
1

Software Model Checking
Extracting Verification Models from Source Code

GERARD J. HOLZMANN and MARGARET H. SMITH
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974, USA

Key words: Software Verification, Model Checking, Model Extraction, Software Testing,
Systems Design, Debugging, Call Processing, Telephony.

Abstract: To formally verify a large software application, the standard method is to
invest a considerable amount of time and expertise into the manual
construction of an abstract model, which is then analyzed for its properties by
either a mechanized or by a human prover. There are two main problems with
this approach. The first problem is that this verification method can be no
more reliable than the humans that perform the manual steps. If rate of error
for human work is a function of problem size, this holds not only for the
construction of the original application, but also for the construction of the
model. This means that the verification process tends to become unreliable for
larger applications. The second problem is one of timing and relevance.
Software applications built by teams of programmers can change rapidly, often
daily. Manually constructing a faithful abstraction of any one version of the
application, though, can take weeks or months. The results of a verification,
then, can quickly become irrelevant to an ongoing design effort. In this paper
we sketch a verification method that aims to avoid these problems. This
method, based on automated model extraction, was first applied in the
verification of the call processing software for a new Lucent Technologies’
system called PathStar.

(Invited paper to the FORTE/PSTV Conference, October 1999, Beijing, China.)

1. INTRODUCTION

In theory, software applications can be designed either top-down or
bottom-up. It has been debated for decades which of these two methods,
applied in isolation, would be better. In practice, the two methods are often

2 GERARD J. HOLZMANN and MARGARET H. SMITH

used in combination. An industrial software design project normally starts
with a top-down system design phase, where requirements and constraints
are explored and defined. This is followed by a bottom-up phase, where
developers try to meet the stated objectives. The design is then concluded
with a system validation phase, where testers probe the code to check if the
top-down and the bottom-up phases meet in the middle.

If code were developed purely top-down, we could apply systematic
design refinement techniques to guide the process, to secure that each new
level preserves all top-level requirements and continues to satisfy all
constraints. This assumes, however, that the requirements and constraints do
not change much, or that one would be willing to return to first design phase
each time they do. It also assumes that we can successfully carry through
refinement proofs from top-level design to implementation level code. At
present, these assumptions are not very realistic for larger applications.

A verification problem is typically presented to a formal methods person
in the same way that it is presented to a conventional software tester. In
many cases a detailed implementation of the design exists, and is available.
The requirements for the design are often harder to find. Often, the
requirements are not accurately documented and have to be reconstructed by
the tester or verifier. If the problem is sufficiently important, a verification
expert can undertake to formalize the requirements, and then to construct a
formal model of the code that can be shown to either satisfy or to violate
those requirements. The formal methods expert can make mistakes both in
the formalization of the requirements and in the formalization of the code.

The effort to construct and to check the accuracy of a formal model for
any application of substance can be significant, often consuming weeks or
months. Only in rare cases, where design and development have ceased, and
no maintenance is performed, will the code remain unchanged in the period
that model construction and verification is attempted. This has several
important implications:

– It is difficult to perform this type of verification during the design and
development phases, when verification results are most beneficial. For
this to be possible, the effort to construct an abstract model must be
considerably smaller than the development effort itself.

– When verification results become available, chances are that they apply
only to older versions of the code, which may no longer be of interest to
the designers.

– Manually constructed models can themselves be flawed, possibly hiding
real errors and often introducing artificial errors. The latter can be
detected and corrected, the former cannot.

Software model checking 3

An alternative method that we will explore in this paper is to extract a
formal verification model mechanically from a software application.

2. MODEL EXTRACTION FROM CODE

For any software artifact there are at least two types of entities that are of
interest when it comes to verification: the final version of the design
requirements and the ultimate code that implements them. It is the task of
the verifier to prove that the latter conforms to the former. There can be
many hurdles to overcome before the verification itself can start.

First, the requirements may be partially unstated (i.e., incomplete) or they
may be available only in their original form, before the long process started
in which idealized requirements meet real-world constraints and are true-ed
up. Ideally, the requirements are captured in a sufficiently formal notation,
so that it will be possible to check them directly for their logical consistency,
independently of the implementation. In practice, we often have to interpret
and disambiguate informally stated textual requirements.

A second hurdle to overcome is that the correctness properties of the full
implementation are almost certainly intractable. In general, only the
correctness properties of a subset of all possible software applications can
have decidable properties (cf. the general unsolvability of the halting
problem). One such subset, of particular interest for verification, is the set of
finite state programs. The hurdle to overcome, then, is to devise a way to
map a given program into an element of this subset by some well-defined
process. That well-defined process is called abstraction, and the result of this
process can be called a verification model.

A purely top-down design process starts with a high-level abstraction that
can trivially be proven correct. By a disciplined process of refinement the
designer then tries to obtain an implementation level description of the
application that preserves the essence of the high-level abstraction. Specific
types of functionality may need to be proven at each refinement level, in
addition to the preservation of properties across levels. The process requires
sufficient care and discipline that examples of its use in large-scale
applications are scarce.

2.1 Verification During Code Development

The alternative that we will explore here is to allow the design and
coding phases to proceed normally, but to devise a method that can extract a
verification model from the current version of the code at each point in time.
The model can then be shown to either satisfy or to violate the current

4 GERARD J. HOLZMANN and MARGARET H. SMITH

expression of all correctness requirements. Requirements and code are thus
developed hand in hand. In some cases evidence of a violation of a
requirement will necessitate a refinement of the requirements. In other cases
it will call for an adjustment of the code.

2.2 Data and Control

We will assume in what follows that the application describes a dynamic
system of asynchronously executed processes, communicating via message
passing and/or via access to shared data. That is, we specifically target the
verification of distributed systems software for this work [H97]. For each
process there is a piece of code in the implementation that describes its
behavior. We would like to extract a model from each such piece of code, by
applying predefined, carefully selected, abstractions.

At the minimum, we have to extract the control-structure from the code.
We only need a minimal parser for the language in which the code is written
to extract such a control-flow skeleton. For applications written in C, for
instance, the parser needs to know that statements are terminated by
semicolons, and it needs to know the syntax of selection and iteration
constructs such as if, while, until, goto, case, and switch, but it needs to
know very little else about the language. In particular, the text of statements
(assignments, conditions, function calls, etc.) can remain uninterpreted at
this point.

The control-flow skeleton specifies only control; it is void of any
knowledge of data so far. The skeleton can be converted into a minimal
verification model, e.g. for the model checker SPIN [H97].

For a minimal model, we can proceed by populating the skeleton model
with all message-passing operations from the original code. To do so, we
only have to be able to recognize which statements in the original source text
in C correspond to sends and receives, and to define a translation for them
into the skeleton model. The send and receive operations in the code can be
more detailed than what is necessary or desirable in the model, so we can
already chose to define a first abstraction at this point.

In PROMELA, the specification language used by SPIN, message send and
receive operations are applied to channels (i.e., message queues). These
operations typically include only those message parameters that are deemed
relevant to the correctness properties of the application. Sequence numbers
and congestion control information, for instance, would normally qualify for
inclusion in such a mapping, but random user data would not. Could we
automate abstractions of this type?

First note that both the source code and the code from the PROMELA model
represent all message passing primitives in a specific, but distinct, notation.

Software model checking 5

This consistent and context independent representation style in both the
detailed and the abstracted version of the code allows for a particularly
simple and elegant method of conversion. All that is needed is the definition
of a lookup table that is populated with the required conversions. The table
contains the source code version of each primitive on the left, and the
abstract version of the code that corresponds to it on the right, as illustrated
in Table 1 below. Once we have the lookup table, the conversion from
source code into a minimal model, containing just the representation of
message passing construct and control flow can indeed be automated.

A critical observation at this point is, however, that we can use the same
discipline to define an abstraction for also the remainder of all source
statements. We need not limit ourselves to just the message passing
primitives. The lookup table gives us control over all aspects of the
abstraction. It allows us to decide which data objects will be represented in
the model, and how the manipulation of these data objects is to be rendered
in the abstraction to secure a tractable model. Without the ability to define
data abstractions, the model extraction process would be of no real practical
significance. Consider, for instance, what useful properties would remain to
be proven about a C program from which all data manipulations are
removed.

Table 1. Sample Lookup Table for defining Simple Abstractions
Source Code in C PROMELA Code for abstract model
send(y,Iring) y!Iring
send(x,Cranswer) x!Cranswer
x->time = 60; Time = true
cdr_init(y,ptr) skip

If we want to use the model extraction process that is sketched above
during systems design, the source code may continue to evolve, also after we
defined the lookup table for an initial set of abstractions. New statements
may be added to the code, old ones may disappear. Once the lookup table is
complete, though, it is relatively simple to keep it up to date. Indeed, it is
simpler than keeping a manually constructed abstract model up to date under
the same conditions. To allow us to track the changes in the source code of
an application it suffices for the model extraction tool to alert us to
omissions, mismatches, and redundancies that are detected between entries
in the table and statements in the source code during the model extraction
process.

Table 1 gives a sample lookup table, defining abstractions for four types
of source statements that may appear in the source code of an application. In
the first two cases, the mapping is a syntactical conversion from C to
PROMELA. The third entry shows a more deliberate abstraction, where we

6 GERARD J. HOLZMANN and MARGARET H. SMITH

record only the fact that a timer was set, but not the numeric value to which
it was set. The last entry shows a still greater abstraction. It defines that all
source statements of the type given on the left (having to do with issuing
call-data-records for billing in a telephone system) are irrelevant to the
verification effort, and can be omitted from the model.

2.3 Model Templates

The lookup table focuses on actions, not on the data objects acted upon.
To produce the final model in PROMELA, every abstract data object must be
formally declared, defining its type and initial value. This can be done with
the help of a model template that contains the required data declarations and
an outline of the required process declarations, to be filled in with detailed
behavior specifications by the model extractor.

chan Q[2] = [1] of { mtype, bit };

active [2] proctype state()

{ mtype op, par1;

 bit seqno; byte who;

 chan qin, qout;

 who = _pid;

 qin = Q[_pid];

 qout = Q[1-_pid];

@P/* extracted code goes here */

}
Figure 1. A Sample Model Template

A sample model template is shown in Figure 1. In this case the template
is for a simple protocol system. The template defines the containers for two
processes, and a number of local data objects that are used in the abstracted
version of the code (not further detailed here). The model extractor replaces
the placeholder @P with the abstracted behavior that it generates from the
source code of the application (also not shown here).

2.4 Checking Abstractions

The adequacy of the abstractions defined manually in the lookup tables
can be checked as follows. We can check, for instance, that all updates of
data objects referenced at least once in the abstract model are represented in

Software model checking 7

the abstraction. We can also check that all data dependency relations are
properly preserved by the abstraction. If, for instance, data object D is part
of the abstraction, we can check that all data objects on which D depends in
the source code are also be represented, and so on recursively. A check for
these types of completeness can trivially be automated. One step further,
one could also consider methods for mechanically deriving the lookup table
contents from a given body of requirements.

Figure 2. Overview of the Model Extraction Process

2.5 Model Extraction Tools

Figure 2 gives an overview of a model extraction process of this type that
we have implemented. Model extraction begins with a source description of
an application in the programming language C. A control-flow parser for a
subset of C, called PRY, extracts an annotated control-flow skeleton from the
C code, in an extended state machine format. As noted, PRY needs to identify
only control-flow constructs and statement boundaries. It can therefore be
substantially simpler and smaller than a full C compiler. In our
implementation, for instance, PRY is a 1,700 line C program.

The next step in the model extraction process is performed by a tool
called CATCH, of about the same size as PRY. CATCH reads the intermediate

8 GERARD J. HOLZMANN and MARGARET H. SMITH

format produced by PRY, and guided by the lookup table and the model
template it generates a verification model in PROMELA.

The user manually constructs the lookup table and the model template.
The user also provides the properties to be verified and the test-drivers. The
test-drivers formalize assumptions that must be made about the environment
in which the application will be executed. In the case of a telephone system,
as discussed in the next section, the test drivers formalize assumptions about
the behavior of telephone subscribers and of remote switches in the network,
in so far as this is visible and relevant to the local switch. (The issue of
visibility and relevance is discussed in more detail in [H98)].)

The user, then, manually provides only those parts of the model that
define the desired level of abstraction, the properties that have to be proven,
and the context in which they are to be proven, conforming to a familiar
assume-guarantee paradigm. Most significantly, when the source code
changes, only small changes are needed before a verification attempt can be
repeated. The required changes, made in the lookup table or in the model
template, require no deep insights into the rationale for the changes in the
source that produces the model. The tools PRY and CATCH issue warnings
when they detect redundancy or incompleteness in the lookup table or model
template.

3. APPLICATION: PATHSTAR

The PathStar Access Server is a new Lucent Technologies product with
support for call processing and telephone switching, as well as data
connections, in an IP network [FSW98]. The system was designed and built
by a large team of people over a period of several years. The call processing
software, one of many software modules in PathStar, was developed over a
period of approximately nine months by Phil Winterbottom and Ken
Thompson. The call processing software was verified with the methodology
that we have outlined here, and detailed in [HS99]. This application is, as far
as known to us, the first use of software model checking in a commercial
product development at this scale.

The call processing code for PathStar was designed to adhere to the
recommendations on call processing and feature processing published and
maintained by Telcordia (the new name for the former Bellcore) [B92-96],
as is required for any public switching system. Structurally, though, the code
differs from older implementations of the same functionality. The primary
difference that concerns verification is that the central code related to call
processing is concentrated in a single high-level procedure that can be
studied and verified separately from the remainder of the code.

Software model checking 9

The central procedure encodes an extended finite state machine that
defines all control logic for telephony, i.e., basic call processing and all
feature code. At the time of writing, the code supports roughly fifty call
processing features, such as call waiting, call screening, call forwarding,
three-way calling, etc. The more standard software modules with sequential
code, e.g., defining the specifics of device drivers, switch administration,
and operating systems interfaces, are tested separately, without use of model
checking techniques.

As detailed in [HS99], the control logic for the PathStar system is written
in C, in a format devised by Ken Thompson to simplify the definition of the
underlying state-machine. The code defines the conventional transition
tuples of source state, guard condition, actions, and destination state. From
this code we mechanically extract the verification models. The extraction
process is performed in three steps, as also illustrated in Figure 2.

1. The C code for the core control code is parsed by the program PRY and
converted into an intermediate format that makes both the state-machine
structure and all transition tuples explicit.

2. The program CATCH reads this format and converts it into a standard
PROMELA specification, using a model template and a lookup table (or
map) to define the desired abstraction.

3. Correctness requirements, stated in linear temporal logic (LTL) are taken
from a substantial database of properties that we have built derived from
general Telcordia/Bellcore requirements for call processing, feature
behavior, feature precedence relations, and from internal requirements on
the desired functionality of the switch.

The complete extraction process takes a fraction of a second. Minor
changes in the source code require no human intervention when a new series
of verifications is performed. This applies in particular to small bug-fixes
that are introduced to repair, for instance, a correctness violation uncovered
by the verifier. Often the adequacy of a suggested fix can be (dis)proven
within a few minutes of real-time, from start to finish. Within this
framework it can be more time-consuming to describe and record a bug in
the standard project databases then it is to both implement a correction and
to formally prove its correctness.

More substantial changes to the source code, introducing new
functionality, can require an update of the abstraction itself. This often
means that the lookup table used by CATCH to guide the model extractions
must be updated. To facilitate this process, the program CATCH warns the
user when it finds entries in the lookup table that do not (no longer) appear

10 GERARD J. HOLZMANN and MARGARET H. SMITH

in the source code, and it warns when it finds new functionality in the source
code that is undefined in the lookup table.

We have tracked the evolution of the call processing code for PathStar
from the first version, up to and including the final version of the code that
was shipped to customers. All correctness properties were checked and
rechecked for almost every version of the code throughout this period, often
several times per day. In this period the code more than tripled in size. With
few exceptions, each update of the lookup table took no more than five
minutes. The few exceptions were when the source code changed more
significantly from one day to the next, to support the inclusion of more
complex feature code. In these cases the matching revisions of the lookup
table took a few hours of edit time each.

3.1 Web-Based Access

The requirements database we have built to support the PathStar work
contains over one hundred separate formalized requirements, and the results
of the verification of each one, organized by feature. A web-server gives
online access to the various parts of this database, containing:

– The text of the original Telcordia/Bellcore documents, in PDF format.
– Summaries of the verifiable parts of these documents, in ASCII format.
– Formalizations of each property in either temporal logic form, or in a

short-hand form for specifying ω test automata (not further detailed
here).

– The results of all verification attempts of the properties, in the form of
tables derived directly from the machine generated results.

– Access to the re-verification of individual properties, or groups of
properties. To support this, each web-page contains menus that allow a
user to select either an individual property, or a group of properties, a
verification mode, and a run button that initiates the verification process.
The results of the verification process are included in the web-databases
as soon as they become available, without further human intervention.

Each verification run initiated through these web-pages always starts
with the model extraction process, i.e., it starts with the call processing
source code in C from the application itself.

The verification of a property stops when a counter-example is found, or
when it completes normally. Because of the way that we instrument the
generated models, the execution of the counter-example with the SPIN
simulator suffices to generate an execution trace for the system in native C,
i.e., as an interleaved sequence of C statement executions. The

Software model checking 11

instrumentation we apply is to allow the SPIN simulation to printout the C
source statements that correspond to the various portions of the abstract
model, as comments to the simulation. To the C programmer, these
comments are the equivalent of a true execution of the source code. If there
is any discrepancy that makes this not true, it points to a flaw in the
abstraction method applied, which is then repaired by a modification of the
lookup tables that define the abstractions used.

3.1.1 Search by Iterative Refinement

Short error traces are more convincing than long ones, and therefore we
rely on an option from the model checker SPIN to deliberately search for
short error sequences. To find errors as quickly as possible, our system
optionally uses an iterative search refinement procedure. If this option is
chose, a verification attempt starts with a coarse, and therefore fast, proof
approximation step. This is realized by exploiting a feature of SPIN’s bitstate
search option (sometimes called supertrace [H97]). We initially run this
algorithm with a deliberately small hash-array. The supertrace algorithm
performs the equivalent of a random pruning of the reachable state space,
within the constraints imposed by the size of the hash-array. The size of the
hash-array correlates directly with both speed and coverage.

By doubling the size of the hash-array after each unsuccessful attempt we
can systematically increase the thoroughness of the search, and the amount
of time spent performing it. Errors typically show up in the first few
iterations of the search, within the first few minutes or seconds. Only
properties that fail to generate any counter-examples, i.e., for properties that
are likely to be satisfied, we will go through the entire iteration process, from
fast approximation down to a final thorough exhaustive check.

Table 2 gives an example of the view offered by the web-based server for
the verification status of properties. Each property in the database is in one
of four possible states.

Table 2. Sample Web-Based View of Verification Status
Pending Provisioning Status Action
[](p U X(r U s)) +TWC -DTS n/a Start Check

Running Provisioning Status Action
[]<>er +TWC -DTS B04331 Abort Run

Verified Provisioning Status Action
<>(a /\ X (b U c)) +CFDA -ACR +CW B076443 Delete Result
[](p → <> q) +CFBL -ACR M409574 Delete Result

12 GERARD J. HOLZMANN and MARGARET H. SMITH

Failed Provisioning Error-Trail Action
[](oh → <> dt) -DOS +CFDA B-50 Delete Result

A property in the database can be listed as:

– Pending, when no verification results for this property have been
obtained so far;

– Running, when a verification run is in progress;
– Verified, when no counter-example to the property has been found in any

of the verification runs performed;
Failed, when at least one counter-example to the property is available.

Depending on the state, an appropriate action can be performed on the
property. A verification can be initiated for a pending property, moving it to
the running state. A running property will typically transit quickly into either
a failed or a verified property. Longer running verifications, however, can be
queried about the intermediate results achieved thus far, by clicking on the
status field (in the third column of the table). Both failed and verified results
can be returned into pending properties, by deleting them from the table.

The most important feedback offered by this web-based tabulation of
verification results is that all failed properties can be queried about the
precise nature of the failure.

3.1.2 Analyzing Counter-Examples

As illustrated in Table 2, the first column of the table gives the LTL form
of a property. Symbols such as p, q, a, b, and c are defined by the user as part
of the property definition. The detailed definitions for these symbols appear
in the web-pages in a list below the table (not shown here). The second
column details provisioning data for a verification run. For the first verified
property listed in Table 2, the provisioning data states that for this property
to be valid we must assume specific feature combinations to be enabled or
disabled. (CFBL is call forwarding busy line, ACR is anonymous call
rejection, and CW is call waiting). The third column links to the results of a
verification, either the evidence for assuming that it is verified, or the
counter-example that shows that the property is not satisfied.

The third column entry indicates the type of verification that was
performed (exhaustive or approximate) and, in the case of a failed property,
the length of the error-trail. The shortest error trail is always displayed first;
if it is deleted, the next shortest trail is shown, etc. Clicking the link in the
third column will display the counter-example in one of four available
forms.

Software model checking 13

– An ASCII representation of a message sequence chart derived from the
trace. This chart shows only message send and receive operations
between the concurrently executing processes, but no details of
statements executions.

– A graphical representation of the message sequence chart, adding some
context information about the connection between the behavior specified
in the property and the behavior exhibited by the system. To accomplish
this the display notes when in the execution different predicates from the
temporal logic formula change value.

– A statement-by-statement listing in C source code of the executions of all
processes involved in the sequence.

– A statement-by-statement listing as above, with detailed dumps of all
variable values at each step in the sequence.

Typically, the ASCII version of the message sequence chart serves as a
quick indication of the type of execution that has been identified by the
verification process, and the C statement listings provide the finer detail that
is needed to interpret it fully.

Figure 3. Message Sequence Chart for Error Sequence

The last property included in Table 2 states that if a subscriber line has
the feature CFDA (call forwarding on don’t answer) enabled, but not DOS
(denial of originating service) then the subscriber will always receive a
dialtone (represented by symbol dt) after going offhook (symbol oh).

When we verified this property for an early version of the call processing
software, the verifier reported a short error sequence, which is illustrated in
graphical form in Figure 3. When the PathStar system processes a call

14 GERARD J. HOLZMANN and MARGARET H. SMITH

forwarding request it briefly enters a transit state. The processing in this state
typically lasts for only a few milliseconds. The scenario, illustrated in Figure
3, shows that if the subscriber happens to go offhook within that brief
interval, it will not received dialtone. As it turned out, in the original version
of the code, the system would discard offhook signals while in this transit
state and fail to exit the state unless the subscriber would be onhook.

The error-trace illustrated in Figure 3 is an example of the type of
software error that would be extra-ordinarily hard to identify with
conventional testing. Even if errors of this type are encountered in lab
testing, they are almost impossible to reproduce, and therefore often
attributed to hardware glitches, beyond the control of the software.

3.1.3 Avoiding False Positives

Although the failed properties listed in the results tables give the most
detailed feedback to a user, one quickly learns in an application of this size
that also the purportedly verified properties can carry significant
information. When a new property is formulated, it too has to be verified for
its correctness. The first few attempts to capture a desired system property in
a logic formula are often flawed. If the flawed property produces a false
counter-example, no harm is done. The counter-example can be inspected
and will reveal the flaw. If the verification fails to produce a counter-
example, however, it is not always evident if this is a vacuous result, e.g.,
because the property accidentally failed to match the intended behaviors.

In most cases, undesirable system behavior starts with a valid execution
prefix that produces an invalid outcome. Consider, for instance, the setup of
a three-way call. One of our formal properties for three-way calling checks
that if the telephone subscriber follows all instructions for setting up the call
correctly, that indeed a three-way call will be established. The valid
execution prefix in this case is the subscriber correctly following the
instructions. The invalid suffix of the execution would be the failure of the
system to establish the call as instructed. If during the verification of this
property neither the invalid suffix nor the valid prefix of the behavior can be
matched, something is likely to be wrong with the formalization of the
property itself.

The verification system that we have built gives the user feedback on the
portion of the property formula that was matched in a verification run. The
system provides this information in graphical form for all properties that are
in the Running or in the Verified state. This means that for a longer running
verification, the user can see quickly if the verification attempt is
progressing as intended, and is likely to produce a useful result, or not. To
achieve this, the system displays the test automaton that is derived by SPIN

Software model checking 15

from the LTL property, and indicates which states of this automaton have so
far been reached in the verification attempt. This direct feedback has proven
to be effective in diagnosing potential false positives.

3.2 The TrailBlazer System

After a full update of the source code, all properties in our database are
reverified from scratch. The iterative search refinement method secures that
errors show up early in this process. Nonetheless, to run this process to
completion, the verification of all properties in the database can take several
hours. A number of simple optimizations can be made in this process. We
discuss two of the optimizations that have had the largest impact on our
project.

The first optimization we implemented exploits the way in which SPIN
works. To perform a verification, SPIN always starts by generating C code
that implements a model-specific verifier for the complete specification: one
part in LTL and one part in PROMELA. In our case, the PROMELA model is
extracted from the application, and therefore necessarily the same for all
properties. Generating and compiling the complete verifier from scratch for
each separate property is inherently wasteful. To prevent this, we have added
an option to SPIN that allows one to generate and compile the property
specific code separately from the application code. This reduces the average
compilation time for all properties from minutes to seconds. The large
PROMELA specification is compiled into the model checker just once, and it is
linked with a different small fragment of C code for each new property
checked.

A second optimization exploits the fact that each property from our
database is checked in a separate and independent verification run. It is easy
to see that large gains in performance can be made if we parallelize these
verifications. We have therefore started the construction of a 16-CPU
system, called the TrailBlazer system, that will perform the verifications.
Each CPU is has 512 MB of main memory and runs at 500 Mhz. The CPUs
do not need disks, since they are used only for computation. Each node of
the system (illustrated in Figure 4) runs a version of the Plan 9 operating
system [P95], called Brazil, as a compute server. The web-based interface
runs on a separate system, which also contains the central task scheduler.
The scheduler is accessed through our web-based interface. It allocates
verification tasks to the CPU servers and collects the results of each run,
storing it back into the web-based database of properties.

For the verification of individual properties, all levels of iteration can be
run in parallel on this system. The verification process on all nodes is then
stopped as soon as at least one of the nodes successfully generates a counter-

16 GERARD J. HOLZMANN and MARGARET H. SMITH

example to the given property. Using this type of parallel, iterative, search
process, we expect near interactive performance on verifications run through
this system. In effect, the TrailBlazer system will provide the equivalent of
an 8 GHz supercomputer.

Figure 4. The TrailBlazer System

4. CONCLUSIONS

We have sketched a methodology for software model checking that is
based on an automated extraction of verification models from source code.
The techniques that we have implemented have proven to be effective,
despite the simplicity of the means employed. The verification support we
built for the PathStar system has to date identified nearly one hundred
software bugs, without disrupting the normal development process. Many of
the errors were deemed significant and unlikely to have been found by other
means. Several of the errors uncovered in this way have lead to a rethinking
of the code structure itself, at an early state in its development, thus possibly
avoiding more expensive redesign later.

On several occasions during the development of the code, the developers
independently discovered erroneous behavior in the switch that could not be
reproduced. By specifying the pattern of events that had preceded each such
observation, we could use the model checker to identify the timing
conditions that could reproduce the types of failure that had been observed.
With the help of the error traces that our system generated, the cause of each
such error could be diagnosed and repaired. The model checking framework
thus proved its value not just as a verifier for abstract properties, but also as
a diagnostic tool.

Software model checking 17

Using hardware support like the one planned for the TrailBlazer system,
it should be possible to develop an intelligent software tracking and
debugging system that allows developers to verify logical correctness
properties of source code with the thoroughness of a model checker and the
response-time of an ordinary software compiler. To make this possible, at
least two issues must be addressed.

First, we would like to find an alternative for the specification of
software properties that is more intuitive than temporal logic, yet equally
robust. Testers are not used to defining logic formulae, but they have
considerable experience in the construction of test drivers. A test driver can
be seen as a special type of test automaton that is very similar to the
automata that SPIN extracts from an LTL formula. Allowing specific types of
these automata to be constructed directly, perhaps guided by specially
defined templates, comparable to those defined in [DAC98], could help us
bridge the gap between testing and verification. A second issue that remains
to be resolved is to examine if the method we have applied relies in any
detail on the specifics of the PathStar application. We plan to look into this
issue in detail by attempting to apply the method to a range of other software
applications, adapting it where necessary.

ACKNOWLEDGEMENTS

Phil Winterbottom and Ken Thompson inspired our work on the PathStar
system and helped to make it successful. Jim McKie and Rob Pike helped to
design and build the TrailBlazer verification system. Kedar Namjoshi and
Amy Felty helped with the formalization and the analysis of the correctness
requirements for the PathStar application. We thank them all.

REFERENCES

[B92-96] LATA Switching Systems Generic Requirements (LSSGR), FR-NWT-000064, 1992
Edition. Feature requirements, including: SPCS Capabilities and Features, SR-504, Issue
1, March 1996. Telcordia/Bellcore.

[DAC98] Dwyer, M.B., Avrunin, G.S., Corbett, J.C., Property Specification Patterns for
Finite-state Verification, Proc. 2nd Workshop on Formal Methods in Software Practice,
March 1998, Ft. Lauderdale, Fl. USA, ACM Press.

[H97] Holzmann, G.J., The model checker SPIN, IEEE Trans. on Software Engineering, May
1997, Vol 23, No. 5, pp. 279-295.

[H98] Holzmann, G.J., Designing executable abstractions, Proc. Formal Methods in Software
Practice, March 1998, Ft. Lauderdale, Fl., USA, ACM Press.

18 GERARD J. HOLZMANN and MARGARET H. SMITH

[HS99] Holzmann, G.J., and Smith, M.H, A practical method for the verification of event
driven systems, Proc. Int. Conf. on Software Engineering, ICSE99, Los Angeles, May
1999.

[FSW98] Fossaceca, J.M., Sandoz, J.D., and Winterbottom, P., The PathStar access server:
facilitating carrier-scale packet telephony. Bell Labs Technical Journal, Vol.3, No.4, Oct-
Dec. 1998, pp. 86-102.

[P95] Pike, R., Presotto, D., Dorward, S., Flandrena, B., Thompson, K., Trickey, H.,
Winterbottom, P., Plan 9 from Bell Labs, Computing Systems, 1995, Vol. 8, No. 3, pp.
221-254.

