, Av. du Prés. Wilson, F-94235 Cachan Cedex, France,

Paul.Gastin@lsv.ens-cachan.fr
2 LIAFA, Univ. Paris 7

2 place Jussieu, F-75251 Paris Cedex 05, France
moro@liafa.jussieu.fr

Abstract. In this paper, we propose an algorithm to compute a counter-
example of minimal size to some property in a finite state program, using
the same programmation constraints than SPIN. This algorithm uses
nested Breadth-first searches guided by priority queues. This algorithm
works in quadratic time and is linear in memory,

1 Introduction

Model-checking is used to prove correctness of properties of hardware and soft-
ware systems. When the program is incorrect, locating errors is important to
provide hints on how to correct either the system or the property to be checked.
Model checkers usually exhibit counter-examples, that is, faulty execution traces
of the system. The simpler the counter-example is, the easier it will be to locate,
understand and fix the error. A counter-example may mean that the abstraction
of the system (formalized as the model) is to coarse; several techniques allow to
refine it, guided by the counter-example found by the model-checker. The refine-
ment stage can be done manually or automatically, but since even the automatic
computation of refinements can be very expensive, it is very important to com-
pute small counter-examples (ideally of minimal size) in case the property is not
satisfied.

It is well-known that verifying whether a finite state system M satisfies
an LTL property ϕ is equivalent to testing whether a Büchi automaton A =
AM ∩ A¬ϕ has no accepting run, where AM is a Kripke structure describing
the system and A¬ϕ is a Büchi automaton describing executions that violate
ϕ. It is easy, in theory, to determine whether a Büchi automaton has at least
one accepting run. Since there is only a finite number of accepting states, this
problem is indeed equivalent to finding a reachable accepting state and a loop
around it. A counter-example to ϕ in M can then be given as a path ρ = ρ1ρ2 in
the Büchi automaton, where ρ1 is a simple (loop-free) path from the initial state
to an accepting state, and ρ2 is a simple loop around this accepting state (see
Figure 1). Our goal is to find short counter-examples. The first trivial remark is
that we can reduce the length of a counter-example if we do not insist on the

ρ1
ρ2

Fig. 1. An accepting path in a Büchi automaton

i s1 s2

ρ1

ρ2

ρ3

Fig. 2. An accepting path in a Büchi automaton

fact that the loop starts from an accepting state. Hence, we consider counter-
examples of the form ρ = ρ1ρ2ρ3 where ρ1ρ2 is a path from the initial state to
an accepting state, and ρ2ρ3 is a simple loop (see Figure 2).

A minimal counter-example can then be defined as a path of this form, such
that the length of ρ is minimal.

A minimal counter-example can of course be computed in polynomial time
using minimal paths algorithms based on breadth first searchs (BFS). Since
the model of the system frequently comes from several components working
concurrently, the resulting Büchi automaton to be checked for emptiness may
be huge. Therefore, memory is a critical resource and, for instance, we cannot
afford to store the minimal distances between all pairs of states. Actually, even
linear space may be a problem if the constant is too high. In tools like SPIN,
only one integer and a few bits per state are stored for the computation of
a “small” counter-example (it is well-known that SPIN does not compute a
minimal counter-example). The aim of this paper is to give a polynomial time
algorithm for computing a minimal counter-example using no more memory than
SPIN does.

There exists several algorithms [CVWY91,HPY96,GMZ04,SE05] to check a
Büchi automaton for emptiness and to construct a counter-example when the
language is nonempty. All these algorithms use nested depth first search (DFS)
and therefore they cannot be easily adapted to compute a minimal counter-
example. It is also possible to use Tarjan like algorithms to find a counter-
example, see e.g., [VG03].

In [GMZ04], an algorithm computing a minimal counter-example is pre-
sented. As far as the memory is concerned, this algorithm is as efficient as SPIN.
However, it is still based on DFSs and its time complexity is exponential.

Our contribution is the following:

– We propose a polynomial time algorithm to compute a counter-example of
minimal size. This algorithm does not use more memory than SPIN does
with option -i when trying to reduce the size of counter-examples.

– We improve this algorithm with several optimizations.

One can notice that the problem of finding the smallest counter-example,
given an LTL property and a finite system, is an NP-complete problem [KSF06].

2

However, we only focus in this paper on the probleme of finding a minimal
accepting path in a Büchi automaton representing the product of the model and
the negation of the property to be checked.

The paper is organized as follows. We first recall some notations and the
development context in the Section 2. Then we present in Section 3 an algorithm
that computes a minimal counter-example, and proove its correctness. We also
present an algorithm to recover the trace of a counter-example when only the
states s1 and s2 are known (see Figure 2). This is needed when using bit-state
hashing techniques. In Section 4, we propose several optimizations in order to
obtain a more efficient algorithm. We finally conclude.

2 Context and notations

Let A = (S, E, i, F) be a Büchi automaton where S is a finite set of states,
E ⊆ S × S is the transition relation, i ∈ S is the initial state and F ⊆ S is
the set of accepting states. Usually transitions are labeled with actions but since
these labels are irrelevant for the emptiness problem, they are ignored in this
paper. In pictures, the initial state is marked with an ingoing edge and accepting
states are doubly circled.

Recall that a path in an automaton is a sequence of states s1s2 · · · sk such
that for all i = 1, . . . , k − 1 there is a transition from si to si+1. We denote by
d(r, s) the distance between r and s, that is the length of a minimal path from r
to s. Note that d(r, s) = 0 if r = s and d(r, s) = ∞ if s is not reachable from r.
A loop is a path s1s2 · · · sk with k > 1 and sk = s1. A path s1s2 · · · sk is simple

if si 6= sj for all i 6= j. A loop s1s2 · · · sk is a cycle if s1s2 · · · sk−1 is a simple
path. A loop (resp. a cycle) is accepting if it contains an accepting state. Finally,
an accepting path is of the form γ = i · · · sk · · · sk+ℓ where i · · · sk+ℓ−1 is a simple
path and sk · · · sk+ℓ is an accepting cycle. We call i · · · sk the head of γ. Note
that an accepting path starts in the initial state. We also call counter-example

an accepting path.

2.1 development context

When checking for emptiness a Büchi automaton that arises from a model and
the negation of an LTL formula, we often run out of memory. Hence, it is crucial
to use as little memory as possible. This is why SPIN only use one integer and
a few bits per state when reducing the size of a counter-example. Our aim is to
use no more memory than SPIN does. Since we want to compute shortest paths
we will use BFS and store some distances. The memory constraint implies that
only one distance per state can be stored at any given time of the algorithm.

3 An algorithm to find the smallest counter-example

We will describe an algorithm to compute a minimal counter-example. We do not
include any optimization in this section. Section 4 will describe the improvements
yielding an efficient algorithm that can be implemented.

3

Algorithm 1 An algorithm to generate a shortest path from r to r′

void BFS trace (State r, State r′)

1: Queue F;

2: F.enqueue(r,0); r.bfs flag = true;

3: while F 6= ∅ do

4: (s,n) = F.dequeue();

5: for all s′ ∈ E(s) do

6: if ¬ s′.bfs flag then

7: F.enqueue(s′, n+1); s.bfs flag = true;

8: s.depth = n+1;

9: end if

10: if s′ == r′ then

11: goto 15;

12: end if

13: end for

14: end while

15: DFS trace(r,r′);

void DFS trace (State s, State r′)

1: cp.push(s,s.depth);

2: if s == r′ then

3: exit all recursive calls of DFS trace

4: end if

5: for all s′ ∈ E(s) do

6: if s′.depth == s.depth+1 then

7: DFS trace(s′,r′);

8: end if

9: end for

10: cp.pop();

Actually, instead of computing directly a counter-example ρ1ρ2ρ3 as de-
scribed in Figure 2, we will only compute the key-states s1 and s2 so that ρ2 is
a path from s1 to s2. The next section shows how the counter-example can be
reconstructed from s1 and s2.

3.1 Reconstructing the counter-example

Let ρ1ρ2ρ3 be a minimal counter-example (see Figure 2). Assume that only the
states s1 and s2 that are at the beginning and the end of ρ2 are known. The
problem is to reconstruct the counter-example.

If states are stored in an hash table as usual, one can recover the trace of the
counter-example using BFS algorithms [CSRL01] that store each time a state
is visited for the first time, a pointer to its father. It then suffices to apply this
BFS from the initial state i to s1 to generate ρ1, then to apply it from s1 to s2

to generate ρ2 and finally to apply it once more from s2 to s1 to generate ρ3.

4

Algorithm 2 A BFS to store distances from the initial state

Queue BFS distance(State i)

1: Queue F, Accept;

2: F.enqueue(i,0);

3: i.depth = 0; i.bfs flag = true;

4: while (F 6= ∅) do

5: (s,n) = F.dequeue();

6: if (s ∈ F) then

7: Accept.enqueue(s);

8: end if

9: for all s′ ∈ E(s) do

10: if ¬ s′.bfs flag then

11: s′.depth = n+1;

12: F.enqueue(s′,n+1);

13: s′.bfs flag = true;

14: end if

15: end for

16: end while

17: return Accept;

But if one wants to use bit-state hashing techniques [Hol98,WL93], one can-
not generate the trace using a backward pointer technique. Once a state is re-
moved from the queue of the BFS, then somehow the state is lost.

We propose a simple algorithm to reconstruct the counter-example, when
bit-state hashing techniques are used. Since we know states i, s1 and s2 we only
need to compute a shortest path between a pair (r, r′) of states. We first use
a BFS to store d(r, s) for each state visited until r′ is reached. Then we use a
DFS starting from r, that visits a successor s′ of a state s iff its distance to r is
d(r, s)+1. This condition enforces the DFS to visit states in the order implied by
their minimimal distance from r. Once r′ is reached, the shortest path is stored
in the DFS stack. The description is given in Algorithm 1.

3.2 Distances from the initial state

The first step is to compute with a BFS the distances beetween the initial state
and each state. They correspond to the possible length of the path ρ1 of the
counter-example (see Figure 2). Moreover, we also store in a queue called Accept,
all the accepting states that are reachable from the initial state. See Algorithm 2.

3.3 Another Breadth First search

Once Algorithm 2 has completed, we have stored in Accept, all reachables ac-
cepting states. We will now find the smallest counter-example going through
one of these states, and we will repeat this operation for each accepting state.
Note that, since we used a queue to store accepting states, we will start with the
accepting state which is the closest to the initial state.

5

Algorithm 3 A BFS to construct the priority queue

Priority Queue BFS PF(State r)

1: Queue F; Priority Queue PF;

2: F.enqueue(r,0); r.bfs flag = true;

3: if r.depth < maxdepth then

4: PF.enqueue(r, r.depth);

5: end if

6: while F 6= ∅ do

7: (s,n) = F.dequeue();

8: for all s′ ∈ E(s) do

9: if ¬ s′.bfs flag then

10: F.enqueue(s′, n+1)); s′.bfs flag = true;

11: if s′.depth + n + 1 < maxdepth then

12: PF.enqueue(s′, s′.depth + n + 1);

13: end if

14: end if

15: end for

16: end while

17: return PF;

We denote by r the current accepting state we are working on. Algorithm 3
will fill a priority queue (see [CSRL01]3) with the set of states reachable from
r. The priority that will be associated with a state s will be d(i, s) + d(r, s), i.e.,
|ρ1|+ |ρ3| in the sense of the Figure 2. We already know d(i, s) from Algorithm 2.
This information is stored as the s.depth. To fill the priority queue, we perform
another BFS starting from r that visits all states reachable from r. We use a
global variable maxdepth that contains the size of the smallest counter-example
found so far (∞ if no counter-examples were already found).

Once Algorithm 3 has been performed, we have in the priority queue PF the
states reachable from r ordered according to d(i, s) + d(r, s). We will use this
information to find the smallest counter-example passing through r.

Lemma 1.

1. For all (s, n) ∈ PF, we have n = d(i, s) + d(r, s) < maxdepth.

2. For all state s, if d(i, s) + d(r, s) < maxdepth then (s, d(i, s) + d(r, s)) ∈ PF.

Proof. (1) For each state, we have s.depth = d(i, s). The property is clear when
s = r. Now, when s′ is inserted in PF at line 12, we have n + 1 = d(r, s′) by
classical properties of the BFS. Since this is guarded by the test in line 11, the
result follows.

(2) If s = r then line 4 is executed and we get the result. Let now s′ be such
that d(i, s′) + d(r, s′) < maxdepth. Since d(r, s′) < maxdepth we deduce that
d(r, s′) < ∞ and s′ is reachable from r. Hence s′ will be considered and lines

3 There are different implementations for a priority queue (binary heap, binomial heap,
Fibonacci heap). They all give the same (theoretical) complexity for our purpose

6

i

r

s

t

ρ1

ρ3

ρ21

ρ22

Fig. 3.

11-13 will be executed with s′. Since s′.depth = d(i, s′) and n + 1 = d(r, s′) we
deduce from the hypothesis that (s′, d(i, s′) + d(r, s′)) is inserted in PF. ⊓⊔

3.4 BFS guided by a priority queue

Algorithm 4 finds the smallest counter-example whose loop goes through a spec-
ified repeated state r. Again, our search is limited by maxdepth but we omit
this optimization from our intuitive descritption. After Algorithm 3 we have in
the priority queue PF all pairs (s, n) with n = d(i, s) + d(r, s) (Lemma 1). The
aim is to find a state s such that d(i, s) + d(r, s) + d+(s, r) is minimal (here
d+(s, r) denote the length of a shortest nonempty path from s to r). Note that
the corresponding counter-example can then be reconstructed using Algorithm 1.

The idea is to use simultaneous (interleaved) BFSs. We begin with a BFS
starting from some state s with d(i, s)+d(r, s) minimal. Assume we have reached
a state t (see Figure 3). If d(i, s) + d(r, s) + d(s, t) is smaller than the minimal
priority in PF then we continue the BFS from state t. If, on the other hand, there
is some state s′ with d(i, s′) + d(r, s′) < d(i, s) + d(r, s) + d(s, t) then we start a
new BFS from state s′ instead. We use a single queue G for all the interleaved
BFSs. In this queue, we store pairs (s, t) since, when we eventually reach r, we
need to know from which state s we started with.

The algorithm proceeds in rounds (separated by # in the queue G). In the
initialization phase, we put in G all pairs (s, s) with n = d(i, s)+d(r, s) minimal.
Then we consider all successors t′ of states t such that (s, t) is in G for some s.
The “rank” of these states t′ is n + 1 and we add (s, t′) to G for the next round
if t′ has not yet been reached. We also add for the next round the pairs (s, s)

7

Algorithm 4 Algorithm for finding the smallest counter-example

(State,State,int) Prio min(State r, Priority Queue PF)

1: Queue G;

2: n = PF.PrioMin();

3: while (PF 6= ∅ or G 6= ∅) and (n + 1 < maxdepth) do

4: /* Put in G pairs (s,s) such that s is in PF with priority n,

without being marked.*/

5: while (PF.min() == n) do

6: (s,m) = PF.extract min();

7: if ¬ s.marked then

8: G.enqueue(s,s);

9: s.marked = true;

10: end if

11: end while

12: G.enqueue(#);

13: while G.head() 6= # do

14: (s,t) = G.dequeue();

15: for all t′ ∈ E(t) do

16: if t’ == r then

17: return (s,n+1);

18: else if ¬ t’.marked then

19: G.enqueue(s,t’);

20: t’.marked = true;

21: end if

22: end for

23: end while

24: G.dequeue(); /* symbol # */

25: n++;

26: end while

27: return (r,∞);

such that (s, n + 1) is in PF. When we reach state r we have found our smallest
counter-example whose loop goes through r.

Lemma 2. Invariant for Algorithm 4: there is exactly one # in G between lines

13-23 and there is no # in G outside lines 12-24.

Proof. At the beginning of the algorithm, G is empty. We insert a # in the queue
at line 12 and no # is inserted or deleted between lines 13-23. Hence, the #
inserted at line 12 is poped at line 24. The result follows. ⊓⊔

The invariants for the loops of Algorithm 4 are given by the following table

Invariants for loop 3 : (1, 2, 3, 4)
Invariants for loop 5 : (1, 2, 3, 4)
Invariants for loop 13 : (2, 3, 5, 6, 7)

8

where

∀s d(i, s) + d(r, s) + d+(s, r) > n (1)

∀t t is marked ∨ (t, n) ∈ PF ∨ ∀s, d(i, s) + d(r, s) + d(s, t) > n (2)

∀s, t (s, t) ∈ G =⇒ t is marked (3)

∀s, t (s, t) ∈ G =⇒ d(i, s) + d(r, s) + d(s, t) = n (4)

∀s, t (s, t) ∈ G before # =⇒ d(i, s) + d(r, s) + d(s, t) = n (5)

∀s, t (s, t) ∈ G after # =⇒ d(i, s) + d(r, s) + d(s, t) = n + 1 (6)

PF.PrioMin() > n (7)

Loop 3. We first show that (1, 2, 3, 4) hold initially for loop 3, i.e., after line 2:

(1) Since PF.PrioMin() = n, we deduce from Lemma 1 that d(i, s) + d(r, s) ≥ n
for all s. The result follows since d+(s, r) > 0.

(2) Assume that d(i, s)+d(r, s)+d(s, t) ≤ n for some s. Since PF.PrioMin() = n,
we deduce using Lemma 1 that d(i, s) + d(r, s) = n and d(s, t) = 0. Using
Lemma 1 again we obtain (t, n) = (s, n) ∈ PF.

(3, 4) Holds trivially since G is empty.

Loop 5. Assuming that (1, 2, 3, 4) are invariants for loop 3, we obtain immedi-
ately that (1, 2, 3, 4) hold initially for loop 5. We show that they are preserved
by the execution of lines (6-10):

(1) Clear since n is unchanged.
(2) If t is marked or (t, n) ∈ PF before line 6 then the same holds after line

10. Moreover n is unchanged in this loop hence the third part of (2) is also
invariant.

(3) Clear since whenever a pair (s, s) is inserted in G at line 8 then s is marked
at line 9 .

(4) When a pair (s, s) is inserted in G at line 8 then we have d(i, s)+ d(r, s) = n
by Lemma 1.

Loop 13. First, note that (2) and (7) hold after line 11 and are invariants by
lines (12-24): PF and n remain unchanged in the body of loop 13 and once a
state is marked, it remains so forever.

Also, (3) holds after line 11 and when a pair (s, t′) is inserted in G at line 19
then t′ is marked at the next line. Hence, (3) is preserved by the execution of
lines (14-22).

Now, since (4) holds after line 11 then (5, 6) hold after line 12 (by Lemma 2
there are no # in G except from lines (13-23) where there is exactly one # in G).
Equation (5) is clearly preserved by lines (14-22) since new pairs are inserted in
G after #.

It remains to show that (6) is preserved by lines (14-22). Consider the pair
(s, t′) inserted in G at line 19. By (5) we have d(i, s) + d(r, s) + d(s, t) = n. Since
t′ ∈ E(t), we get d(t, t′) ≤ 1 and we deduce that d(i, s)+d(r, s)+d(s, t′) ≤ n+1.
Now, t′ was not marked (line 18) and (t′, n) /∈ PF by (7). We deduce from (2)

9

that d(i, s) + d(r, s) + d(s, t′) > n. Therefore, d(i, s) + d(r, s) + d(s, t′) = n + 1
and (6) still holds after the insertion of (s, t′) in G.

Loop 3 continued. Finally, we have to show that (1, 2, 3, 4) still hold after
line 25. We know that after line 23, the first element in G is # and that (2, 3, 6)
hold. We deduce immediately that (3, 4) hold after line 25.

We consider (1), so assume that d(i, s) + d(r, s) + d+(s, r) = n + 1 for some
s. Let t be such that r ∈ E(t) and d+(s, r) = d(s, t) + 1. Then, we deduce that
d(i, s) + d(r, s) + d(s, t) = n. Now, after line 11 we have (t, n) /∈ PF by (7). We
deduce from (2) that t is marked. Let s′ be such that (s′, t) ∈ G. Since r ∈ E(t)
we deduce that line 17 will be executed before the end of loop 13. Therefore, if
line 24 is reached, this means that d(i, s) + d(r, s) + d+(s, r) > n + 1 for all s.
We deduce that (1) still holds after line 25 (if reached).

It remains to show that (2) still holds after line 25. This is a direct conse-
quence of the following:

Claim. Assume that after line 23 there are s, t′ such that t′ is not marked and
d(i, s) + d(r, s) + d(s, t′) ≤ n + 1. Then, (t′, n + 1) ∈ PF.

Let s, t′ satisfy the hypotheses of the claim. By (7) we know that (t′, n) /∈ PF

hence, by (2), we get d(i, s) + d(r, s) + d(s, t′) > n. Therefore, d(i, s) + d(r, s) +
d(s, t′) = n + 1. We prove that t′ = s by contradiction. So assume that t′ 6= s.
Then d(s, t′) > 0 and there exists t such that d(s, t′) = d(s, t) + 1 and t′ ∈ E(t).
We obtain d(i, s) + d(r, s) + d(s, t) = n. We deduce that t was already marked
before line 12 by (7, 2). Therefore, there exists s′ such that (s′, t) has been
inserted in G before line 12 (maybe in some previous execution of the body of
loop 3). Therefore, after line 23, all successors of t have already been considered
and must be marked. This is a contradiction with t′ ∈ E(t) and t′ is not marked.
Therefore, t′ = s and we have d(i, s) + d(r, s) = n + 1. Since n + 1 < maxdepth

(test line 3), using Lemma 1 we obtain (t′, n+1) = (s, n+1) ∈ PF, which proves
the claim.

Lemma 3. Either d(i, s) + d(r, s) + d+(s, r) ≥ maxdepth for all state s and

Algorithm 4 exits at line 27, or Algorithm 4 exits at line 17 with a pair (s, n+1)
such that d(i, s) + d(r, s) + d+(s, r) = n + 1 < maxdepth and for all state s′ we

have d(i, s′) + d(r, s′) + d+(s′, r) > n.

Proof. Follows easily from the invariants, in particular (1) and (5). ⊓⊔

3.5 Synthesis

We give now the complete algorithm which computes the smallest counter-
example. This algorithm works in time O(|E| · |F | · log(|S|)), the factor log(|S|) is
due to the operations on the priority queue. The algorithm works in linear space.
More precisely, for each state we store an integer (depth field) and a few bits
(bfs flag or marked). The size of each queue is at most linear in the number of
states.

10

Algorithm 5 The complete algorithm

Stack Minimal Counter-example (State i)

1: Accept = BFS distance(i);

2: maxdepth = ∞;

3: while Accept 6= ∅ do

4: State r = Accept.dequeue();

5: Priority Queue PF = BFS PF(r);

6: (s,n) = Prio min(r, PF)

7: if n < maxdepth then

8: s1 = s; s2 = r;

9: maxdepth = n;

10: end if

11: end while

12: if maxdepth < ∞ then

13: Stack cp;

14: BFS trace(i,s1); BFS trace(s1,s2); BFS trace(s2,s1);

15: return cp;

16: end if

17: return ∅;

4 Improvements

The first improvment is to use, before calling Algorithm 5, a nested-DFS al-
gorithm such as [CVWY91,HPY96,SE05,GMZ04], or a Tarjan-like algorithm
[VG03]4. This allows to perform a linear time search to detect whether there
exists some counter-example, and in this case it can also initialize maxdepth to
the size of the counter-example found in order to speed-up Algorithm 5.

We can further improve the computation time by applying the following
optimizations.

Improving the initial value of maxdepth

For Algorithm 2, suppose that a counter-example has already been found and
stored in a path called cp. Then, if you have used an algorithm like a nested-
DFS, you know if a state is on the head of the counter-example (it will be blue

(see [SE05,GMZ04] for more information on the blue flag5) and in the current
stack). You will compute with Algorithm 2, the minimal distance beetween the
initial state and all the states. So for each state that belongs to the head of the
counter-example cp, one can compare its distance from the initial state inthe
path cp, and its minimal distance. Then, if the latter is smaller, one can already
update the maxdepth field at this point. These modifications are described in
Algorithm 6, lines 4, 11 and 17-20.

4 In fact, a nested-DFS algorithm can also prevent revisiting some states, see the end
of Algorithm 6

5 The blue color is described in these papers, but it is common to all the nested-DFS
approaches

11

Algorithm 6 A BFS to store distances from the initial state

Queue BFS distance(State i)

1: Queue F, Accept;

2: F.enqueue(i,0);

3: i.depth = 0; i.bfs flag = true;

4: maxdepth = size(cp); n = 0; saved = 0

5: while (F 6= ∅) ∧ (n < maxdepth) do

6: (s,n) = F.dequeue();

7: if (s ∈ F) then

8: Accept.enqueue(s);

9: end if

10: for all s′ ∈ E(s) do

11: if s′.color != black and ¬ s′.bfs flag then

12: s′.depth = n+1;

13: F.enqueue(s′,n+1);

14: s′.bfs flag = true;

15: end if

16: end for

17: if s.color == blue and s.is in cp and depth(s,cp) - n > saved then

18: saved = depth(s,cp) - n;

19: maxdepth = size(cp) - saved;

20: end if

21: end while

22: return Accept;

Looking for counter-example in Algorithm 3

If a successor of a state is also the current accepting state, then we have found
a counter-example (and it has the form of Figure 1). Since we know its length
we can update maxdepth (see lines 19-21 in Algorithm 7).

Limitate the state space in Algorithm 3

We can also add a condition in the body of the loop saying that we are looking
for counter-examples for which the loop size is at most maxdepth (see lines 9-11
in Algorithm 7).

Call to Algorithm 4 iff a smaller counter-example may exist

There is also in Algorithm 7, a local boolean named loop, which records if there
exists an accepting path into the limitated state space (limited by maxdepth).
If this boolean loop is false at the end of the execution, then there are no useful
loop passing through r and there is no need to continue the computation for this
state (see lines 6, 18 and 25-29 in Algorithm 7).

Including only useful states in PF

Recall that we are looking for a state s for which d(i, s) + d(r, s) + d+(s, r) is
minimal. Algorithm 3 inserts in PF pairs (s, d(i, s)+ d(r, s)) which are then used
by Algorithm 4 to find some state which minimizes the quantity above.

12

Algorithm 7 A BFS to construct the priority queue

Priority Queue BFS PF(State r)

1: Queue F; Priority Queue PF;

2: F.enqueue(r,0); r.bfs flag = true;

3: if r.depth < maxdepth then

4: PF.enqueue(r, r.depth);

5: end if

6: loop = false;

7: while F 6= ∅ do

8: (s,n) = F.dequeue();

9: if n + 1 ≥ maxdepth then

10: break;

11: end if

12: for all s′ ∈ E(s) do

13: if ¬ s′.bfs flag then

14: F.enqueue(s′, n+1)); s′.bfs flag = true;

15: if (s′.depth + n + 1 < maxdepth) and (s′.depth < s.depth) then

16: PF.enqueue(s′, s′.depth + n + 1);

17: end if

18: loop = loop ∨ (s′ == r);

19: if (s′ == r) and (s′.depth + n + 1 < maxdepth) then

20: maxdepth = s′.depth + n + 1;

21: end if

22: end if

23: end for

24: end while

25: if loop then

26: return PF;

27: else

28: return ∅
29: end if

At line 10 of Algorithm 3, we have d(r, s) = n, d(r, s′) = n + 1 and s′ ∈
E(s). Then, d+(s, r) ≤ 1 + d(s′, r). We deduce that if d(i, s) ≤ d(i, s′) then
d(i, s)+d(r, s)+d+(s, r) ≤ d(i, s′)+d(r, s′)+d+(s′, r). Therefore, if s′ minimizes
this quantity, so does s and there is no need to insert s′ in the priority queue
PF. This is prevented by the additional constraint on line 15 of Algorithm 7.

Note that this only saves some memory in the priority queue PF. Indeed, with
the notation above, we have d(i, s) + d(r, s) < d(i, s′) + d(r, s′) (still assuming
that d(i, s) ≤ d(i, s′)). Hence, even if we insert (s′, d(i, s′) + d(r, s′)) in PF, when
this pair is extracted from PF at line 6 of Algorithm 4, the state s′ is already
marked and therefore, (s′, s′) is not inserted in G.

5 Conclusion

We have proprosed an algorithms to compute the smallest counter-example of
a property represented by a Büchi automaton. We have presented a set of im-

13

provements that can be immediatly used for an algorithm and another version
that is less efficient in time, but more efficient in memory.

Our algorithm has nice properties. First, it can find all smallest counter-
examples for all accepting states, if the variable maxdepth is always set to ∞.

Second, the ordering of the transitions has no impact on the computation
time. For nested-DFS approaches, the result can strongly depends on the order
of the transitions.

Third, our algorithm can also be used as a regular algorithm for bounded
model checking. This is not the case for classical nested-DFS algorithms which
fail to anwser properly for some graph configurations (depending on the ordering
for the visit).

References

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leis-
erson. Introduction to Algorithms. McGraw-Hill Higher Education, 2001.

[CVWY91] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory effi-
cient algorithms for the verification of temporal properties. In Computer-
aided verification ’90 (New Brunswick, NJ, 1990), volume 3 of DIMACS
Ser. Discrete Math. Theoret. Comput. Sci., pages 207–218. Amer. Math.
Soc., Providence, RI, 1991.

[GMZ04] Paul Gastin, Pierre Moro, and Marc Zeitoun. Minimization of counterexam-
ple in spin. In SPIN Workshop, Rutgers, Piscataway, NJ, 2004. American
Mathematical Society.

[Hol98] G. Holzmann. An analysis of bitstate hashing. Formal Methods in System
Design, 13(3):287–305, November 1998. extended and revised version of
Proc. PSTV95, pp. 301-314.

[HPY96] G. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search.
In Proc. Second SPIN Workshop, Rutgers, Piscataway, NJ, 1996. American
Mathematical Society.

[KSF06] O. Kupferman and S. Sheinvald-Faragy. Finding shortest witnesses to the
nonemptiness of automata on infinite words. In Proc. 17th International
Conference on Concurrency Theory, volume 4137 of Lecture Notes in Com-
puter Science, pages 492–508. Springer-Verlag, 2006.

[SE05] Stefan Schwoon and Javier Esparza. A note on on-the-fly verification algo-
rithms. In Nicolas Halbwachs and Lenore Zuck, editors, Proceedings of the
11th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), volume 3440 of Lecture Notes in
Computer Science, pages 174–190, Edinburgh, UK, April 2005. Springer.

[VG03] Anti Valmari and Jaco Geldenhuys. Tarjan’s algorithm makes on-the-fly
ltl verification more efficient. In Proc. of 9th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, 2003.

[WL93] P. Wolper and D. Leroy. Reliable hashing without collision detection. In
Proc. 5th International Computer Aided Verification Conference, pages 59–
70, 1993.

14

