
Bottleneck Analysis of a Gigabit Network

Interface Card : Formal Veri�cation Approach

Hyun-Wook Jin, Ki-Seok Bang, Chuck Yoo, and Jin-Young Choi

Department of Computer Science and Engineering,
Korea University

SEOUL, 136-701 KOREA
fhwjin, hxyg@os.korea.ac.kr

fkbang, choig@formal.korea.ac.kr

Abstract. This paper addresses how formal veri�cation can be applied
to �nd a bottleneck in a gigabit network interface card that prevents
the card from achieving the best possible performance. Finding a bot-
tleneck in a gigabit network interface card is not an easy task because it
is equipped with sophisticated hardware components, such as multiple
DMA engines and separate CPU and memory. Therefore, the interac-
tions between a network interface card and the host are very complex so
that the �rmware to manage the interactions is also complicated, which
makes the bottleneck analysis very diÆcult. As an alternative approach
of the bottleneck analysis, we specify the �rmware in a gigabit network
interface card and analyze the behavior of the speci�cation with SPIN.
As an example of gigabit network interface cards, Myrinet is used in
this paper. We show that SPIN can easily verify whether the Myrinet
�rmware has a bottleneck once the state transitions inside the �rmware
are modeled properly.

1 Introduction

Gigabit network interface cards (NIC) are getting popular. A notable example
is Myrinet [3]. In order to achieve the best possible performance out of Myrinet,
several user-level communication primitives have been proposed [4, 6, 12], and
Berkeley-VIA [4] is a well-known implementation of Virtual Interface Archi-
tecture (VIA) [5] that is an industrial standard for user-level communication
primitives. VIA allows user processes to directly access NIC bypassing the ker-
nel that has multiple communication layers. Therefore, it is generally expected
that VIA can achieve near physical bandwidth of gigabit networks.

However, our research shows that Berkeley-VIA is able to achieve a slightly
higher throughput than UDP on Myrinet as shown in Figure 1 (only 6% improve-
ment at 32KB data size). Furthermore, Berkeley-VIA has much less through-
put than an improved UDP named Asynchronous UDP [13]. It turns out that
Berkeley-VIA utilizes only about 1/2 of bandwidth of Myrinet. On the other
hand, we �nd that Berkeley-VIA has the shortest one-way latency as shown in
Figure 2, which indicates that Berkeley-VIA has less communication overhead



than UDP and Asynchronous UDP. So a question is why Berkeley-VIA has a
very low overhead but is not able to achieve the best possible throughput. Our
goal is to �nd the performance bottleneck.

The �rmware of Myrinet NIC needs to be analyzed to see where the bot-
tleneck is. Because Myrinet NIC has three DMA engines and separate memory
and CPU, the �rmware itself is very complicated. Therefore, the analysis of the
�rmware is not an easy task. Also the interaction between the �rmware and the
host is very complex so that the �rmware analysis becomes even more compli-
cated.

This paper attempts an alternative approach. In order to analyze the �rmware
of Myrinet NIC, we �rst build state transition diagrams to model the �rmware.
Second, we translate the state transition diagrams into speci�cations written in
PROMELA (PROcess MEta LAnguage) [7]. Third, we derive veri�cation for-
mulas. Then the formulas are veri�ed with SPIN [8].

Speci�cally, we analyze Lanai Control Program (LCP) and Myrinet Control
Program (MCP), where LCP is the �rmware for Berkeley-VIA and MCP is the
�rmware for traditional protocols, such as UDP and TCP. Since our goal is to �nd
a performance bottleneck, we focus on how well DMA engines of Myrinet NIC
are utilized because the utilization of DMA engines determines the throughput.

This paper is organized as follows. Section 2 describes the hardware com-
ponents in Myrinet NIC. Section 3 models LCP and MCP. We construct state
transition diagrams and specify them with PROMELA. LCP and MCP are an-
alyzed in Section 4 with SPIN. Finally, Section 5 concludes the paper.

2 Myrinet Network Interface Card

Myrinet is a gigabit Local Area Network (LAN). Many researches apply Myrinet
to clustering systems or storage area networks [1, 2]. In this section, we describe
the hardware components of Myrinet NIC based on LANai-4 [10].

Myrinet NIC consists of a RISC processor named LANai, Static Random
Access Memory (SRAM), and three DMA engines (i.e. EBUS-LBUS, send-DMA,
and receive-DMA engines) as shown in Figure 3. LANai executes the �rmware,
and SRAM stores the data for sending or receiving. Each DMA engine works as
follows.

The EBUS-LBUS DMA engine is responsible for the data movement between
the main memory and the SRAM. The �rmware initializes the EBUS-LBUS
DMA by setting the DMA direction register (DMA DIR), main memory ad-
dress register (EAR), SRAM address register (LAR), and DMA counter register
(DMA CTR). The DMA DIR register indicates that the DMA operation moves
data whether from main memory to SRAM or vice versa. The EAR and LAR
registers point the start of main memory bu�er and SRAM bu�er, respectively.
The DMA CTR register contains the number of bytes for DMA. In the case
of sending, the data in the area indicated by the EAR register is moved to the
bu�er indicated by the LAR register as many as the value of DMA CTR register,
which is the same in the case of receiving excepting the data moving direction.



The send-DMA engine moves the data in SRAM to the Myrinet physical
network. The �rmware sets the sending memory pointer register (SMP) and
sending memory limit register (SML). The SMP register speci�es the beginning
of the SRAM bu�er to send-DMA, and the SML register indicates the end of
the bu�er.

The receive-DMA engine receives a data from Myrinet LAN into the SRAM.
The registers of receive-DMA engine are receiving memory pointer register (RMP)
and receiving memory limit register (RML). The registers have the same role as
the registers of send-DMA engine excepting the registers specify the receiving
bu�er.

The �rmware initiates the DMA operations by setting the proper registers of
each DMA engine and notices the completion of corresponding DMA operation
via the 32-bit Interrupt Status Register (ISR) on LANai processor. Each bit
of ISR indicates a speci�c hardware event. The bit number 4 (dma int bit)
is set when an EBUS-LBUS DMA operation is completed. The bit number 3
(send int bit) and 1 (recv int bit) are set when a send-DMA and receive-DMA
are completed, respectively. We refer the details of Myrinet NIC to [2].

3 Modeling of Firmware

This Section performs the modeling of LCP and MCP based on their source
codes. We construct the state transition diagrams for concerned modules and
specify them with PROMELA.

3.1 Lanai Control Program

LCP is the �rmware for Berkeley-VIA. LCP consists of four modules: hostDma,
lcpTx, lcpRx, and main. Figures 4, 5, and 6 show the state transition diagrams
of former three modules.

The hostDma module is responsible for EBUS-LBUS DMA. The initial sate
of the hostDma module is HostDmaIdle. The lcpTx and lcpRx modules invoke
the method of the hostDma module. Then, the hostDma module initializes the
EBUS-LBUS DMA operation, and its state moves to HostDmaBusy. When the
EBUS-LBUS DMA operation is done (i.e. dma int bit of ISR is set), the state
of the hostDma module moves from HostDmaBusy to HostDmaIdle, and the
method returns to its invoker.

The lcpTx module sends a data. The initial state is LcpTxIdle and moves
to the LpcTxGotASend state when there is a data to send. Then, the lcpTx
module invokes the method of the hostDma module moving to LcpTxHostDma.
After the return of the invoked method, the state of the lcpTx module moves
to LcpTxSendDma. In this state, the lcpTx module initializes the send-DMA
operation and is waiting the completion of send-DMA. If a data is received from
the network during the send-DMA operation, the lcpTx module invokes the
method of the lcpRx module and moves to the LcpTxInvokeRx state. When the
lcpRx module has received a data completely, its method returns to the lcpTx



module, and the state of the lcpTx module moves to LcpTxSendDma again. The
LcpTxSendDma state can be changed to LcpTxIdle when the send-DMA is done
(i.e. send int bit of ISR is set).

The lcpRx module is responsible for receiving a data. The initial state is
LcpRxReady that initializes a receive-DMA operation beforehand because it is
hard to know when a data gets in. When a data is received from the network to
Myrinet NIC (i.e. recv int bit of ISR is set), the state moves to LcpRxGotARe-
ceive, and the lcpRx module invokes the method of the hostDma module moving
its state to LcpRxHostDma. After the method of the hostDma module returns,
the lcpRx module changes its sate from LcpRxHostDma to LcpRxReady and
reinitializes the receive-DMA operation.

The main module invokes the methods of the lcpTx and lcpRx modules when
there is a data to send or receive, respectively. Note that the entry point (gray
ellipses of Figures 4, 5, and 6) of the hostDma, lcpTx, and lcpRx modules is
the initial state of each module. We will discuss more about the entry point in
Section 3.2.

We specify the modules as processes in PROMELA. All invocations between
modules are performed in a synchronous manner. Therefore, we implement the
invocation by using two rendezvous communication channel for each process.
One is the channel to pass an argument, and the other returns a return value.
An event is passed as an argument or return value via the rendezvous channels.
In addition, we specify ISR bits that notify the completion of DMA operations.
Figures 7 and 8 show the part of the speci�cation written in PROMELA, which
are the hostDma and lcpTx modules.

3.2 Myrinet Control Program

MCP is included in Myrinet Software package [11] that contains a device driver
and �rmware (i.e. MCP). While Berkeley-VIA supports only VIA protocol,
Myrinet Software does TCP/IP protocol suite. MCP consists of �ve modules:
hostSend, netSend, hostReceive, netReceive, and main. The hostSend and net-
Send modules are responsible for sending. The hostSend module moves a data
from main memory to SRAM, and the netSend module sends a data in SRAM
to the network. On the other hand, the receiving of data is performed by the
hostReceive and netReceive modules. The netReceive module receives a data
from the network to SRAM. The hostReceive module moves the received data
to the main memory. The state transition diagrams of four modules are shown
in Figures 9, 10, 11, and 12. The main module invokes the methods of the former
four modules according to the event occurred.

The initial state of the hostSend module is HostSendIdle. The state is moves
to HostSendGotASend when there is a data to send. Then, the hostSend mod-
ule checks some conditions. If there is no bu�er available in SRAM, the state
becomes HostSendFull and returns to the main module. Otherwise, the host-
Send module examines whether the EBUS-LBUS DMA engine is occupied by
the hostReceive module. If the EBUS-LBUS DMA engine is idle, then the state



moves to HostSendDma initializing an EBUS-LBUS DMA operation and re-
turns to the main module without a waiting for the completion of the DMA.
If the EBUS-LBUS DMA engine is occupied by the hostReceive module, the
state moves to HostSendDmaBusy and returns to the main module. In the case
of reaching the HostSendFull state, the state transition is performed when the
netSend module consumes a data in SRAM. The state transition from HostSend-
DmaBusy is occurred after the completion of EBUS-LBUS DMA performed by
the hostReceive module. When the state is HostSendDma, the hostSend module
moves its state to the initial state after the completion of EBUS-LBUS DMA
(i.e. dma int bit of ISR is set).

The initial state of the netSend module is NetSendIdle. If there is a data
moved from main memory to SRAM by the hostSend module, the method of
the netSend module is invoked moving its state to NetSendBusy. The netSend
module in NetSendBusy initializes the send-DMA operation, then the method
returns. When the send-DMA operation is completed (i.e. send int bit of ISR is
set), the state is changed to NetSendIdle.

The hostReceive module starts from HostReceiveIdle. If there is a data re-
ceived from the network to SRAM by the netReceive module, the state moves
to HostReceiveGotAReceive. Then, like the hostSend module, the hostReceive
module checks whether the other party uses the EBUS-LBUS DMA engine or
not. If the EBUS-LBUS DMA engine is occupied by the hostSend module, the
state moves to HostSendDmaBusy. Otherwise, the state is changed to HostRe-
ceiveDma, and the module initializes EBUS-LBUS DMA. In both case, after the
state transition, the method returns to the main module. The state transition is
performed from HostReceiveDmaBusy to HostReceiveDma when the hostSend
module releases the EBUS-LBUS DMA engine. The state moves from HostRe-
ceiveDma to HostReceiveIdle, after the completion of the EBUS-LBUS DMA
operation (i.e. dma int bit of ISR is set).

The initial state of the netReceive module is NetReceiveDma that is the same
state with LcpRxReady of LCP. When the receive-DMA is done (i.e. recv int
bit of ISR is set), the state moves to NetReceiveDmaDone that checks whether
the receiving bu�er in SRAM is available for the next receiving. If it is available,
the state is returns to the initial state; else, the state is changed to NetReceive-
Full. The netReceive module can escape from the NetReceiveFull state when the
hostReceive module consumes a data in SRAM.

Comparing with modules of LCP, the notable di�erence is that each module
of MCP has plural entry points. This means that the method of each module is
invoked from an entry point and returns when it reaches to another entry point
without waiting for the next event. Therefore, the method invoked in the next
time starts from the state in which the method returns right before. On the
other hand, in the case of LCP, a method is invoked when the module is in the
initial sate and returns only when it backs to the initial state.

Like LCP, we implement an invocation by using two rendezvous communica-
tion channel of PROMELA. The events are stored in the channel named Events.
The main module gets an events from the Events channel and invokes the cor-



respond method. Figures 13 and 14 show the part of the speci�cation written in
PROMELA, which are the hostSend and netSend modules.

4 Comparison of Firmware

This section analyzes the behaviors of LCP and MCP from the viewpoint of
throughput. The key factor that determines the throughput of NIC is how well
the DMA engines are utilized. The maximum throughput can be achieved when
the EBUS-LBUS DMA engine performs in parallel with the send-DMA and
receive-DMA engine.

For example, let DMAEBUS�LBUS be the throughput of the EBUS-LBUS
DMA and DMAsend be the throughput of the send-DMA. DMAEBUS�LBUS is
determined by the bandwidth of the I/O bus (e.g. PCI) that connects the main
memory and SRAM of NIC. On the other hand, DMAsend is determined by the
network physical media. When DMA engines perform in parallel, the throughput
is evaluated as follows:

Throughput =MIN(DMAEBUS�LBUS ; DMAsend)

However, if DMA engines perform sequentially, the throughput is limited as
follows:

Throughput = DMAEBUS�LBUS=(1 +DMAEBUS�LBUS=DMAsend)

If DMAEBUS�LBUS and DMAsend are the same, the throughput achieved is
reduced to 1/2 of DMAEBUS�LBUS. The next step of the analysis is to derive
veri�cation formulas. Because the veri�cation formulas need to reect the uti-
lization of DMA engines, we use the following formulas written in LTL [9]:

1. LCP
A. � (LTIR && HDB && ! LTHD)

Can the lcpTx module initiate send-DMA while the hostDma module is
using EBUS-LBUS DMA that moves data from main memory to SRAM?

B. � (LRR && HDB && ! LRHD)
Can the lcpRx module initiate receive-DMA while the hostDma mod-
ule is using EBUS-LBUS DMA that moves data from SRAM to main
memory?
{ LTIR : The state of lcpTx is LcpTxInvokeRx.
{ LTHD : The state of lcpTx is LcpTxHostDma.
{ LRR : The state of lcpRx is LcpRxReady.
{ LRHD : The state of lcpRx is LcpRxHostDma.
{ HDB : The state of hostDma is HostDmaBusy.

2. MCP
A. � (HSD && NSB)

Can the netSend module initiate send-DMA while the hostSend module
occupies the EBUS-LBUS DMA engine?



B. � (HRD && NRD)
Can the netReceive module initiate receive-DMA while the hostReceive
module occupies EBUS-LBUS DMA engine?
{ HSD : The state of hostSend is HostSendDma.
{ NSB : The state of netSend is NetSendBusy.
{ HRD : The state of hostReceive is HostReceiveDma.
{ NRD : The state of netReceive is NetReceiveDma.

If DMA engines perform in parallel, each veri�cation formulas should result
in \True". When we run SPIN with the above formulas, the veri�cation formulas
of MCP are \True". However, the formulas for LCP result in \False". That is,
LCP cannot perform the send-DMA during the EBUS-LBUS DMA that moves
data from main memory to SRAM (formula 1-A). Also LCP cannot perform
the receive-DMA as well during the EBUS-LBUS DMA that moves data from
SRAM to main memory (formula 1-B). This result explains why the performance
of Berkeley-VIA is limited. The simulation results also show that LCP performs
DMA sequentially but MCP performs DMA in parallel. We have run random
and interactive simulations and con�rmed the same results.

In addition, we verify the correctness that only one module should occupy
the EBUS-LBUS DMA engine at a time. The EBUS-LBUS DMA engine moves
data not only from main memory to SRAM for sending, but also from SRAM
to main memory for receiving. Therefore, a module should wait until the DMA
engine becomes idle, if the other module already occupies the DMA engine. The
formulas used are as follows:

1. LCP
[] ! (LTHD && LRHD)
The lcpTx module cannot use the EBUS-LBUS DMA engine during the
lcpRx module occupies it.

2. MCP
[] ! (HSD && HRD)
The hostSend module cannot use the EBUS-LBUS DMA engine during
the hostReceive module occupies it.

The veri�cation results show that both LCP and MCP satisfy the above
correctness property.

5 Conclusions

This paper investigates the bottleneck of the Myrinet �rmware. Speci�cally, we
model LCP and MCP with state transition daigrams and translate them into
speci�cations written in PROMELA. Then the veri�cation formulas are derived,
and they are veri�ed with SPIN. The veri�cation result shows that LCP serializes
the operations of DMA engines, which leads to the low throughput of Berkeley-
VIA. On the other hand, MCP fully utilizes three DMA engines. It means that
the internal structure of MCP is more elaborative than that of LCP. In other



words, the modules of MCP have multiple entry points, while each module of
LCP has only one entry point. The multiple entry points make MCP perform
DMA engines in parallel.

In addition, we verify the correctness of the �rmware that a module does
not initialize the EBUS-LBUS DMA while another module occupies the EBUS-
LBUS DMA engine. The veri�cation results show that both LCP and MCP
satisfy the correctness property.

In summary, this paper demonstrates that the bottleneck analysis of a giga-
bit network interface card can be done e�ectively with the formal veri�cation
approach. It also shows that SPIN is an excellent tool for modeling and analysis
of the �rmware running on a gigabit NIC. The �rmware of gigabit NIC consists
of many event handlers that perform independently with other handlers, and
SPIN is suitable for the model checking of the dynamic �rmware.

References

1. D. Anderson, J. Chase, S. Gadde, A. Gallatin, K. Yocum, and M. Feeley, \Cheating
the I/O Bottleneck: Network Storage with Trapeze/Myrinet," Proceedings of the
1998 USENIX Technical Conference, June 1998.

2. T. E. Anderson, D. E. Culler, D. A. Patterson, and the NOW Team, \A Case for
Networks of Workstations: NOW," IEEE Micro, February 1995.

3. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,
and W. -K. Su, \Myrinet { A Gigabit-per-Second Local-Area Network," IEEE-
Micro, Vol. 15, No. 1, pp. 29-36, February 1995.

4. P. Buonadonna, A. Geweke, and D. Culler, \An Implementation and Analysis of
the Virtual Interface Architecture," Proceedings of SC'98, November 1998.

5. D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, A. M. Berry, E.
Gronke, and C. Dodd, \The Virtual Interface Architecture,"IEEE Micro, Vol. 8,
pp. 66-76, March-April 1998.

6. T. V. Eicken, A. Basu, V. Buch, and W. Vogels, \U-Net: A User-Level Network In-
terface for Parallel and Distributed Computing," Proceedings of 15th ACM SOSP,
pp. 40-53, December 1995.

7. G. J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, 1991.
8. G. J. Holzmann, \The Model Checker SPIN," IEEE Transactions on Software

Engineering, May 1997.
9. Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems,

Springer-Verlag, 1992.
10. Myricom Inc., LANai 4, http://www.myri.com, February 1999.
11. Myricom Inc., Myrinet User's Guide, http://www.myri.com, 1996.
12. L. Prylli and B. Tourancheau, \BIP: a new protocol designed for high performance

networking on myrinet," Proceedings of IPPS/SPDP98, 1998.
13. C. Yoo, H. -W. Jin, and S. -C. Kwon, \Asynchronous UDP," IEICE Transactions

on Communications, Vol.E84-B, No.12, December 2001.



0

100

200

300

400

500

600

700

800

0 4096 8192 12288 16384 20480 24576 28672 32768

Data Size (Byte)

T
hr

ou
gh

pu
t (

M
bp

s)

Asynchronous UDP

Berkeley-VIA

UDP

Fig. 1. Throughput comparison of Asynchronous UDP, Berkeley-VIA, and UDP

0

200

400

600

800

1000

1200

0 4096 8192 12288 16384 20480 24576 28672 32768

Data Size (Byte)

O
ne

-w
ay

 L
at

en
cy

 (
us

)

UDP
Asynchronous UDP

Berkeley-VIA

Fig. 2. One-way latency comparison of Asynchronous UDP, Berkeley-VIA, and UDP



Myrinet 
LAN

LANai

SRAMDMA
engine

DMA
engine

DMA
engine

Main
Memory

EBUS -LBUS
DMA

send
DMA

receive
DMAMyrinet NIC

Myrinet 
LAN

LANai

SRAMDMA
engine

DMA
engine

DMA
engine

Main
Memory

EBUS -LBUS
DMA

send
DMA

receive
DMAMyrinet NIC

Fig. 3. Hardware feature of Myrinet NIC

HostDmaIdle

HostDmaBusy

HostDmaRequest?
(dma _int==1)
-> HostDmaDone !

HostDmaIdle

HostDmaBusy

HostDmaRequest?
(dma _int==1)
-> HostDmaDone !

Fig. 4. State transition diagram of the hostDma module

LpcTxHostDma

LcpTxSendDma

LpcTxGotASend

GotASend?

HostDmaRequest!HostDmaDone ?

(sned_int ==1)

LpcTxIdle

LcpTxInvokeRx

(recv_int == 1)

LcpRxDone?
LpcTxHostDma

LcpTxSendDma

LpcTxGotASend

GotASend?

HostDmaRequest!HostDmaDone ?

(sned_int ==1)

LpcTxIdle

LcpTxInvokeRx

(recv_int == 1)

LcpRxDone?

Fig. 5. State transition diagram of the lcpTx module



LcpRxHostDma

LcpRxReady

H
o
s
t
D
m
a
D
o
n
e
?

L
c
p
R
x
D
o
n
e!

ReceiveDone?

LcpRxGotAReceive

HostDmaRequest!
LcpRxHostDma

LcpRxReady

H
o
s
t
D
m
a
D
o
n
e
?

L
c
p
R
x
D
o
n
e!

ReceiveDone?

LcpRxGotAReceive

HostDmaRequest!

Fig. 6. State transition diagram of the lcpRx module

active proctype hostDma()

{ int event;

do

:: (hd_state == HostDmaIdle) ->

Tohd?event;

if

:: (event == HostDmaRequest) ->

hd_state = HostDmaBusy

:: else -> skip

fi;

do

:: (dma_int == 1) ->

hd_state = HostDmaIdle;

dma_int = 0;

goto endofhd

od;

endofhd:

ret2txrx!HostDmaDone

od }

Fig. 7. Promela Speci�cation of LCP - hostDma



active proctype lcpTx()

{ int event;

do

:: (lt_state == LcpTxIdle) ->

Tolt?event;

if

:: (event == GotASend) ->

lt_state = LcpTxGotASend;

Tohd!HostDmaRequest;

lt_state = LcpTxHostDma;

ret2txrx?event;

if

:: (event == HostDmaDone) ->

lt_state = LcpTxSendDma;

do

:: if

:: (send_int == 1) ->

lt_state = LcpTxIdle;

send_int = 0;

goto endoflt

:: (recv_int == 1) ->

lt_state = LcpTxInvokeRx;

Tolr!ReceiveDone;

ret2tx?event;

if

:: (event == LcpRxDone) ->

lt_state = LcpTxSendDma

:: else -> skip

fi

:: else -> skip

fi

od

:: else -> skip

fi

:: else -> skip

fi;

endoflt:

ret2lcp!0

od }

Fig. 8. Promela Speci�cation of LCP - lcpTx



HostSendIdle

HostSendFull

HostSendDmaBusy

HostSendDma

GotASend?

NetSendQueueNotFull?

SendDmaFree?

HostSendGotASend

HostSendNotFull

(NetSendQueue.full)

(D
m
a
I
n
U
s
e
=
=
1
)

(DmaInUse==1)

(DmaInUse==0) DmaInUse = 1

(Dm
aIn

Use
==0

)

 Dma
InU

se
= 1

SendDmaDone ?
DmaInUse=0
ReceiveDmaFree!
NetSendQueueNotEmpty!

HostSendIdle

HostSendFull

HostSendDmaBusy

HostSendDma

GotASend?

NetSendQueueNotFull?

SendDmaFree?

HostSendGotASend

HostSendNotFull

(NetSendQueue.full)

(D
m
a
I
n
U
s
e
=
=
1
)

(DmaInUse==1)

(DmaInUse==0) DmaInUse = 1

(Dm
aIn

Use
==0

)

 Dma
InU

se
= 1

SendDmaDone ?
DmaInUse=0
ReceiveDmaFree!
NetSendQueueNotEmpty!

Fig. 9. State transition diagram of the hostSend module

NetSendBusy

NetSendSendDone?
NetSendQueueNotFull!

NetSendQueueNotEmpty?

NetSendIdle NetSendBusy

NetSendSendDone?
NetSendQueueNotFull!

NetSendQueueNotEmpty?

NetSendIdle

Fig. 10. State transition diagram of the netSend module



HostReceiveIdle

HostReceiveDmaBusyHostReceiveDma

HostReceiveGotAReceive

NetReceiveQueueNotEmpty?

(DmaInUse==1)

(D
ma
In
Us
e=
=0
)

 
Dm
aI
nU
se
=1

ReceiveDmaFree?

ReceiveDmaDone?
DmaInUse=0
SendDmaFree!
NetReceiveQueueNotFull!

HostReceiveIdle

HostReceiveDmaBusyHostReceiveDma

HostReceiveGotAReceive

NetReceiveQueueNotEmpty?

(DmaInUse==1)

(D
ma
In
Us
e=
=0
)

 
Dm
aI
nU
se
=1

ReceiveDmaFree?

ReceiveDmaDone?
DmaInUse=0
SendDmaFree!
NetReceiveQueueNotFull!

Fig. 11. State transition diagram of the hostReceive module

NetReceiveFull

NetReceiveDma

N
e
t
R
e
c
e
i
v
e
Q
u
e
u
e
N
o
t
F
u
l
l

?

ReceiveDone?

NetReceiveDmaDone

(NetReceiveQueue.full)
NetReceiveQueueNotEmpty!

(!NetReceiveQueue.full)

NetReceiveQueueNotEmpty!

NetReceiveFull

NetReceiveDma

N
e
t
R
e
c
e
i
v
e
Q
u
e
u
e
N
o
t
F
u
l
l

?

ReceiveDone?

NetReceiveDmaDone

(NetReceiveQueue.full)
NetReceiveQueueNotEmpty!

(!NetReceiveQueue.full)

NetReceiveQueueNotEmpty!

Fig. 12. State transition diagram of the netReceive module



active proctype hostSend()

{ int event;

do

:: (hs_state == HostSendIdle) ->

Tohs?event;

if

:: (event == GotASend) ->

if

:: (nempty(hs_buffer)) ->

hs_buffer?hs_data;

hs_state = HostSendGotASend;

if

:: (full(ns_buffer)) ->

hs_state = HostSendFull

:: (nfull(ns_buffer)) ->

if

:: (DmaInUse==1) ->

hs_state = HostSendDmaBusy

:: else ->

DmaInUse = 1;

hs_state = HostSendDma

fi

fi

:: (empty(hs_buffer)) -> skip

fi

:: else -> skip

fi;

Return!0

:: (hs_state == HostSendFull) ->

Tohs?event;

if

:: (event == NetSendQueueNotFull) ->

hs_state = HostSendNotFull;

if

:: (DmaInUse == 1) ->

hs_state = HostSendDmaBusy

:: else ->

DmaInUse = 1;

hs_state = HostSendDma

fi

:: else -> skip

fi;

Return!0



:: (hs_state == HostSendDmaBusy) ->

Tohs?event;

if

:: (event == SendDmaFree) ->

hs_state = HostSendDma

:: else -> skip

fi;

Return!0

:: (hs_state == HostSendDma) ->

Tohs?event;

if

:: (event == SendDmaDone) ->

DmaInUse = 0;

if

:: (hr_state == HostReceiveDmaBusy) ->

Return!ReceiveDmaFree;

DmaInUse = 1

:: else -> skip

fi;

ns_buffer!hs_data;

Return!NetSendQueueNotEmpty;

if

:: (nempty(hs_buffer)) ->

Return!GotASend

:: (empty(hs_buffer)) -> skip

fi;

hs_state = HostSendIdle;

dma_int = 0

:: else -> skip

fi;

Return!0

od }

Fig. 13. Promela Speci�cation of MCP - hostSend



active proctype netSend()

{ int event;

do

:: (ns_state == NetSendIdle) ->

Tons?event;

if

:: (event == NetSendQueueNotEmpty) ->

if

:: (nempty(ns_buffer)) ->

ns_buffer?ns_data;

ns_state = NetSendBusy

:: (empty(ns_buffer)) -> skip

fi

:: else -> skip

fi;

Return!0

:: (ns_state == NetSendBusy) ->

Tons?event;

if

:: (event == NetSendSendDone) ->

Return!NetSendQueueNotFull;

if

:: (nempty(ns_buffer)) ->

Return!NetSendQueueNotEmpty

:: (empty(ns_buffer)) -> skip

fi;

ns_state = NetSendIdle;

send_int = 0

:: else -> skip

fi;

Return!0

od }

Fig. 14. Promela Speci�cation of MCP - netSend


