
Cobra: a light-weight tool for static and dynamic
program analysis

Gerard J. Holzmann?

NASA Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA, USA

gholzmann@acm.org

Abstract. Static source code analysis tools have become indispensable
for the development of reliable software applications. The best analyzers
can reveal subtle flaws in a code base, but they can also be slow. In part
this is due to the collection of detailed information about the possible
data and control flow of an application to support the broadest possible
range of analyses. For larger code bases it is not unusual that even the
best of breed static analyzers can take an hour or more to complete an
analysis.
In this paper we describe a framework for a much faster, but more light-
weight type of static analysis that can support interactive use for stan-
dard types of queries. The Cobra tool we designed for this purpose can
scale to explore millions of lines of code interactively. The tool is mostly
language agnostic, and can therefore easily be configured to resolve even
dynamic program analysis queries.

Keywords: Static analysis · Source code analysis · Lightweight tools ·
Token expression matching · Dynamic analysis · Runtime verification

1 Introduction

The Cobra1 tool was designed to support fast, interactive, resolution of rela-
tively lightweight code queries, even on large code bases. To allow the tool to
startup quickly it avoids pre-computing detailed information that could support
more sophisticated types of analysis. Instead, the tool provide fast access to an
extremely simple data structure that captures all the available information from
an application in such a way that all other data may be deduced separately,
in response to specific user-defined queries. The data structure is also chosen
to be directly amenable to the parallelization of query resolutions on standard
multi-core machines.

Cobra supports a range of formalisms for expressing queries. One method, for
instance, is to formulate queries as regular token expressions on code patterns;

? This research was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Adminis-
tration.

1 An acronym for Code Browser and Analyzer.

2 Gerard J. Holzmann

another is to use in-line command scripts, or sequences of query commands to
mark and modify items of interest in the input.

The tool is not meant to be competitive with more sophisticated, but slower,
mainstream static analyzers for the resolution of detailed code analysis queries.
The tool could be extended to support those types of queries, but doing so may
cause it to lose its ability to support interactive use. Although the scope of queries
is limited, the Cobra tool tends to be surprisingly effective in handling common
types of queries that range from smart code browsing, to statistics gathering,
and the resolution of a broad range of standard program analysis problems.

The Cobra tool targets the analysis of C, C++, and Java code, but it is not
restricted to those languages. Beyond the recognition of the normal language
specific keywords and tokens, that can be configured separately, the tool is mostly
language agnostic. This means that it is relatively easy to retarget the tool to
the analysis of other programming languages, and even to input streams that
do not correspond to programming languages at all. As an example of this we
will show how the Cobra tool can be used for runtime analysis, where the input
”language” is a stream of events, instead of program source text.

Section 2 summarizes the principle of operation of the Cobra tool, and de-
scribes the data structure that is built when it starts up. Section 3 describes the
formalisms that are provided for writing queries, and illustrates their use with
examples. Section 3.4 also covers a more atypical application of the tool to the
runtime analysis of event logs. Section 4 discusses performance in more detail,
and shows how the tool’s operation can be parallelized on multi-core systems.
Section 5 covers some related work.

Section 6 summarizes the main benefits and limitations of the chosen ap-
proach, and Section 7 concludes the paper.

2 Principle of Operation

Cobra uses a lexical analyzer, by default configured for recognizing C, C++, or
Java sources, to process the code from all files that are specified on the command-
line. By default, the tool runs this code through a standard C preprocessor
to expand macros and include files, but the preprocessing phase can also be
disabled with a command-line option, for instance when the files being read
were preprocessed before, or where the code is too platform dependent. The tool
then builds a data structure that can be used for querying that source code
interactively, or with predefined scripts or programs.

The data structure that is constructed is a simple linked list of lexical to-
kens, enhanced with only minimal annotations and links, for instance to identify
matching pairs of parentheses, brackets and braces in the code. Despite its sim-
plicity, the tool can be remarkably powerful in locating complex patterns in a
code base to assist in peer code review, development, or basic code analysis.

The tool supports four main formalisms for writing queries. In order of in-
creasing capabilities, the user can explore a code base by writing (a) regular ex-

Cobra: a tool for program analysis 3

pressions on code patterns (so-called token expressions), (b) interactive queries,
(c) inline programs, and (d) standalone checkers.

Token expressions can be used when a specific coding pattern is looked for,
but they cannot do much more than that. Unlike grep, which works on char-
acter sequences on a line by line basis, Cobra expressions are formulated on
sequences of lexical tokens, ignoring white space. A simple example of a Cobra
token expression query is:

$ cobra -re ’{ FILE * x:@ident .* :x = fopen ^fclose* }’ *.c

which prints all code blocks that contain a local declaration of a file descriptor
(an identifier that is bound to x), an assignment to that same descriptor in an
fopen call (referred to as :x), that is not followed by any calls to fclose. The tool
makes sure that the curly braces match only if they appear at the same nesting
level in the code.

Internally, Cobra converts the token expressions into inline Cobra programs,
which provide a much richer context for code exploration. We will therefore
discuss these regular token expressions, and the details of variable binding, after
we have covered interactive queries and inline programs, in Section 3.3.

Interactive queries, discussed in Section 3.1, can resolve the most frequent
types of issues that may come up in an initial exploration of a possibly large code
base, for instance during code development, or in code review sessions. These
types of queries can be used to quickly find, mark, and list interesting patterns
of code, e.g., corresponding to deviations from a coding standard.

When more complex query needs to be handled, that may require iteration,
conditional branching, or the use of additional data structures, then an inline
Cobra program can be used. This is discussed in Section 3.2.

For still more complex types of queries, that can more easily be resolved with
the full power of a C program, we can use the basic infrastructure and data-
structures that are provided by the Cobra front-end to construct standalone
checkers. We will, however, not discuss this application of the Cobra tool further
in this paper.

Internal Data Structure When analyzing C or C++ code, the user can choose
to explore the original sources, or the preprocessed version of the code. Pre-
processing with gcc is enabled by default. It can be replaced with any other
conforming compiler (e.g. clang).

To enable interactive use, Cobra performs only limited additional processing
of the input stream, instead choosing to provide the available data directly to
the user in a form that supports fast exploration. In a typical use, when Cobra
is used to explore the source code of a C program, Cobra uses a lexical analyzer
to separate the input stream into lexical tokens. The lexical analyzer, though, is
not used as a front-end for a parser, but as a generic classifier that recognizes
and categorizes key elements of the input data. The general context is illustrated
in Figure 1.

4 Gerard J. Holzmann

Fig. 1. Cobra context.

The lexical analyzer tags items in the usual categories, such as identifier,
constant integer, keyword, qualifier, preprocessing directive, comment, operator,
type, etc. Tokens that do not fall into one of these categories, such as parentheses,
braces, brackets, semi-colons, etc., remain uncategorized as plain text items.

Each subsequent token in the input stream is stored as an element in a single
linked list that contains all the data, in the order in which it is read. Cobra is
generally applied to sets of files, which means that the token sequence that is
created contains the contents of all files in the order in which they are read.

The key to the working of Cobra is the data that is available in the otherwise
extremely simple data structure (the linked list). Each element (i.e., token) in the
linked list carries only the information that is needed to determine its context in
the data-stream, plus a small amount of information that speeds up navigation
across tokens.

Each token structure records the text of the item, the filename and linenum-
ber on which it is located in the source, the level of nesting at which the token
appears in curly, round, and square braces, the length of the corresponding
source text, the category to which it was assigned (e.g., identifier), the sequence
number of the token in the input stream, pointers to the next and the preceding
token, and most importantly a mark field that identifies if the token was selected
in a search.

The marks define the set of currently selected tokens. The user can use query
commands to store, modify, restore, or combine these token sets.

In addition, for all curly, round, and square braces, each token structure also
contains a link to its matching token at the same level of nesting (if present).
That is, an open curly brace character { contains a forward link to the matching
close character }, and similarly the close character contains a backward link to
the matching open character at the same level of nesting. Figure 2 illustrates
this structure for the following fragment of a C program.

int

main(void)

{

...

Cobra: a tool for program analysis 5

Fig. 2. Fragment of the linked list data structure constructed for a small C program.

}

Note that the text string main is recognized as an identifier, with a pointer to
the text itself. Further, int and void are recognized as data types, and switch
is recognized as a keyword. The otherwise uncategorized tokens (and) are
associated with forward and backward links, as are the tokens for the curly
braces { and } (not shown in Figure 2).

The advantage of the linked list data structure is that it can be scanned
very quickly. Because the data structure is laid out in memory sequentially, it is
cache-friendly. Further, as we will discuss in more detail below, any search of the
data structure for specific token sequences can be trivially split across multiple
cores, to obtain a further speedup when needed.

In the following sections we briefly discuss the main query types that are
supported by the tool, starting with the most basic type of interactive queries.
After this we discuss inline programs in Section 3.1, followed by regular token
expressions (which are converted into inline programs internally) in Section 3.3.
As noted earlier, we will not discuss yet another way to use the Cobra framework,
which is to write standalone checkers that are linked with the Cobra front-end.

3 Query Languages

3.1 Interactive Queries

In interactive mode Cobra accepts two types of queries: (a) global commands that
provide general information about the code that is explored, or the state of the
search, but that do not modify the state of the system, and (b) query commands
that are used to add, delete, move, or extend marks to identify patterns of
interest in the code.

Every query command is always applied to all tokens in the input stream.
To do so, the Cobra engine visits every token in the data structure that was
built and applies the command. In some cases this means that it will need to
search the context of a given token, e.g., to find the closest neighboring token
that matches a user-defined pattern. The essence is though that each token is
visited in turn, and the same operation is applied to every single one. The key
to Cobra’s operation is that this can be done extremely fast, even for large code
bases. We will see later how we can also use multi-threading to divide query
resolutions over multiple threads to gain a further speedups.

6 Gerard J. Holzmann

Queries can be used to set, move, remove, extend, stretch, or interrogate
user-defined mark points on tokens, and they can be used to define and inspect
ranges of marked tokens. Most types of query commands support a number of
optional qualifiers that can be used to fine-tune their operation.

In total, Cobra supports approximately thirty different global and query
commands. Most common queries require only four of five of these commands
though. We will cover the most important query types with the help of some
examples.

The simplest type of Cobra query is to identify and mark specific types of
tokens in the input stream, which normally corresponds to the lexical tokens
derived from the preprocessed source code of an application. As a first example,
we may want to mark all uses of the library call malloc, and list the matches in
various forms.

$ cobra *.[ch] # use cobra on its own sources

30209 # the number of tokens in the input

: mark malloc

2 matches

: list

cobra_prep.c:

1: 231 ’malloc’

cobra_re.c:

2: 78 ’malloc’

: display

cobra_prep.c:

1: 231 { void *n = malloc(size);

cobra_re.c:

2: 78 s = (void *) malloc(n);

: pre

cobra_prep.c:

1: 231 { void * n = malloc (size) ;

1: ^^^^^^

cobra_re.c:

2: 78 s = (void *) malloc (n) ;

2: ^^^^^^

: q # end the session

$

In this example, Cobra reads in about 16K lines of C sources and header files,
and creates a linked list data structure with about 30K lexical tokens. The Cobra
command prompt is the single colon ”:”. In the session shown above we give a
mark command (which can also be abbreviated to a single m) followed by the
token text we are looking for: malloc. Cobra locates two matches in the code.
We next issue a global command named list (or its abbreviation l), which prints
the location of the two matches.

The first match is found in the source file named cobra prep.c on line 231,
and the second is found in file cobra re.c on line 78.

Cobra: a tool for program analysis 7

The list command only shows the matching tokens, but not their context.
To see the source line where each token is found we can use the display (or d)
command. If we need still more context, we can also ask Cobra to display the
preprocessed version of the code, with the matched tokens marked explicitly.
This can be done with the pre (or p) command.

Using abbreviations, which will quickly become the preferred way of working
with the tool, the entire query sequence above can be written in a single line as
follow, using a semi-colon as a command separator:

: m malloc; l; d; p

or when executed from the command-line:

$ cobra -e ’m malloc; l; d; p’ *.[ch]

Even with the minimal functionality we discussed so far it is already possible
to obtain quite useful behavior, for instance to quickly generate a broad range
of code statistics for a large application and display it on an web dashboard
page. Figure 3 shows an example of a graph that was generated in a fraction of
a second for an early version of the Cobra code itself, plotting the frequency of
use of different data-types and qualifiers. The data is generated with a sequence
of interactive Cobra query commands like this:

: r; m @const_int; = int_num

: r; m void; = void

...

which are postprocessed with a small shell script and imported as data into
a Google online spreadsheet. The r is the abbreviated notation for the Cobra
reset command, which clears all previous matches before a new mark operation is
performed. The = command prints the number of matches, optionally preceded
by the text that is given as an argument.

We can also display the context of each match in more detail. For instance,
to display the three lines before and after the first match, we can issue a d
command with some additional arguments:

: r; m malloc; d 1 3

cobra_prep.c:

1: 228

1: 229 void *

1: 230 emalloc(size_t size)

1: > 231 { void *n = malloc(size);

1: 232

1: 233 if (!n)

1: 234 { fprintf(stderr, "out of memory\n");

:

8 Gerard J. Holzmann

Fig. 3. Example of a Cobra generated dashboard.

Note that the call to malloc appears in a function called emalloc, which itself
is not matched by the mark command we used because that name does not
fully match the string we provided. It is possible to match on a fragment of a
token text, using standard regular expressions in mark operations, for instance
by replacing the query sequence with:

: r; m /malloc; d 1 3

To mark a token type (or category), rather than the literal text that is
associated with each token, we can use a type query by preceding the reference
with the @ symbol:

: reset # remove all current marks

: mark @qualifier

100 matches

: p 1

1: 87 const Prim * q ;

1: ^^^^^

Capturing Context So far we have only talked about locating specific terms
or tokens in a code base. For most queries of interest, though, we should be able
to capture things in a specific context. We discuss this next.

Assume that we want to check that every switch statement in a C program
has a default clause. This is Rule 16.4 in the well-known MISRA 2012 guidelines
for safety critical software development. We could do a rough check with the
Unix tool grep, for instance as follows:

$ cat *.[ch] | grep -c -e switch

Cobra: a tool for program analysis 9

182

$ cat *.[ch] | grep -c -e default

179

Clearly, the two numbers we get are not the same, but this does not mean
that the rule is necessarily violated, because grep will report also occurrences
of the keywords that appear inside strings or comments. We can use Cobra to
perform a more accurate check.

We start the tool, and use the default preprocessing step to make sure that
even switch or default clauses that appear in macros will be interpreted correctly.

$ cobra *.[ch]

305232

: m switch

111 matches

: r; m default

73 matches

This already looks very different, because we now accurately match the key-
words in the preprocessed code, and not also in comments or strings.

The numbers do not match, so how do we find the switch statements that do
not have a default clause? Three Cobra commands suffice to locate them (after
a reset to clear the earlier matches):

: r; m switch

111 matches

: next {

111 matches

: contains top no default

38 matches

The mark command, abbreviated to m, again marks all keywords that match
the string switch. The next command that follows it moves the mark point for
each of those matches to the next occurrence of a curly brace token, which is
part of any syntactically valid switch statement.

The next command is one of a small group of navigation commands that
can be used to move mark points. If used without an argument, the command
simply moves each existing mark forward to the immediately following token. A
related command is back, which can be used to move each existing mark back one
position, or to a specific token if given an argument. But back to our command
script.

If, when executing the command next {, there is no curly brace token any-
where after an existing mark, (e.g., when the program is not syntactically valid)
the mark point is deleted. We can see that this was not the case here, since the
number of matches that is reported after the execution of the next command
remained unchanged.

10 Gerard J. Holzmann

Next, the task is to identify those bodies of switch statements that do not
contain the keyword default at the nesting level of the switch statement that
is being inspected. That is: we don’t want to match on default keywords that
may appear in another switch statement that may be nested inside the current
statement. This is achieved by using a contains query command with the quali-
fiers no and top. The contains command is defined to work over ranges that are
defined by default for all matching pairs of braces, parentheses, or brackets.

Since the current mark points have been positioned on an opening curly
brace, the contains command will restrict the search for matches to the default
range that is defined for that symbol.

The result shows that 38 of the 111 switch statements do not contain a default
clause. At this point we can again display the line numbers for all the matches
with a list or display command.

If we make use of the shorthands that Cobra provides for the key commands,
we can write the complete query as a single command, including the display of
the matching lines at the end:

$ cobra -e ’m switch; n {; c top no default; d’ *.c

We can define this sequence also as a script, and place it into a library file, so
that we don’t have to remember this particular sequence of queries. We do that
so by writing the definition into a file, say badswitch.cobra, followed by a call to
that script:

$ cat badswitch.cobra

def badswitch

r; m switch; n {; c top no default; d

end

badswitch

Cobra can read and execute that script file in interactive mode with a dot com-
mand, as follows:

$ cobra *.c

: . badswitch.cobra

Finally, we can also execute the script file directly from the command line,
as follows:

$ cobra -f badswitch.cobra *.c

Using Sets A more interesting use of the Cobra command set is to use sets.
We will illustrate this with the help of an example, which is to find all cases
of backward goto jumps in a program. Backward goto jumps are a violation of
Misra Rule 15.2. Notably, the earlier Misra Rule 15.1 strongly discourages the
use of all goto statements, but does not require it.

First we find the goto statements, with a simple mark command (we will
assume that no other tokens were marked earlier).

Cobra: a tool for program analysis 11

: mark goto

115 matches

We now advance the mark point from the goto to the label name. That is easy,
since the name must follow the keyword directly:

: next

115 matches

We now save the current collection of marks in a predefined set as follows:

: >1

By default there are four sets available to store matches, but this can be changed
where needed with a command-line option.

Set one now contains the set of all goto statements that appear in the code,
with a mark placed on the corresponding label names. Some of these label names
will appear in the code before the goto, and some will appear after it, and our
task is now to distinguish these two cases.

We can do so by searching forwards from each label name to a possible
point in the code where the same name appears again. That will be true only for
forward jumps. The command we can use for this is the Cobra stretch command:

: stretch $$

102 matches

What the stretch command tries to do is to define a new range for the
matched tokens that starts at a current mark and extends to the pattern that
is specified as its argument. In this case the argument we need is a reference
to the (text of) the currently matched token, which is available in the symbolic
reference $$.

For our current purpose we do not actually need the ranges themselves, but
only the identification of those goto statements in our set for which it is possible
to create the range.

The number of matches went down to 102, which means that for 13 goto
statements the range could not be created. Those should correspond to the
backward jumps that we are interested in.

At this point, though, we have only the forward jumps matched. So we have
to do some more work.

We first store the new subset of matches in a second set:

: >2

We have now defined two sets: one with all jumps, and a second with only the
forward jumps. What we need is the difference between those two sets. To obtain
it, we first we clear the current marks and reload the marks from the first set.

12 Gerard J. Holzmann

: reset

: <1

115 matches

Now we use the second set to find only those marks that are not shared between
the two sets.

: <^2

13 matches

This uses the restore operator < in combination with the modifier ˆ (caret) to
compute the exclusive-or of two sets (the current set and set 2). Other available
combinations include <& for computing set intersection, and <| for computing a
set union.

After the restore operation we have identified the 13 backward jumps, which
we can now list in any of the available forms we discussed before. Note that this
check identifies the backward jumps even if a given label name is used in both
forward and backward gotos.

We can summarize the complete check again in a single line, using shorthands
as before:

: r; m goto; n; >1; s $$; >2; r; <1; <^2

and we can store the sequence in a script library for later use.

Recursion As another example of a Cobra query, consider the problem of
identifying all recursive function declarations in a C program.

We can do so in Cobra with a script of nine commands. For clarity we give the
script here without abbreviations, and without concatenating short commands
on a single line. The # symbol is the Cobra comment delimiter.

: mark @ident (# mark identifiers followed by a (

: next # move the marks to that opening (

: jump # move the marks to the matching)

: extend { # retain the marks only if the next

token is a { (the start of the body)

: jump # move the marks back to the opening

braces of the parameter lists

: back # move the marks back to the function name

: stretch top } # define new ranges starting at those

names to the end of the function bodies

: mark ir $$ # retain the marks only of marked function

name appears inside each range

and move the remaining marks to those

names (i.e., likely recursive calls)

: extend (# retain the resulting marks only if

they are followed by a parameter list

Cobra: a tool for program analysis 13

The identification of all function definitions and function calls has been pre-
defined in Cobra itself. The command fcg can be used to generate the function
call graph in dot-format. When more local information is needed, for instance to
find just all callers and callees of a function, the predefined command context can
also be useful. Finally, the predefined command ff can be used to find a specific
function definition by name, and the command cfg can be used to display the
control-flow graph of a named function.

3.2 Inline Programs

The most powerful mechanism that the Cobra tool has for expressing queries is
an inline program. Cobra inline programs are enclosed between character delim-
iters:

%{

...

%}

Since an inline program typically consists of multiple lines of text, and will
generally be edited until it performs as intended, it is usually not typed in
interactively, but stored in a file and then called from the command line, as in:

$ cobra -f file_with_cobra_program *.[ch]

This call executes the inline program, returns the result, and stops. The program
can of course also be written interactively. In that case it will run immediately
once the closing delimiter is seen.

Cobra inline programs can be used to write more complex queries than inter-
active commands allow. This includes queries that require the use of conditional
selection and scanning larger parts of the code to identify patterns of interest.
Cobra programs can store data, add, delete, or move token markings, and print
more information than is possible with interactive queries. Cobra programs,
though, have their own syntax and grammar specific to their typical use, and
this syntax is different from the interactive query commands we discussed ear-
lier. As can be expected, there is a way to express any interactive query also in
inline programs, but the syntax of inline programs is different, and significantly
more expressive, as we will see shortly. A sample collection of both Cobra scripts
and inline programs is part of the standard tool distribution.

As a first example of an inline Cobra program, consider this definition:

%{

print .fnm ":" .lnr ": " .txt "\n";

%}

This program contains just a single print statement that is executed once for
each token in the data structure that was built for the program being analyzed.
The print command takes any number of arguments, and it will print output

14 Gerard J. Holzmann

for each argument that matches its type: numbers are printed as numbers, and
strings as strings, with the special characters \n and \t interpreted as newline
and tab respectively. A sample single output line from the above program can
be:

cobra_lib.c:1237: if

...

A line of source code will typically hold several tokens, so a single filename:line-
number combination does not uniquely identify the tokens. When needed, we
can identify individual tokens by adding also a sequence number to the output,
which is available in the predefined integer token attribute .seq. A short example
program that prints this sequence number and text of each token is:

%{

print .seq " " .txt "\n";

%}

Just like in C, statements in Cobra programs are terminated by a semi-colon.
There are three types of token attributes that can be referred to in inline

programs. Grouped by the type that each of these return, they are:

– Strings: .fct, .fnm, .txt, .typ
– Numbers: .round, .bracket, .curly, .len, .lnr, .mark, .seq, .tag
– Token references: .back, .bound, .forw, .nxt, .prv

The dot that precedes each attribute refers to the current token being processed.
The language also allows us to define, set, and query token variables and refer
to their attributes, e.g. as q.len, with commands that we will discuss shortly. If
a literal version of each keyword is needed it can be enclosed in quotes.

In addition to token attributes, there are a few additional keywords in the
language. They inline language defines the following control-flow keywords with
the usual semantics.

– Keywords: if, else, while, break, continue, and goto.

The following four additional terms are predefined:

– Predefined: CobraArg, Next, Stop, and print.

CobraArg is a string that can be specified by providing Cobra with a -e argument
on the command line.

Next is a meta-command that when executed will to end the processing of the
current token and advance to the processing of the next token, starting the inline
program anew.

Stop is a meta-command that when executed will abort the processing of tokens
and end program execution.

Cobra: a tool for program analysis 15

Print, finally, is the predefined print function, accepting one or more number or
string arguments, discussed above.

A complete Cobra program is a sequence of statements, each terminated by
a semi-colon. The keywords break and continue can only be used inside while
statements, with the usual effect on loop control.

If and while statements are followed a sequence of one or more statements
that must be enclosed in curly braces. The syntax of an if statement is:

if (expr) { ... } [else { ... }]

where the else-part is optional, as usual. Similarly, the syntax of a while state-
ment is:

while (expr) { ... }

There is also a range of operators in the language, the most important of
which is assignment =. Assignments are written the conventional C-like way:

lhs = rhs;

Where the left-hand side (lhs) is either the token attribute .mark, a token
location . (dot), or a token reference variable (to be discussed). The attribute
.mark is the only token attribute that can be modified by the user. Some exam-
ples of Cobra inline program statements are:

.mark = 5; # set the value of .mark to 5

.mark--; # decrement the value of .mark

.mark++; # increment the value of .mark

. = .nxt; # move forward one position

. = .prv; # move backward one position

. = .forw; # move to end of range associated with .

. = .back; # move to start of range associated with .

q = .; # assign a token reference variable q

q = .nxt;

. = q; # move to the location pointed to by q

. = q.forw;

A single name is always interpreted to be a token reference variable. Such refer-
ence variables do not need to be declared.

Another type of data object supported in the language is an associative
array. Associative arrays also need not be declared before they are used. They
are identified by a basename and an index, for instance as follows:

basename[index] = value;

The index can be either a text string or a number, and the value stored can be a
value, a text string, or a token reference. Some examples of the use of associative
arrays are:

16 Gerard J. Holzmann

X[.txt] = .mark;

X[.txt]++;

Y[.mark] = .fnm;

Z[.fnm] = .;

There is one restriction to the use of the values stored in associate arrays, and
that is that when a token reference is stored, its attributes cannot be referenced
directly. So if we use the definition of Z from above, we cannot refer directly to
Z[.fnm].mark, but must do so indirectly, for instance as:

q = Z[.fnm]; q.mark++;

Expressions in the inline language include the usual set of unary and binary
operators. The binary operators are:

arithmetic: +, -, *, /, %

boolean: >, >=, <, <=, ==, !=, ||, &&

The unary prefix operators are:

! (logical negation)

- (unary minus)

~ (true iff .txt contains pattern, eg ~yy)

^ (true iff .txt starts with pattern, e.g. ^yy)

(true iff .txt equals pattern, e.g. #yy)

@ (true iff .typ matches the given type, e.g. @ident)

Note that the use of the # operator requires some caution because it can also
be used as a comment delimiter. The rule is that if the # symbol is followed by
a space or another # symbol, it is interpreted as a comment, and if it is followed
by text it is interpreted as the unary operator.

In the remainder of this section we discuss three examples of relatively simple
Cobra inline programs.

Example 1 The following example shows how we can match on a text string
that is specified on the command-line argument to Cobra itself.

$ cat igrep.cobra

%{

if (@ident && .txt == CobraArg)

{ print .fnm ":" .lnr ": " .txt "\n";

}

%}

$ cobra -f igrep.cobra -e j *.c # CobraArg is set to j

cobra_lib.c:1824: j

...

cobra_lib.c:2041: j

cobra_lib.c:2041: j

cobra_lib.c:2041: j

Cobra: a tool for program analysis 17

Note that this matches on tokens, and that there can be more than one
match per line of source code. Line cobra lib.c:2041 above, for instance, has
three occurrences of an identifier that matches of the token text:

cobra_lib.c:2041: for (j = 0; x && j < span; j++)

In this case, a simpler mechanism exists, using the interactive query language,
to achieve the same effect with the command:

$ cobra -e ’mark j; display’ *.c

$ cobra -e ’m j; d’ *.c # using abbreviations

$ cobra -e ’j’ *.c # even shorter

Example 2 This example illustrates the use of a while loop and token references.
The program counts the number of cases in a switch statement, taking into
account that switch statements may be nested.

$ num cobra_progs/nr_cases.cobra

1 def nr_cases

2 %{

3 if (.curly > 0 && #switch)

4 { # introduce token variable q:

5 q = .;

6 . = .nxt;

7 if (.txt != "(")

8 { . = q;

9 Next;

10 }

11 . = .forw;

12 . = .nxt;

13 if (.txt != "{")

14 { . = q;

15 Next;

16 }

17

18 q.mark = 0;

19 while (.curly >= q.curly)

20 { if (.curly == q.curly + 1

21 && (#case || #default))

22 { q.mark++;

23 }

24 . = .nxt;

25 }

26 print q.mark " " .fnm ":" q.lnr "\n";

27 . = q;

28 }

18 Gerard J. Holzmann

29 %}

30 end

31 nr_cases

Running this program produces output like this, reporting the size of switch
statements:

$ cobra -f cobra_progs/nr_cases.cobra cobra_lib.c| sort -n

3 cobra_lib.c:1129

...

10 cobra_lib.c:963

22 cobra_lib.c:920

We will discuss this program, which covers almost all features of the inline
language, line by line.

– Line 1 defines the code as a script, so that we can call it by name on line 31.
– The condition on Line 3 matches only tokens that have a nesting level for

curly braces greater than zero (meaning that it only looks inside function
definitions), and tokens that contain the text switch. Because switch is not
a Cobra keyword (it is a C keyword) we can match it with a # operator. If
we needed to match on text that happens to be a Cobra keyword such as
while, we can match the text as a literal string: .txt == "while".

– Line 5 contains an assignment to q, thus introducing a new variable name
to point to the current token location, represented by the dot. Since q is a
general token variable, we can use it to refer to all the predefined attributes
of a token, even when it is not associated with a specific token location yet.

– Line 6 advances the token position forward one step. Note that this means
that the implicit outer loop over all token values will also advance, unless
we take care to reset the location like is done on lines 8, 14, and 27.

– Line 7 checks if the current token match an open round brace. If it does not,
the code jumps back on Line 8 to the location we stored in q (line 5), and
yields control back to Cobra on line 9, so that it can advance to the next
token position and repeat the program.

– If we reach line 11, we know that the current token is (so we can move
forward to the matching closing brace. At this point we will be at a token
matching), and on line 12 we move past it to the token position that follows.

– Line 13 checks if the token we see now is an opening curly brace. If not,
we probably have a syntactically invalid C program, so we abandon the
processing again, jump back to the original position remembered in variable
q before yielding back control to cobra.

– Line 18 sets the value of the q.mark to zero. The while loop on lines 19-25
now counts all tokens matching the string case, within the body of the switch,
but only counting such tokens that appear at the top level of nesting. This is
done by checking the nesting level that is recorded in the attribute .curly

from the current token, and comparing it to the value that is remembered in
variable q for the switch statement that is currently being processed. Note

Cobra: a tool for program analysis 19

that q points to a location just outside the body of the switch statement,
so we have to add one to the value of q.curly to get the top nesting level
inside the switch body.

– Line 24 advances us through the code of the switch statement until the
condition of the loop on line 19 no longer holds, when we exit the body of
the switch statement.

– Line 26 prints the number of case clauses seen, together with the filename
and line number of the switch statement itself.

– Line 27 restores the token position to the one recorded in q, so that when
Cobra advances the token position for the next round of processing it will
point to the statement following the token matching switch that we just
processed. In this way we will be able to count also switch statements that
appear in code nested inside the body of the statement we just processed,
and get a count for these as well.

Example 3 The only concept that we have not yet discussed are associative
arrays, which can be used to associate a value, string, or token reference with
either a text string or a value in a named array. The following somewhat naive
example will suffice to illustrate the basic concept:

%{

if (#float)

{ . = .nxt;

if (@ident)

{ .mark = 1;

X[.txt] = .mark;

print .fnm ":" .lnr ": declares ’" .txt "’\n";

}

Next;

}

if (@ident && X[.txt])

{ print .fnm ":" .lnr ": uses ’" .txt "’\n";

}

%}

We use an array named X (the name is arbitrary) to remember the current
value of .txt, and associate it with the value of attribute .mark of the current
token. In this case the right-hand side of the assignment is a value, but it can
also be a string, or a token reference. The value stored in X is retrieved in the
condition of the second if statement. If there turns out to be no value stored
for the string specified, the value returned will be zero. The second if statement
checks for every identifier whether the corresponding text string from .txt was
recorded before. If so, we know that this identifier first appeared following the
C keyword float, and must therefore be a floating point variable.

For simplicity, this version ignores that a type name like float can be followed
by a comma-separated list of identifier names, and can include initializers.

20 Gerard J. Holzmann

The following version of this program preserves a little more detail by storing
the location of the declarations as well, by using a token reference. We can now
check that the retrieved value corresponds to an actual location by checking that
the line number field of the reference is non-zero.

%{

if (#float)

{ . = .nxt;

if (@ident)

{ Store[.txt] = .; # store current location

print .fnm ":" .lnr ": declares ’" .txt "’\n";

}

Next;

}

if (@ident)

{ q = Store[.txt];

if (q.lnr != 0)

{ print .fnm ":" .lnr ": uses ’" .txt "’ ";

print "declared at " q.fnm ":" q.lnr "\n";

} }

%}

Variable and array references are preserved across multiple invocations of
Cobra programs, which helps to make the following example work. The second
inline program below stops all processing once the print statement has been
executed.

%{

check the identifier length for all tokens

if (@ident && .len > q.len)

{ q = .;

}

%}

%{

print "longest identifier: " q.txt " = " q.len " chars\n";

Stop;

%}

3.3 Regular Token Expressions

It is relatively straightforward to add support for alternative query definition
formalisms to the toolset, by converting each query from the new formalism into
an inline Cobra program.

Cobra includes such a converter for basic regular expressions over lexical
tokens. As an example, consider the following token expression for matching
switch statements that do not contain a default clause, where for convenience
we will ignore the special case of potentially nested switch statements:

Cobra: a tool for program analysis 21

$ cobra -re ’switch \(@ident \) { ^default+ }’ *.c

The converter recognizes the usual meta-symbols for regular expression: .
(any token), * (zero or more), + (one or more), ? (zero or one) | (choice), and
the round braces (and) for grouping. It also recognizes ^ for negation (note
that using ^ to match the beginning of a line of text is not useful in this context).

The @ symbol is again supported for matching on the type, rather than the
text, of a token. We used that here to match an identifier.

In the example pattern we match on the lexical token switch, which is directly
followed by an open round brace (which is escaped because it is not a meta-
symbol here), followed by an arbitrary identifier, which is followed by a closing
round brace. After this we match on any block enclosed in curly braces which
does not contain the keyword default anywhere.

The converter makes sure that the nesting level of the closing curly brace in
the regular expression matches that of the open curly brace that preceded it.
Similarly, it will do the same for round and square braces. This means that we
could also replace the token reference @ident with the meta-symbols .* without
changing the meaning of the pattern.

The regular expression is converted into a deterministic finite state automa-
ton with standard algorithms, which is then converted into an inline Cobra
program to perform the matching. The conversion process takes a fraction of a
second.

Variable Binding The following example illustrates the mechanism we defined
for variable binding. Consider the case where we want to find any use of the
control variable from a for loop that appears inside the body of the loop. We
can express this as follows:

$ cobra -re ’for \(x:@ident .* \) { .* :x .* }’ *.c

The notation x:@ident will bind the value of the matching identifier to the
variable x (any name will do of course). Inside the body of the loop, the bound
variable name is now referenced with the notation :x. Note again that the con-
verter makes sure that the nesting level of the closing curly brace will match
that of the open curly brace that preceded it. The presence of that closing curly
brace makes sure that the match of bound variable x can only occur inside the
body of the loop, and not beyond it.

3.4 Dynamic Analysis

Havelund, in [2] compared the performance of seven different tools for the run-
time analysis of event logs. The length of each log varied from close to 30 thou-
sand events to a little over two million events. Each event was recorded as a
single line with the three fields: event, task, and resource, where event is either
grant or release, and task and resource are numbers between 1 and 5000.

22 Gerard J. Holzmann

The tools Havelund evaluated, using different theories and implementation
strategies, were compared on the speed with which they could check three re-
quirements:

– R1: Every resource granted should eventually be released.
– R2: A resource and only be released by task t if it was earlier granted to task

t and not yet released.
– R3: As long as a resource is granted to a task, it cannot be granted again,

neither to the same task nor to any other task.

We can express these requirements as follows:

%{

q = .; Stop; # set q to a non-zero value

%}

%{

if (#grant)

{ . = .nxt; # move to task field

. = .nxt; # move to resource field

if (Held[.txt] == 1)

{ print .fnm ":" .lnr " violates r3\n";

} else

{ q.mark++;

}

Held[.txt] = 1;

Next;

}

if (#release)

{ . = .nxt; # skip to task

. = .nxt; # skip to resource

if (Held[.txt] != 1)

{ print .fnm ":" .lnr " violates r2\n";

} else

{ q.mark--;

}

Held[.txt] = 0;

}

%}

%{

if (q.mark != 0)

{ print .fnm " " q.mark " resources still held: ";

print "violates r1\n";

}

Stop;

%}

We used a prelude to initialize a token variable here, executing just a single
statement before stopping, and a postlude to check that the mark field of that

Cobra: a tool for program analysis 23

Fig. 4. Time to Check the Requirements, excluding Parsing for all Logs

variable is zero, to indicate that all resources that were granted have also been
released.

The match for a grant event checks that the resource referenced is not already
held, and then records the grant in associative array Held. If there is no violation,
it also increases a count of the number of resources currently being held in the
mark field of q.

The match for a release event checks similarly that the resource was indeed
being held, and then clears the corresponding entry in the array. On success, the
count maintained in q.mark field is decremented.

The program is relatively straightforward, and when useful it would of course
be possible to add a converter from a more specialized formalism into the more
detailed code of an inline program. The main question we want to address here
is if the performance of Cobra could be competitive with the specialized tools for
dynamic analysis that were described in Havelund’s overview paperc̃iteHavelund.

In Table 1 of [2] performance is reported in two parts. The first part is the
time that each tool takes to read and parse the logs, the second is the time taken
to check the three requirements. In Havelund’s measurements, the time to parse
the log and build an internal Java data-structure was the same for all tools at
approximately 23 seconds per one million events. Given the much simpler data
structure that Cobra builds, we can expect shorter times needed to build this
data structure for Cobra. On average Cobra spends about 2.5 seconds per one
million events to parse the log, or about ten times faster.

24 Gerard J. Holzmann

Fig. 5. Cumulative time to parse and check all requirements for Logs 2-6, with the
tools sorted by time from high to low.

For the performance comparison, we first measured the time needed to check
the requirements for each log, excluding the time needed to parse each log. Those
results are shown in Figure 3. For clarity, the y-axis in this and the next two
figures is plotted on a log-scale.

We also measured the total cumulative time for all logs that is used by each
tool to read in each log and perform the checks. Not all tools were able to
handle all logs, so we separated the results in two graphs. Figure 4 shows the
cumulative times for all tools for the first five logs, which all tools were able to
process. Separately, Figure 5 shows the cumulative times for the tools that could
handle all six logs.

In a few cases the Mop tool can be seen to outperform Cobra in these checks,
but in the large majority of checks, and especially for the cumulative end-to-
end times, we see the surprising result that the Cobra checks turned out to be
considerably faster than the specialized dynamic analysis tools. The main reason
for this is likely that the specialized tools include more sophisticated support for
specification formalisms with the matching data structures, where the Cobra
specification style for these checks is much more rudimentary.

4 Performance

The processing of basic queries for large applications can be sped up by using
multi-threading. The Cobra command-line argument -N can be used to define
the use of multiple cores, to process equal parts of the token sequence in parallel,
whenever possible.

Cobra: a tool for program analysis 25

Fig. 6. Cumulative time to parse and check the requirements, for Logs 2-7, listing the
tools in the same order as in Figure 4. This chart excludes the tools that fail to handle
Log 7.

For instance, -N4 tells Cobra to use four cpu-cores for processing, with po-
tentially the corresponding speedup, barring the usual effects of caching and
non-uniform memory access in large RAM memory sizes.

The definition of multiple cores does not change how inline programs are pro-
cessed though, because each run of these programs generally stores information
in variables or arrays that should be accessible to all cores at the appropriate
point in the processing.

The slowest step in the use of Cobra on applications of a million lines or more
is the standard preprocessing phase, if enabled. This preprocessing is done with
the standard C preprocessor (e.g., gcc -E), outside Cobra itself. To avoid having
to repeat the preprocessing every time Cobra is started it can be a substantial
speedup to first preprocess all source files outside Cobra, with the right prepro-
cessor directives, and then store the result in a single file that is given to Cobra,
while disabling further preprocessing in that tool with command-line argument
-n.

Another method to speedup the starting phase of a Cobra session for very
large applications is to suppress the processing of header-files (i.e., to exclude
them from the token sequence). This can be done with the Cobra command-line
argument -z.

An example can illustrate the effect of these options.
We measured performance of Cobra for an application of three Million lines of

C source code and header files combined. The application contains 1,725 source
files, defining a total of 50,986 C functions.

The default startup of a session, with full preprocessing and including all
header-files, takes about 1,800 seconds and produces a data-structure of 104
Million tokens.

26 Gerard J. Holzmann

Using eight cores, standard queries are processed over this data structure in
about three seconds per query, which is fast enough to be useful for interactive
use.

If, however, we can skip the preprocessing step and the inclusion of header
files, by using -n -z, the startup reduces to 15 seconds; but we then of course do
not get the benefit of seeing the preprocessed code. We can, however, preprocess
the code separately and let Cobra read in a single file with all the preprocessed
code, again using command-line options -n -z. The file with all preprocessed
sources now contains 36 Million lines.

This reduces the Cobra startup time to 90 seconds and produces a data
structure of about 13 Million tokens. If we prune the preprocessed file a bit
more by removing redundancies that do not affect the analysis results (e.g.,
removing repeated includes of the same headerfiles), we can reduce this further
to about 20 seconds.

Using eight cores the processing of interactive queries now reduces to under
one second per query, which allows for real-time query processing even on this
size of a code base.

5 Related Work

Some, though not all, of the capabilities of Cobra can also be found in main-
stream IDEs like Eclipse or MS Visual Studio. It would be possible to import a
Cobra-like infrastructure into such IDEs, though we have not attempted to do
so.

A closely related tool we described elsewhere is the Ctok program [3]. This
tool supports only a small subset of the capabilities of the Cobra tool though.

The best known standalone tool that is comparable to Cobra for exploring
the source code of C programs is Cscope [1]. We illustrate in Table 1 how the
standard types of queries that are supported by the Cscope tool can be handled
by Cobra, requiring just a small subset of Cobra’s capabilities.

Table 1 lists each command, assuming that we start with no current matches,
and we omit the standard commands to display results.

6 Limitations

The central data structure that Cobra provides for lightweight code browsing
and analysis consists only of a simple sequence of tokens. As we have shown,
this allows for the interactive resolution of surprisingly many types of queries,
but it also means that there are limitations to the types of queries that can be
handled. Some more complex queries could be handled, by providing options
to compute additional data structures on control and data-flow, but this would
start to challenge the premise that Cobra is designed primarily for fast query
resolution in interactive sessions. The types of queries that cannot be handled
by Cobra will remain the domain, at least for now, of the more standard state-
of-the-art commercial static source code analyzers, see e.g. [4].

Cobra: a tool for program analysis 27

Table 1. Resolving Cscope-like Queries with Cobra

Cscope Query Cobra Version (m is short for mark)

Find a C keyword or symbol named foo m foo

Find a global definition of foo m foo; eval (.curly==0)

Find functions called by foo() context foo

Find the word foo in a string m @str; m & /foo

Find a match for the regular expression
foo in the code

m /foo

Find all code in file foo.c m /.; eval (.fnm == foo.c)

Find all code in files with names that
include regular expression foo

m /.; eval (.fnm == /foo)

Find files that include the file foo.h
(starting Cobra without preprocessing)

m @cpp; m & /foo.h

Find all assignments to variable foo m foo =

7 Conclusion

The Cobra tool was designed to provide a fast, lightweight alternative to main-
stream static source code analyzers. It can be used for interactive resolution of an
unexpectedly broad class of relatively simple source code queries in code review
sessions, for code analysis, or for code exploration during the code development
process itself. The basic data structure that is built by the Cobra tools is simple
enough that it supports a quick startup and easy parallelization of most queries.

Despite its simplicity, the query languages that Cobra supports allow us to
construct function call graphs, and control-flow graphs on demand and to check
compliance with common coding rules.

When needed, the tool can be extended in a relatively straightfoward way
with additional functionality to support more complex types of queries. Exam-
ples of such extensions could be to add a symbol table, deduce type information,
to perform alias analysis. We have shown how the tool can also support custom
query languages, such a regular token expressions, which are translated inter-
nally into Cobra inline programs.

The approach to restrict basic preprocessing to just lexical analysis was orig-
inally intended as a compromise between performance and functionality. The
performance gain over mainstream static source code analyzers should be clear.
Surprising is perhaps how rich the functionality of the resulting tool has proven
to be.

Acknowledgment This research was carried out at the Jet Propulsion Lab-
oratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

28 Gerard J. Holzmann

References

1. The history of Cscope: http://cscope.sourceforge.net/history.html
2. K. Havelund, Rule-based Runtime Verification Revisited. Int. Journal on Software

Tools for Technology Transfer, Vol. 17, No. 2, April 2015, pp. 143-170.
3. G.J. Holzmann, Tiny Tools, IEEE Software, Jan/Feb. 2016, pp. 24-28.
4. Overview of static analyzers: http://spinroot.com/static

