
Automatically Validating

Temporal Safety Properties of Interfaces

Thomas Ball and Sriram K. Rajamani

Software Productivity Tools
Microsoft Research

http://www.research.microsoft.com/slam/

Abstract. We present a process for validating temporal safety properties of software that
uses a well-de�ned interface. The process requires only that the user state the property of
interest. It then automatically creates abstractions of C code using iterative re�nement, based
on the given property. The process is realized in the SLAM toolkit, which consists of a model
checker, predicate abstraction tool and predicate discovery tool. We have applied the SLAM
toolkit to a number of Windows NT device drivers to validate critical safety properties such
as correct locking behavior. We have found that the process converges on a set of predicates
powerful enough to validate properties in just a few iterations.

1 Introduction

Large-scale software has many components built by many programmers. Integration testing
of these components is impossible or ine�ective at best. Property checking of interface usage
provides a way to partially validate such software. In this approach, an interface provides a
set of properties that all clients of the interface should respect. An automatic analysis of the
client code then validates that it meets the properties, or provides examples of execution
paths that violate the properties. The bene�t of such an analysis is that errors can be caught
very early in the coding process.

We are interested in checking that a program respects a set of temporal safety properties
of the interfaces it uses. Safety properties are the class of properties that state that \some-
thing bad does not happen". An example is requiring that a lock is never released without
�rst being acquired (see [21] for a formal de�nition). Given a program and a safety property,
we wish to either validate that the code respects the property, or �nd an execution path
that shows how the code violates the property.

In this paper, we show that safety properties of system software can be validated and
invalidated using model checking, without the need for user-supplied annotations (invari-
ants) or user-supplied abstractions. As no annotations are required, we use model checking
to compute �xpoints automatically over an abstraction of the C code. We construct an ap-
propriate abstraction by (1) obtaining an initial abstraction from the property that needs
to be checked, and (2) re�ning this abstraction using an automatic re�nement algorithm.

We model abstractions of C programs using boolean programs [3]. Boolean programs
are C programs in which all variables have boolean type. Boolean programs contain all the
control-
ow constructs of C program, procedures, and procedure calls with call-by-value
parameter passing. Each boolean variable in a boolean program has an interpretation as
a predicate over the in�nite state space of the C program. Our experience shows that our
re�nement algorithm �nds boolean program abstractions that are precise enough to validate
properties. Furthermore, if the property is violated, the process of searching for a suitable
boolean program abstraction leads to a manifestation of the violation.

We present the SLAM toolkit for checking safety properties of system software, and
report on our experience in using the toolkit to check properties of Windows NT device
drivers. Given a safety property to check on a C program, the SLAM process has the
following phases: (1) abstraction, (2) model checking, and (3) predicate discovery. We have
developed tools to support each of these phases:

{ C2bp, a tool that transforms a C program P into a boolean program BP(P;E) with
respect to a set of predicates E over the state space of P [1, 2];

{ Bebop, a tool for model checking boolean programs [3], and
{ Newton, a tool that discovers additional predicates to re�ne the boolean program, by
analyzing the feasibility of paths in the C program.

The SLAM toolkit provides a fully automatic way of checking temporal safety properties of
system software. Violations are reported by the SLAM toolkit as paths over the program
P . It never reports spurious error paths. Instead, it detects spurious error paths and uses
them to automatically re�ne the abstraction (to eliminate these paths from consideration).
Since property checking is undecidable, the SLAM re�nement algorithm may not converge.
However, in our experience, it usually converges in a few iterations. Furthermore, whenever
it converges, it gives a de�nite \yes" or \no" answer.

The worst-case run-time complexity of the SLAM tools Bebop and C2bp is linear in
the size of the program's control
ow graph, and exponential in the number of predicates
used in the abstraction. We have implemented several optimizations to make Bebop and
C2bp scale gracefully in practice, even with a large number of predicates. The Newton
tool scales linearly with path length and number of predicates.

We applied the SLAM toolkit to check the use of the Windows NT I/O manager interface
by device driver clients. There are on the order of a hundred rules that the clients of the
I/O manager interface should satisfy. We have automatically checked properties on device
drivers taken from the Microsoft Driver Development Kit1. While checking for correct use
of locks, we found that the SLAM process converges in one or two iterations to a boolean
program that is suÆciently precise to validate/invalidate the property. We also checked a
data-dependent property, which requires keeping track of value-
ow and aliasing, using four
iterations of the SLAM tools.

The remainder of this paper is organized as follows. Section 2 gives an overview of the
SLAM approach by applying the tools to verify part of an NT device driver. Sections 3, 4
and 5 give brief descriptions of the three tools that compose the SLAM toolkit and explain
how they work in the context of the running example. Section 6 describes our experience
applying the tools to an NT device driver. Section 7 discusses related work and Section 8
concludes the paper.

2 Overview

This section introduces the SLAM re�nement algorithm and then applies this algorithm to
a small code example, extracted from a PCI device driver. The SLAM toolkit handles a
signi�cant subset of the C language, including pointers, structures, and procedures (with
recursion and mutual recursion). A limitation of our tools is that they assume a logical

1 The code of the device drivers we analyzed is freely available from
http://www.microsoft.com/ddk/W2kDDK.htm

model of memory when analyzing C programs. Under this model, the expression p + i,
where p is a pointer and i is an integer, yields a pointer value that points to the same object
pointed to by p. That is, we treat pointers as references rather than as memory addresses.
Note that this is the same basic assumption underlying most points-to analysis, including
the one that our tools use [10].

2.1 Re�nement Algorithm

We wish to check if a temporal safety property ' is satis�ed by a program P . We assume
that the program P has been instrumented to result in a program P 0 such that P satis�es '
i� the label ERROR is not reachable in P 0. In particular, the instrumentation takes the form
of calls to a �nite state machine (FSM) transition function, written in C. The parameters
to the function encode the events/data that determine the FSM's next state. The transition
function simply switches on the current state of the machine (kept in global variables) and
its formal parameters, to decide which state comes next. The label ERROR in this function
re
ects the �nite state machine moving into a reject state. This is known in the model
checking community as a \product automaton construction" and is a fairly standard way
to encode safety properties.2

Let i be a metavariable that records the SLAM iteration count. In the �rst iteration
(i = 0), we start with a set of predicates E0 that capture the state of the FSM. Let state
be the global variable representing the state of the FSM and let D(state) be its domain.
Without loss of generality, let x be the single formal parameter of the transition function and
D(x) be its domain. Then the set E0 is given as: E0 = f(state = s) j s 2 D(state)g[f(x =
f) j f 2 D(x)g. Let Ei be some set of predicates over the state of P 0, the instrumented
version of P . Then iteration i+ 1 of SLAM is carried out using the following steps:

1. Apply C2bp to construct the boolean program BP(P 0; Ei), which has the same control-

ow graph as P 0.

2. Apply Bebop to check if there is a path pi in BP(P 0; Ei) that reaches the ERROR label.
If Bebop determines that ERROR is not reachable, then the property ' is valid in P , and
the algorithm terminates.

3. If there is such a path pi, then we use Newton to check if pi is feasible in P . There are
two outcomes:
� \yes": the property ' has been invalidated in P , and the algorithm terminates with
an error path pi (a witness to the violation of ').

� \no": Newton �nds a set of predicates Fi+1 that explain the infeasibility of path pi
in P .

4. Let Ei+1 = Ei [Fi+1, and i = i+ 1, and proceed to the next iteration.

As stated before, this algorithm is potentially non-terminating. However, when it does
terminate, it provides a de�nitive answer.

2.2 Example

Figure 1(a) presents a snippet of C code from a PCI device driver that processes inter-
rupt request packets (irps). Of interest here are the calls the code makes to acquire and

2 We have created a low-level speci�cation language called Slic (Speci�cation Language for Interface Check-
ing) that can be used to generate such an instrumented C program, which will be the topic of a future
paper.

void example() {

do {

//get the write lock

KeAcquireSpinLock(&devExt->writeListLock);

nPacketsOld = nPackets;

request = devExt->WriteListHeadVa;

if(request && request->status){

devExt->WriteListHeadVa = request->Next;

// release the lock

KeReleaseSpinLock(&devExt->writeListLock);

irp = request->irp;

if(request->status > 0){

irp->IoS.Status = STATUS_SUCCESS;

irp->IoS.Information = request->Status;

} else {

irp->IoS.Status = STATUS_UNSUCCESSFUL;

irp->IoS.Information = request->Status;

}

SmartDevFreeBlock(request);

IoCompleteRequest(irp, IO_NO_INCREMENT);

nPackets++;

}

} while (nPackets != nPacketsOld);

// release the lock

KeReleaseSpinLock(&devExt->writeListLock);

}

typedef {Locked, Unlocked} STATETYPE;

typedef {Acq, Rel} MTYPE;

stateType state = Unlocked;

FSM(m : MTYPE){

if ((state==Unlocked) && (m==Acq))

A: state = Locked;

else if ((state==Locked) && (m==Rel))

B: state = Unlocked;

else

ERROR: ;

}

void example() {

do {

C: KeAcquireSpinLock(&devExt->writeListLock);

FSM(Acq);

nPacketsOld = nPackets;

request = devExt->WriteListHeadVa;

if(request && request->status){

D: devExt->WriteListHeadVa = request->Next;

KeReleaseSpinLock(&devExt->writeListLock);

FSM(Rel);

irp = request->irp;

if(request->status > 0){

irp->IoS.Status = STATUS_SUCCESS;

irp->IoS.Information = request->Status;

} else {

irp->IoS.Status = STATUS_UNSUCCESSFUL;

irp->IoS.Information = request->Status;

}

E: SmartDevFreeBlock(request);

IoCompleteRequest(irp, IO_NO_INCREMENT);

nPackets++;

}

} while (nPackets != nPacketsOld);

F: KeReleaseSpinLock(&devExt->writeListLock);

FSM(Rel);

}
(a) Program P (b) Instrumented Program P 0

Fig. 1. (a) A snippet of device driver code P and the (b) instrumented code P 0 that checks proper use of
spin locks.

release spin locks (KeAcquireSpinLock, KeReleaseSpinLock). Figure 1(b) shows the pro-
gram, instrumented to check that locks are properly acquired and released using a �nite
state machine with two states Locked and Unlocked. The procedure FSM implements the
transition function of the state machine, as described before.

decl {state==Locked}, {state==Unlocked};

void FSM({m==Acq},{m==Rel})

begin

if ({state==Unlocked}&{m==Acq})

A: {state==Locked}, {state==Unlocked} := 1,0;

else if ({state==Locked}&{m==Rel})

B: {state==Locked}, {state==Unlocked} := 0,1;

else

ERROR: skip;

fi

end

void example() // void example() {

begin //

do // do {

skip; // KeAcquireSpinLock(...);

C: FSM(1,0); // FSM(Acq);

skip; // nPacketsOld = nPackets;

skip; // request = devExt->...;

//

if (*) then // if(request && request->status){

D: skip; // devExt->WriteListHeadVa = ...;

skip; // KeReleaseSpinLock(...);

FSM(0,1); // FSM(Rel);

skip; // irp = request->irp;

if (*) then // if(request->status > 0){

skip; // irp->IoS.Status = ...

skip; // irp->IoS.Information = ...;

else // } else {

skip; // irp->IoS.Status = ...;

skip; // irp->IoS.Information = ...;

fi // }

E: skip; // SmartDevFreeBlock(request);

skip; // IoCompleteRequest(...

skip; // nPackets++;

end // }

while (*) // } while (nPackets != nPacketsOld);

skip; // KeReleaseSpinLock(...);

F: FSM(0,1); // FSM(Rel);

end // }

see code in left pane

void example()

begin

do

C: FSM(1,0);

b := 1;

skip;

skip;

if (*) then

D: skip;

skip;

FSM(0,1);

skip;

if (*) then

skip;

skip;

else

skip;

skip;

fi

E: skip;

skip;

b := choose(0,b);

fi

while (!b)

skip;

F: FSM(0,1);

end
(a) Boolean program BP(P 0; E0) (b) Boolean program BP(P 0; E1)

Fig. 2. The two boolean programs created while checking the code from Figure 1(b). (The second boolean
program also contains the state machine function and global state variable, but we omit it to enhance the
clarity of the �gure). See the program text for the de�nition of the choose function.

The question we wish to answer is: is the label ERROR reachable in the code in Fig-
ure 1(b)? The following sections apply the algorithm given above to show that ERROR is
unreachable.

2.3 Initial Boolean Program

The �rst step of the algorithm is to generate a boolean program from the C program and
the set of predicates E0 that de�ne the states of the �nite state machine. We represent our

abstractions as boolean programs. The syntax and semantics of boolean program was de�ned
in [3]. Boolean programs are C programs in which the only allowed types are bool (with
values 0 and 1) and void. Boolean programs also allow control non-determinism, through
the conditional expression \�", as shown later on.

For our example, the set E0 consists of four predicates: two global predicates, (state =
Locked) and (state = Unlocked), and two local predicates over the formal parameter m
to the procedure FSM, (m = Acq) and (m = Rel). These four predicates and the C pro-
gram of Figure 1(b) are input to the C2bp (C to Boolean Program) tool to create the
boolean program BP(P 0; E0), shown in Figure 2(a). This program has two global variables,
fstate==Lockedg and fstate==Unlockedg, and the procedure FSM has two formal param-
eters, fm==Acqg and fm==Relg.3 For every statement s in the C program and predicate
e 2 E0, the C2bp tool determines the e�ect of statement s on predicate e. For exam-
ple, consider the assignment statement \state = Locked; " at label A in program P 0 of
Figure 1(b). This statement makes the predicate (state = Locked) true and the predi-
cate (state = Unlocked) false. This is re
ected in the boolean program BP(P 0; E0) by the
parallel assignment statement

fstate==Lockedg, fstate==Unlockedg := 1,0;

The translation of the boolean expressions in the conditional statements of the C program
results in the obvious corresponding boolean expressions in the FSM procedure in the boolean
program. Control non-determinism is used to conservatively model the conditions in the C
program that cannot be abstracted precisely using the predicates in E0.

Many of the assignment statements in the C program are abstracted to the skip state-
ment (no-op) in the boolean program. The C2bp tool uses Das's points-to analysis [10]
to determine whether or not an assignment statement through a pointer dereference can
a�ect a predicate e. In our example, the points-to analysis shows that no variable in the C
program can alias the address of the global state variable (or the formal parameter m of
procedure FSM).4

We say that the boolean program BP(P 0; E0) abstracts the program P 0, since every
feasible execution path p of the program P 0 also is a feasible execution path of BP(P 0; E0).

2.4 Model Checking The Boolean Program

The second step of our process is to determine whether or not the label ERROR is reachable in
the boolean program BP(P 0; E0). We use the Bebopmodel checker to determine the answer
to this query. In this case, the answer is \yes". Like most model checkers, the Bebop tool
produces a (shortest) path leading to the error state. In this case, the shortest path to the
error state is the path that goes around the loop twice, acquiring the lock twice without an
intermediate release, as given by the following error path p of labels:

[C, A, E, C, ERROR]

3 Boolean programs permit a variable identi�er to be an arbitrary string enclosed between \f" and \g".
This is helpful for giving boolean variables names to directly represent the predicates in the C program
that they represent.

4 The analysis also shows that the procedures SmartDevFreeBlock, and kernel procedures
IoCompleteRequest, KeAcquireSpinLock, and KeReleaseSpinLock cannot a�ect these variables so
the calls to them are removed.

2.5 Predicate Discovery over Error Path

Because the C program and the boolean program abstractions have identical control-
ow
graphs, the error path p in BP(P 0; E0) produced by Bebop is also a path of program P .
The question then is: does p represent a feasible execution path of P ? That is, is there some
execution of program P that follows the path p? If so, we have found a real error in P . If
not, path p is a spurious error path.

The Newton tool takes a C program and a (potential) error path as an input. It then
uses veri�cation condition generation (VCGen) to determine if the path is feasible. The
answer may be \yes" or \no". 5

If the answer is \yes", then an error path has been found, and we report it to the user. If
the answer is \no" then Newton uses a new algorithm to identify a small set of predicates
that \explain" why the path is infeasible.

In the running example, Newton detects that the path p is infeasible, and returns a
single predicate nPackets = npacketsOld as the explanation for the infeasibility. This is
because the predicate nPackets = nPacketsOld is required to be both true and false by
path p. The assignment of nPacketsOld to nPackets makes the predicate true, and the
loop test requires it to be false at the end of the do-while loop for the loop to iterate, as
speci�ed by the path p.

2.6 The Second Boolean Program

In the second iteration of the process, the predicate nPackets = nPacketsOld is added
to the set of predicates E0 to result in a new set of predicates E1. Figure 2(b) shows the
boolean program BP(P 0; E1) that C2bp produces. This program has one additional boolean
variable (b) that represents the predicate nPackets = nPacketsOld. The assignment state-
ment nPackets = nPacketsOld; makes this condition true, so in the boolean program the
assignment b:=1; represents this assignment. Using a theorem prover, C2bp determines
that if the predicate is true before the statement nPackets++, then it is false afterwards.
This is captured by the assignment statement in the boolean program

b := choose(0,b);

The choose function is de�ned as follows:

bool choose(pos, neg)

begin

if (pos) then return 1;

elsif (neg) then return 0;

elsif (*) then return 0;

else return 1; fi

end

The pos parameter represents positive information about a predicate while the neg pa-
rameter represents negative information about a predicate. The choose function is never

5 Since underlying decision procedures in the theorem prover are incomplete, \don't know" is also a possible
answer. In practice, the theorem provers we use have been able to give a \yes" or \no" answer in every
example we have seen so far.

called with both parameters evaluating to true. If both parameters are false then there is
not enough information to determine whether the predicate is de�nitely true or de�nitely
false, so 0 or 1 is returned, non-deterministically.

Applying Bebop to the new boolean program shows that the label ERROR is not reach-
able. In performing its �xpoint computation, Bebop discovers that the following loop in-
variant holds at the end of the do-while loop:

(state = Locked ^ nPackets = nPacketsOld)
_ (state = Unlocked ^ nPackets 6= nPacketsOld)

That is, either the lock is held and the loop will terminate (and thus the lock needs to
be released after the loop), or the lock is free and the loop will iterate. The combination
of predicate abstraction of C2bp and the �xpoint computation of Bebop has found this
loop-invariant over the predicates in E1. This loop-invariant is strong enough to show that
the label ERROR is not reachable.

3 C2BP: A Predicate Abstractor For C

C2bp takes a C program P and a set E = fe1; e2; : : : ; eng of predicates on the variables of
P , and automatically constructs a boolean program BP(P;E).[1, 2] The set of predicates
E are pure C boolean expressions with no function calls. The boolean program BP(P;E)
contains n boolean variables V = fb1; b2; : : : ; bng, where each boolean variable bi represents
a predicate ei. Each variable in V has a three-valued domain: false, true, and �.6 The
program BP(P;E) is a sound abstraction of P because every possible execution trace t of P
has a corresponding execution trace t0 in B. Furthermore, BP(P;E0) is a precise abstraction
of P with respect to the set of predicates E0, in a sense stated and shown elsewhere [2].
Since BP(P;E) is an abstraction of P , it is guaranteed that an invariant I discovered (by
Bebop) in BP(P;E), as boolean combinations of the bi variables, is also an invariant in the
C code, where each bi is replaced by its corresponding predicate ei.

C2bp determines, for every statement s in P and every predicate ei 2 E, how the
execution of s can a�ect the truth value of ei. This is captured in the boolean program by
a statement sB that conservatively updates each bi to re
ect the change. C2bp computes
sB by (1) �rst computing the weakest precondition of ei, and its negation with respect to
s, and (2) strengthening the weakest precondition in terms of predicates from E, using a
theorem prover.

We highlight the technical issues in building a tool like C2bp:

{ Pointers: We use an alias analysis of the C program to determine whether or not an
update through a pointer dereference can potentially a�ect an expression. This greatly
increases the precision of the C2bp tool. Without alias analysis, we would have to make
very conservative assumptions about aliasing, which would lead to invalidating many
predicates.

{ Procedure calls: Since boolean programs support procedure calls, we are able to ab-
stract procedures modularly. The abstraction process for procedure calls is challenging,
particularly in the presence of pointers. After a call, the caller must conservatively up-
date local state that may have been modi�ed by the callee. We provide a sound and
precise approach to abstracting procedure calls that takes such side-e�ects into account.

6 The use of the third value �, is encoded using control-nondeterminism as shown in the choose function of
Section 2. That is, \�" is equivalent to \choose(0,0)".

{ Precision-eÆciency tradeo�. C2bp uses a theorem prover to strengthen weakest
pre-conditions in terms of the given predicate set E. Doing this strengthening precisely
requires O(2E) calls to the theorem prover. We have explored a number of optimization
techniques to reduce the number of calls made to the theorem prover. Some of these
techniques result in an equivalent boolean program, while others trade o� precision for
computation speed. We are also investigating using other decision procedures, such as
those embodied in the Omega test [25] and PVS [23].

Complexity. The runtime of C2bp is dominated by calls to the theorem prover. In the
worst-case, the number of calls made to the theorem prover for computing BP(P;E) is linear
in the size of P and exponential in the size of E. In practice, we �nd that the complexity
is cubic in the size of E.

4 BEBOP: A Model Checker for Boolean Programs

The Bebop tool [3] computes the set of reachable states for each statement of a boolean
program using an interprocedural data
ow analysis algorithm in the spirit of Sharir/Pnueli
and Reps/Horwitz/Sagiv [29, 26]. A state of a boolean program at a statement s is simply
a valuation to the boolean variables that are in scope at statement s (in other words, a bit
vector, with one bit for each variable in scope). The set of reachable states (or invariant)
of a boolean program at s is thus a set of bit vectors (equivalently, a boolean function over
the set of variables in scope at s).

Bebop di�ers from typical implementations of data
ow algorithms in two crucial ways.
First, it computes over sets of bit vectors at each statement rather than single bit vectors.
This is necessary to capture correlation between variables. Second, it uses binary decision
diagrams [4] (BDDs) to implicitly represent the set of reachable states of a program, as
well as the transfer functions for each statement in a boolean program. Bebop also di�ers
from previous model checking algorithms for �nite state machines, in that it does not inline
procedure calls, and exploits locality of variable scopes for better scaling. Unlike most model
checkers for �nite state machines, Bebop naturally generalizes to handle recursive and
mutually recursive procedures. Bebop uses an explicit control-
ow graph representation,
as in a compiler, rather than encoding the control-
ow with BDDs, as done in most symbolic
model checkers. It computes a �xpoint by iterating over the set of facts associated with each
statement, which are represented with BDDs.

Complexity. The worst-case complexity of Bebop is linear in the size of the programs
control-
ow graph, and exponential in the maximum number of boolean variables in scope at
any program-point. We have implemented a number of optimizations to reduce the number
of variables needed in support of BDDs. For example, we use live variable analysis to �nd
program points where a variable becomes dead and then eliminate the variable from the
BDD representation. We also use a global MOD/REF analysis of the boolean program in
order to perform similar variable eliminations.

5 NEWTON: A Predicate Discoverer

Newton takes a C program P and an error path p from a boolean program B as inputs.
It is assumed that the boolean program B was produced by running C2bp on P with some

s1: nPacketsOld = nPackets;

s2: request = devExt->WriteListHeadVa;

s3: assume(!request);

s4: assume(nPackets != nPacketsOld);

loc. value dep. condition-set dep.

1. nPackets: � ()

2. nPacketsOld: � (1)

loc. value dep. condition-set dep.

1. nPackets: � ()

2. nPacketsOld: � (1)

3. devExt: � ()

4. � !WriteListHeadV a:
 (3)

5. request:
 (3,4)

after s1 after s2

loc. value dep. condition-set dep.

1. nPackets: � () !(
) (5)

2. nPacketsOld: � (1)

3. devExt: � ()

4. � !WriteListHeadV a:
 (3)

5. request:
 (3,4)

loc. value dep. condition-set dep.

1. nPackets: � () !(
) (5)

2. nPacketsOld: � (1) (�!= �) (1,2)

3. devExt: � ()

4. � !WriteListHeadV a:
 (3)

5. request:
 (3,4)

after s3 after s4

Fig. 3. A path of four statements and four tables showing the state of Newton after simulating each of the
four statements.

set of predicates. For the purposes of describing Newton, we can identify the path p as
a sequence of assignments and assume statements (every conditional is translated into an
assume statement).

The internal state of Newton has three components: (1) store , which is a mapping
from locations to symbolic expressions, (2) conditions , which is a set of predicates, and (3)
a history which is a set of past associations between locations and symbolic expressions.
The high-level description of Newton is given in Figure 4. The functions LEval and REval
evaluate the l-value and r-value of a given expression respectively. Newton maintains an
internal dependency of each element in the state with the elements in store , to be used in
Phase 3. It also uses symbolic constants for unknown values. We illustrate these using an
example. Consider a path with the following four statements:

s1: nPacketsOld = nPackets;

s2: request = devExt->WriteListHeadVa;

s3: assume(!request);

s4: assume(nPackets != nPacketsOld);

This path is a projection of the error path from Bebop in Section 2. Figure 3 shows
four states of Newton, one after processing each statement in the path. The assign-
ment nPacketsOld = nPackets is processed by �rst introducing a symbolic constant �

for the variable nPackets, and then assigning it to nPacketsOld. The assignment request
= devExt->WriteListHeadVa is processed by �rst introducing a symbolic constant � for the
value of devExt, then introducing a second symbolic constant
 for the value of �->WriteListHeadVa,
and �nally assigning
 to request. The conditional assume(!request) is processed by
adding the predicate !(
) to the condition-set. The dependency list for this predicate
is (5) since its evaluation depended on entry 5 in the store. Finally, the conditional

Input: A sequence of statements p = s1; s2; :::; sm.
store := null map;
history := null set;
conditions := null set;
/* start of Phase 1 */
fori = 1 tom do f
switch(si) f

\e1 := e2" :
let lval = LEval (store ; e1) and
let rval = REval(store ; e2) in

if(store [lval] is de�ned)
history := history [f(lval ; store[lval])g

store [lval] := rval
\assume(e)" :

let rval = REval(store ; e) in
conditions := conditions [frvalg
if(conditions is inconsistent)f

/*Phase 2 */
Minimize size of conditions

while maintaining inconsistency
/*Phase 3 */
predicates := all dependencies of conditions
Say \Path p is infeasible"
return(predicates)

g
g g

Say \Path p is feasible"
return

Fig. 4. The high-level algorithm used by Newton

VOID

SerialDebugLogEntry(IN ULONG Mask, IN ULONG Sig,

IN ULONG_PTR Info1, IN ULONG_PTR Info2, IN ULONG_PTR Info3)

{

KIRQL irql;

irql = KeGetCurrentIrql();

if (irql < DISPATCH_LEVEL) {

KeAcquireSpinLock(&LogSpinLock, &irql);

} else {

KeAcquireSpinLockAtDpcLevel(&LogSpinLock);

}

// other code (deleted)

if (irql < DISPATCH_LEVEL) {

KeReleaseSpinLock(&LogSpinLock, irql);

} else {

KeReleaseSpinLockFromDpcLevel(&LogSpinLock);

}

return;

}

Fig. 5. Code snippet from serial-port driver.

assume(nPackets != nPacketsOld) is processed by adding the (inconsistent) predicate
(� != �) to the condition-set, with a dependency list (1,2). At this point, the theorem
prover determines that the condition-set is inconsistent, andNewton proceeds to the Phase
2.

Phase-2 removes the predicate !(
) from the condition store, since the remaining
predicate (�!= �) is inconsistent by itself. Phase-3 traverses store entries 1 and 2 from
the dependency list. A post processing step then determines that the symbolic constant
� can be uni�ed with the variable nPackets, and Newton produces two predicates:
(nPacketsOld = nPackets) and (nPacketsOld 6= nPackets). Since one is a negation of
the other, only one of the two predicates needs to be added in order for the path to be
ruled out in the boolean program. Though no symbolic constants are present in the �nal
set of predicates in our example, there are other examples where the �nal list of predicates
have symbolic constants. C2bp is able to handle predicates with symbolic constants. We do
not discuss these details here due to want of space. The history is used when a location is
overwritten with a new value. Since no location was written more than once in our example,
we did not see the use of history . Newton also handles error paths where each element of
the path is also provided with values to the boolean variables from Bebop, and checks for
their consistency with the concrete states along the path.

Complexity. The number of theorem-prover calls made by Newton on a path p is O(p�n),
where p is the length of the path, and n is the number of predicates in the boolean program
B.

6 NT Device Drivers: Case Study

This section describes our experience applying the SLAM toolkit to check properties of
Windows NT device drivers. We checked two kinds of properties: (1) Locking-unlocking
sequences for locks should conform to allowable sequences (2) Dispatch functions should

either complete a request, or make a request pending for later processing. In either case, a
particular sequence of Windows NT speci�c actions should be taken.

The two properties have di�erent characteristics from a property-checking perspective.

{ The �rst property depends mainly on the program's control
ow. We checked this prop-
erty for a particular lock (called the \Cancel" spin lock) on three kernel mode drivers in
the Windows NT device driver tool kit. We found two kinds situations where spurious
error paths led our process to iterate. With its inter-procedural analysis and detection
of simple variable correlations, the SLAM tools were able to eliminate all the spurious
error paths with at most one iteration of the process. In all the drivers, we started with
5 predicates from the property speci�cation FSM and added at most one predicate to
rule out spurious error paths.

{ The second property is data-dependent, requiring the tracking of value
ow and alias
relationships. We checked this property on a serial port device driver. It took 4 iterations
through the SLAM tools and a total of 30 predicates to validate the property.

The drivers we analyzed were on the order of a thousand lines of C code each. In each
of the drivers we checked for the �rst property, the SLAM tools ran in under a minute on
an 800MHz Pentium PC with 512MB RAM. For the second property on the serial driver,
the total run time for all the SLAM tools was about 3 minutes to complete all the four
iterations.

6.1 Property 1

We checked for correct lock acquisition/release sequences on 3 kernel mode drivers: MCA-
bus, serial-port and parallel-port. The SLAM tools validated the property on MCA-bus
and parallel-port drivers without iteration. However, interprocedural analysis was required
for checking the property, as calls to the acquire and release routines were spread across
multiple procedures in the drivers. Furthermore, in the serial-port driver, the SLAM tools
found one false error path in the �rst iteration, which resulted in the addition of a single
predicate. Then the property was validated in the second iteration. The code-snippet that
required the addition of the predicate is shown in Figure 5. The snippet shows that the
code has a dependence on the interrupt request level variable (irql) that must be tracked
in order to eliminate the false error paths.

6.2 Property 2

A dispatch routine to a Windows NT device driver is a routine that the I/O manager calls
when it wants the driver to perform a speci�c operation (e.g, read, write etc.) The dispatch
routine is \registered" by the driver during `when it is initialized. A dispatch routine has
the following prototype:

NTSTATUS DispatchX(IN PDEVICE_OBJECT DeviceObject,

IN PIRP irp)

The �rst parameter is a pointer to a so called \device object" that represents the device,
and the second parameter is a pointer to a so called \I/O request packet", or \irp" that
contains information about the current request.

if (status != STATUS_PENDING) {

Irp->Status = status;

IoCompleteRequest(Irp, 0);

}

if (status != STATUS_PENDING) {

Irp->Status = status;

if(Irp==i) {

EMIT_FSM(ASSIGN, status);

}

IoCompleteRequest(Irp, 0);

if(Irp==i) {

EMIT_FSM(CALL_IOCOMPLETE, status);

}

}

Fig. 6. Code snippet from a driver (left) and the instrumentation added (right).

Property P1. All dispatch routines must either process the irp immediately (call this
option A, or queue the irp for processing later (call this option B). Every irp has to processed
under one of these two options. If the driver chooses option A, then it has to do the following
actions in sequence:

1. Set irp->IoS.status to STATUS PENDING

2. Call the kernel function IoMarkIrpPending(irp)

3. Queue the irp into the driver's internal queue using the kernel function IoStartPacket(irp)
4. Return STATUS PENDING

If the driver chooses option B, then it has do the following actions in sequence:

1. Set the irp->IoS.status to some return code other than STATUS PENDING (such as
STATUS SUCCESS, STATUS CANCELLED etc.)

2. Call IoCompleteRequest(irp)
3. Return the same status code as in step 1.

Note that this is a partial speci�cation for a dispatch routine |just one of several properties
that the dispatch routine must obey. We �rst coded up the above property as a �nite state
machine with a transition function named EMIT FSM that takes two parameters: an action
(such as CALL IOCOMPLETE, CALL QUEUEIRP, etc.) and a status (such as STATUS PENDING,
etc).

Instrumenting the driver code. In order to check if the driver code satis�es the property
we added instrumentation code to the driver. At the entry point to the driver, we store the
value of the irp in a new global, gIrp. Every time a kernel function IoCompleteRequest(irp),
IoMarkIrpPending(irp), or IoStartIrp(irp) is called, we check if the irp parameter is
the same as gIrp, and if so we add a call to EMIT FSM with the appropriate message as
the second parameter. Every time a variable of type PIRP has the status �eld assigned, we
check if the irp parameter is the same as gIrp, and if so we add a call to EMIT FSM with
the status as the �rst parameter, and ASSIGN as the second parameter. Figure 6 shows a
sample code snipped from a driver and the instrumentation we add.7

Checking the instrumented driver. The initial set of predicates described the FSM
includes 17 predicates: (1) 5 predicates to keep track of the global variable fsmState (2)

7 We remind the reader that in the future, we plan to have tool that will generate such instrumentation
automatically from a high-level speci�cation of the property. For now, our ability to analyze properties is
limited mainly by the need to hand instrument the property into the code of interest.

4 predicates to keep track of the global variable fsmStatus (3) 3 predicates to keep track
of the formal parameter m of EMIT FSM, and (4) 5 predicates to keep track of the formal
parameter s of function EMIT FSM.

C2bp generated a boolean program B1 using these 17 predicates, and Bebop found an
error trace that led to the label ERROR.Newton analyzed this error trace, and came up with
3 more predicates. These predicates kept track of the value of a local variable where a status
value was stored before being assigned into the irp->status. After iterating through C2bp
with these predicates added, Bebop found a second error trace, which passed through 2
function calls, and Newton came up with 4 more predicates to be added. These predicates
kept track of the
ow of the irp pointer through the function call, and a local variable of
the called function where the status value was stored temporarily.

After one more iteration through C2bp with the additional predicates, Bebop found a
third error trace, which passed through 3 levels of function calls. This error trace was fairly
complicated, and it involved the driver storing the irp pointer in a global structure, passing
a pointer to the structure, and then retrieving the pointer two levels of function calls later.
When fed with this error trace, Newton came up with 9 more predicates to be added that
tracked this value
ow.

In the fourth iteration Bebop was able to validate the property on the boolean program
produced by C2bp with all the predicates discovered thus far. It took 4 iterations through
the tools and a total of 30 predicates to discover the right abstraction to validate this
property. We found one bug in the fourth iteration, but it turned out to be a cut-and-paste
error in our instrumentation process. After �xing it, the property passed.

7 Related Work

SLAM seeks a sweet spot between VCGen-based tools [16, 22, 5] that operate directly on the
concrete semantics and model checking or data
ow-analysis based tools [7, 18, 13, 11] that
operate on abstractions of the program. We use VCGen-based approach on �nite (potentially
interprocedural) paths of the program, and use the knowledge gained to construct abstract
models of the program. Newton uses VCGen on the concrete program, but as it operates
on a single �nite interprocedural path at a time, it does not require loop-invariants, or
pre-conditions and post-conditions for procedures. C2bp also reasons about the statements
of the C program using decision procedures, but does so only locally, one statement at a
time. Global analysis is done only on the boolean program abstractions, using the model
checker Bebop. Thus, our hope is to scale without losing precision, as long as the property
of interest allows us to do so, by inherently requiring a small abstraction for its validation
or invalidation.

SLAM generalizes Engler et al.'s approach in three ways: (1) it is sound (modulo the
assumptions about memory safety); (2) it permits interprocedural analysis; (3) it avoids
spurious examples through iterative re�nement (in some of the code Engler et al. report on,
their techniques generated three times as many spurious error paths as true error paths, a
miss rate of 300 percent.8) In fact, with a suitable de�nition of abstraction, and choice of
initial predicates, the �rst iteration of the SLAM process is equivalent to performing Engler
et al.'s approach interprocedurally.

8 Jon Pincus, who led the development of an industrial-strength error detection tool for C called PRE�x [5],
observes that users of PRE�x will tolerate a false alarm rate in the range 25-50% depending on the
application [24].

Constructing abstract models of programs has been studied in several contexts. Ab-
stractions constructed by [13] and [19] are based on specifying transitions in the abstract
system using a pattern language, or as a table of rules. Automatic abstraction support has
been built into the Bandera tool set [12]. They require the user to provides �nite domain
abstractions of data types. Predicate abstraction, as implemented in C2bp is more general,
and can capture relationships between variables. The predicate abstraction in SLAM was
inspired by the work of Graf and Saidi [17] in the model checking community. E�orts have
been made to integrate predicate abstraction with theorem proving and model checking [27].
Though our use of predicate abstraction is related to these e�orts, our goal is to analyze
software written in common programming languages. A predicate abstraction tool for Java
has recently been reported in [31].

The SLAM toolsC2bp andBebop can be used in combination to �nd loop-invariants ex-
pressible as boolean functions over a given set of predicates. The loop-invariant is computed
by the model checker Bebop using a �xpoint computation on the abstraction computed by
C2bp. Prior work for generating loop invariants has used symbolic execution on the concrete
semantics, augmented with widening heuristics [30, 32]. The Houdini tool guesses a candi-
date set of annotations (invariants) and uses the ESC/Java checker to refute inconsistent
annotations until convergence [15].

Boolean programs can be viewed as abstract interpretations of the underlying pro-
gram [8]. The connections between model checking, data
ow analysis and abstract inter-
pretation have been explored before [28] [9]. The model checker Bebop is based on earlier
work on interprocedural data
ow analysis [29, 26]. Automatic iterative re�nement based on
error paths �rst appeared in [20], and more recently in [6]. Both e�orts deal with �nite state
systems.

An alternative approach to static validation of safety properties, is to provide a rich
type system that allows users to encode both safety properties and program annotations as
types, and reduce property validation to type checking [14].

8 Conclusions

We conclude by summarizing the main contributions of our work:

{ We have presented a fully automated methodology to validate/invalidate temporal safety
properties of software interfaces. Our process does not require user supplied annotations,
or user supplied abstractions. When our process converges, it always give a de�nitive
\yes" or \no" answer.

{ The ideas behind the SLAM tools are novel. The use of boolean programs to represent
program abstractions is new. To the best of our knowledge, C2bp is the �rst automatic
predicate abstraction tools to handle a full-scale programming language, and perform a
sound and precise abstraction. Bebop is the �rst model checker to handle procedure calls
using an interprocedural data
ow analysis algorithm, augmented with representation
tricks from the symbolic model checking community. Newton uses a path simulation
algorithm in a novel way, to generate predicates for re�nement.

{ We have demonstrated that the SLAM tools converge in a few iterations on device
drivers from the Microsoft DDK.

The SLAM toolkit has a number of limitations that we plan to address. The logical model
of memory is a limitation, since it is not the actual model used by C programs. We plan to

investigate using a physical model of memory. We are working on a property speci�cation
language, and automatic instrumentation of the source code from the speci�cation language.
We are exploring theoretical guarantees we can give about the termination of our iterative
re�nement. We plan to evolve the SLAM tools by applying them to more code bases, both
inside and outside Microsoft.

Acknowledgements

We thank Rupak Majumdar and Todd Millstein for their hard work in making the C2bp
tool come to life. Thanks to Andreas Podelski for helping us describe the C2bp tool in
terms of abstract interpretation. Thanks also to the members of the Software Productivity
Tools research group at Microsoft Research for many enlightening discussions on program
analysis, programming language and device drivers, as well as their numerous contributions
to the SLAM toolkit.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C programs.
In PLDI 2001 (to appear).

2. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstractions for model checking c
programs. Technical Report (to appear, TACAS 2001) MSR Technical Report 2000-115, Microsoft
Research, December 2000.

3. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean programs. In Proceedings of
the 7th International SPIN Workshop (Lecture Notes in Computer Science No. 1885), pages 113{130.
Springer-Verlag, September 2000.

4. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Com-
puters, C-35(8):677{691, 1986.

5. W. R. Bush, J. D. Pincus, and D. J. Siela�. A static analyzer for �nding dynamic programming errors.
Software{Practice and Experience, 30(7):775{802, June 2000.

6. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction re�nement.
In Proceedings of the 12th International Conference on Computer Aided Veri�cation (LNCS No. 1855),
pages 154{169. Springer, July 2000.

7. J. Corbett, M. Dwyer, J. Hatcli�, C. Pasareanu, Robby, S. Laubach, and H. Zheng. Bandera : Extracting
�nite-state models from Java source code. In Proceedings of the 22nd International Conference on
Software Engineering, June 2000.

8. P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for the static analysis of
programs by construction or approximation of �xpoints. In Proceedings of the Fourth Annual Symposium
on Principles of Programming Languages. ACM Press, 1977.

9. P. Cousot and R. Cousot. Temporal abstract interpretation. In Proceedings of the Twenty Seventh
Annual Symposium on Principles of Programming Languages. ACM Press, 2000.

10. M. Das. Uni�cation-based pointer analysis with directional assignments. In PLDI '00: Proceedings of the
ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation, June 2000.

11. R. DeLine and M. F�ahndrich. Enforcing high-level protocols in low-level software. In PLDI 2001 (to
appear).

12. M. Dwyer and L. Clarke. Data
ow analysis for verifying properties of concurrent programs. In Proceed-
ings of the Second ACM SIGSOFT symposium on Foundations of Software Engineering, pages 62{75,
December 1994.

13. M. Dwyer, J. Hatcli�, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser, and H. Zheng. Tool-
supported program abstraction for �nite-state veri�cation. In Proceedings of the 22nd International
Conference on Software Engineering (to appear), June 2001.

14. D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-speci�c, programmer-
written compiler extensions. In Proceedings of 4th Symposium on Operating System Design and Imple-
mentation. Usenix Association, October 2000.

15. C. Flanagan, R. Joshi, and K. R. M. Leino. Annotation inference for modular checkers. Information
Processing Letters, 2000. To appear.

16. C. Flanagan and J. B. Saxe. Generating compact veri�cation conditions. In POPL'2001 (to appear).
17. S. Graf and H. Sa�di. Construction of abstract state graphs with PVS. In CAV 97: Computer-aided

Veri�cation, Lecture Notes in Computer Science 1254, pages 72{83. Springer-Verlag, 1997.
18. G. Holzmann. The Spin model checker. IEEE Trans. on Software Engineering, 23(5):279{295, May

1997.
19. G. Holzmann. Logic veri�cation of ANSI-C code with Spin. In Proceedings of the SPIN 2000 Workshop,

pages 131{147. Springer Verlag / LNCS 1885, Sep. 2000.
20. R. Kurshan. Computer-aided Veri�cation of Coordinating Processes. Princeton University Press, 1994.
21. L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on Software Engi-

neering, SE-3(2):125{143, 1977.
22. G. Necula. Proof carrying code. In Proceedings of the 24th Annual Symposium on Principles of Pro-

gramming Languages, pages 106{119. ACM Press, 1997.
23. S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining speci�cation, proof checking,

and model checking. In R. Alur and T. A. Henzinger, editors, Computer-Aided Veri�cation, CAV '96,
volume 1102 of Lecture Notes in Computer Science, pages 411{414, New Brunswick, NJ, July/August
1996. Springer-Verlag.

24. J. Pincus. personal communication, October 2000.
25. W. Pugh. A practical algorithm for exact array dependence analysis. Commun. ACM, 35(8):102{114,

August 1992.
26. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural data
ow analysis via graph reachability.

In Proceedings of the 22nd ACM Symposium on Principles of Programming Languages, pages 49{61,
January 1995.

27. H. Sa�idi and N. Shankar. Abstract and model check while you prove. In CAV 99: Computer-aided
Veri�cation, Lecture Notes in Computer Science 1633, pages 443{454. Springer-Verlag, 1999.

28. D. Schmidt. Data
ow analysis is model checking of abstract interpretation. In Proceedings of the
Twenty Fifth Annual Symposium on Principles of Programming Languages, pages 38{48. ACM Press,
1998.

29. M. Sharir and A. Pnueli. Two approaches to interprocedural data dalow analysis. In S. Muchnick and
N. Jones, editors, Program Flow Analysis: Theory and Applications, pages 189{233. Prentice-Hall, 1981.

30. N. Suzuki and K. Ishihata. Implementation of an array bound checker. In Proceedings of the ACM
Symposium on Principles of Programming Languages. ACM, January 1977.

31. W. Visser, S. Park, and J. Penix. Using predicate abstraction to reduce object-oriented programs for
model checking. In The Third Workshop on Formal Methods in Software Practice, pages 3{12. ACM,
August 2000.

32. Z. Xu, B. P. Miller, and T. Reps. Safety checking of machine code. In Proceedings of the ACM SIGPLAN
'00 Conference on Programming Language Design and Implementation, pages 70{82. ACM, June 2000.

