
12 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

Editor: Gerard J. Holzmann
NASA/JPL
gholzmann@acm.org

RELIABLE CODE

IT HAS OFTEN been pointed out that
measuring programmer productivity by
the number of lines of code produced
per unit of time is dubious. Measuring
code quality by the comment-to-code
ratio is similarly unhelpful. So, why are
these metrics so bad?

Clearly, it’s easy for programmers to
increase their performance on these met-
rics by producing unnecessarily bloated
code littered with uninformative com-
ments. This effect is known as Good-
hart’s law, which says that “When a
measure becomes a target, it ceases to be
a good measure.” Debugging or main-
taining bloated code can be a nightmare.
The unfortunate souls asked to fix it
years later will have a hard time recon-
structing what pattern of thought led to
its creation.

Curiously, bloated and badly writ-
ten code tends to live longer than well-
written code. If you can’t understand
how or why some code works, you’re
much less likely to change it. After all,
the golden rule of code maintenance is,
if it ain’t broke, don’t fix it.

Code Bloat
Another reason why simplistic code
metrics are so unhelpful is that really
good programmers tend to write very
concise code that doesn’t need many
explanatory comments. So, it’s mostly

the bad code that will score well on
these metrics.

As is often the case, it’s easier to spot
the absence of code quality than its pres-
ence. As part of my job, I have to review
a lot of code. In doing so, I try to lever-
age the use of automatic code analysis
tools as much as possible. But even the
best analyzers are of little help when you
want to find code that’s likely to incur
the highest maintenance costs.

High-maintenance code not only
is verbose but also tends to rely on un-
stated, poorly stated, or incompletely
stated assumptions. If you want to un-
derstand that type of code, you need
long chains of reasoning to figure out
how and why it works, and under which
conditions it could start failing when
other parts of the system are updated.
The reliance on hidden assumptions
is probably the most telling feature of
high-maintenance code. So let’s look at
this in a little more detail.

Hidden Assumptions
As a very simple example, consider the
following declaration of an array I came
across when reviewing a critical piece
of embedded C code (though with the
names changed):

#define MAX_BUF 28
char buf[MAX_BUF*2 + 1];

Hi Maintenance
Gerard J. Holzmann

RELIABLE CODE

 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE 13

A comment at the declaration ex-
plained helpfully that the array was
fixed to the given size “because of
display limitations.” Presumably,
the text stored in this buffer was go-
ing to be displayed at some point or
retrieved from a display entry box.
The comment didn’t explain if the
limitation would prevent more than
the given number of characters from
ever being stored into that array. It
also didn’t explain if the display
couldn’t render more than the given
number of characters anyway when
the text was going to be written to
that display. To determine these
things first meant hunting down all
uses of the array and all the possible
sources that could produce the input.
Next, it meant checking whether
safeguards were in place to prevent
that any changes made elsewhere
later in the code’s evolution would
be consistent with the assumptions
implicit in this part of the code.

The macro MAX_BUF introduces a
number that seems to depend criti-
cally on some other quantity related
to the display width that might be de-
fined in some other module. You can
avoid the dependency, and thus reduce
the risk of mistakes, by using that
original limit, and not a derived value,
directly in the array declaration.

Later in the function in which this
declaration was placed, the library
function strcpy was used to fill the ar-
ray, using a character pointer passed
into the function as an argument. I’ll
call that argument param here:

if (strlen(param) > 0) strcpy(buf, param);

It would be fair to complain
about the poor formatting and the
lack of curly braces around the body
of the if statement, which could have
helped make the code a little easier
to read, but we have bigger fish to fry

here. The developer tried to ensure
that a zero-length string wouldn’t be
copied. That’s very considerate, of
course, but what if the param pointer
is null or points to a longer string
that the target buffer can accommo-
date? To check that this can’t happen
again sends us hunting through the
surrounding code. We can avoid all
this by adding an assertion explic-
itly stating that these conditions can
never happen:

assert(param && strlen(param) < sizeof(buf));

I use sizeof here instead of com-
paring against the size from the ar-
ray declaration, to protect this piece
of new code from future changes in
the declaration of the buf array. Who
knows, that could happen if the sys-
tem this code is part of ends up being
so profitable that the company can
afford to switch to larger displays.
For every design parameter like this,
we want to ensure that the code con-
tains a “single point of truth.” That
is, there’s only one point in the code
at which you can make a change
without having to chase down all its
hidden dependencies. Of course, you
also should never use unsafe func-
tions such as strcpy but switch to the
safer strncpy, or strlcpy if it’s available.

But we’re not done. A few lines
later in the function, the contents of
buf were updated, independently of
the length of param, with a call to the
library routine sprintf, again ignoring
its more well-behaved sibling snprintf.
The call looked like this:

sprintf(buf, “%s%c”, buf, ch);

Your alarm bells should now be
ringing loud and clear. First, the de-
veloper made an unjustified assump-
tion about how sprintf is implemented,
passing it the same array as both a

source and a destination of the op-
eration. This is a roll of the dice be-
cause the C standard explicitly states
that the result of such a call is for-
mally undefined. Another concern is
that, because the code didn’t check
whether the array was updated or
left unchanged in the earlier con-
ditional call to strcpy, even a correct
execution of sprintf to append a sin-
gle character to the end of buf now
risks overflowing the array when it
repeats enough times. Cybercrimi-
nals know how to exploit this type
of vulnerability. But even if this code
wasn’t a security vulnerability, it’s
just plain bad, unnecessarily high-
maintenance, code.

Token Patterns
If you have to review this code and
you see a careless statement such
as the sprintf call I just mentioned,
you’ll immediately want to check for
other update operations in which the
source and destination might over-
lap. Here, it’s useful to have some
tools at your disposal. The Unix tool
grep can easily collect all calls to rou-
tines such as sprintf, strcpy, and memcpy.
But that will likely give you much
more output than you need, requir-
ing far too much additional work to
separate the wheat from the chaff.

In cases such as these, a simple
tokenizer, such as the ctok tool I dis-
cussed in an earlier column,1 with
a small back end, can prove invalu-
able. For instance, here’s how we can
do a more appropriate pattern search
with the Cobra tool, which is based
on the same principles:2

$ cobra –re ‘sprintf \(x:@ident , .* :x .* \)’ *.c

I used the Cobra tool here to
match a token expression in the in-
put. A token expression is a regular
expression that’s defined not over

RELIABLE CODE

14 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

strings of characters, like most regu-
lar expressions, but over a sequence
of lexical tokens. By default, the tool
will try to match the literal text of
a token, but you can also ask it to
match a token type by preceding the
text with the @ symbol.

In the previous expression,
the identifier name sprintf must be
matched exactly in the source code.
It is to be followed by an opening pa-
renthesis, which has an escape char-
acter in front of it to distinguish it
from the corresponding regular ex-
pression metacharacter for grouping.
Next, the token expression is asked
to match any identifier name and
store its text in a variable I named
x (the name is, of course, arbitrary).
This variable-binding operation lets
us refer back to that same bound
variable later in the expression. The
next lexical token to be matched is
a comma, which is followed by a se-
quence of tokens we don’t care about
unless it includes a second instance
of the bound variable anywhere be-
fore the matching closing parenthe-
sis. Cobra ensures that parenthe-
ses, braces, and brackets are always
matched correctly in token expres-
sions. So, we’re guaranteed to be
checking precisely (and only) the full
parameter list of calls to sprintf with
this expression.

The token expression isn’t sensi-
tive to white space, so it doesn’t mat-
ter whether the calls to sprintf that
we’re trying to find span multiple
lines of text in the source code.

In this case, we’re looking just for
uses of sprintf that violate the rules;
we can, of course, do matching
searches for calls to strcpy, memcpy, and
so on. We can also specify all these
candidate function names in a single
token range in brackets, and use that
in the expression. Figure 1 shows
the nondeterministic finite-state au-
tomaton that’s generated from an ex-
pression that performs that search.

Writing Low-Maintenance
Code
To write concise, readable, and low-
maintenance code requires practice,
but it helps to look at examples. This
is similar to learning to write good
prose. For good reason, Steven Pinker
titled a chapter “Reverse-Engineering
Good Prose as the Key to Developing
a Writerly Ear” in The Sense of Style,
his recent book on writing.3

When I implemented the code for
processing token expressions in the
Cobra tool, I first looked at existing
algorithms for converting regular
expressions to automata. This class
of algorithms is so fundamental that
trying to invent a new version from

scratch would be foolish. I also ex-
pected that the most recent versions
would be the best. Surprisingly, that
wasn’t the case.

A few years ago, Russ Cox wrote
an excellent blog entry on existing
implementations of regular expres-
sion conversion algorithms.4 He
showed a significant difference in
performance between recent imple-
mentations in Java, Perl, PHP, Py-
thon, and Ruby and the by-now-
ancient Unix code, still available in
tools such as grep and awk. The older
code turns out to be much faster.
Cox explained how the difference
in performance can grow to orders
of magnitude for longer expressions.
The older code is based on an algo-
rithm that Ken Thompson invented
when he implemented regular ex-
pressions for the line editor ed. As
you probably know, the command
name grep is an abbreviation of the ed
command g/re/p for globally finding
and printing all matches for a given
regular expression re.

Dreaming in Code
The paper describing Thompson’s al-
gorithm appeared in 1968,5 shortly
after Ken joined Bell Labs. I decided
to use that algorithm as the founda-
tion for the Cobra implementation, if
only just to learn from how it was de-
signed. The 1968 paper turns out to
be an absolute gem. It manages to de-
scribe the algorithm in crystal-clear
prose in just four pages, including five
figures illustrating the main steps.

Thompson’s algorithm simulates
the execution of a nondeterminis-
tic finite-state automaton generated
from a postfix version of the regular
expression. The conversion is decom-
posed into a small number of steps
that can each be implemented in a
straightforward way that requires al-
most no additional explanation.

+,x:@ident(:x +)strcpy

memcpy

sprintf .

+

.

FIGURE 1. A nondeterministic finite-state automaton for the Cobra token expression

[memcpy strcpy sprint] \(x:@ident , .* :x .* \). This automaton performs matching searches

for strcpy, memcpy, and sprintf.

RELIABLE CODE

 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE 15

Perhaps this is the way we can
understand how good code is born.
It starts not with the code itself but
with developing a really good under-
standing of the problem to be solved.
I suspect that it also depends on the
ability to visualize a problem and its
possible solutions, before you start
writing code. Who hasn’t had the
experience of suddenly “seeing” the
solution to a difficult coding prob-
lem as you’re about to fall asleep at
night? Is that a skill that could be de-
veloped and taught? I think I’ll have
to sleep on that.

References
1. G.J. Holzmann, “Tiny Tools,” IEEE

Software, vol. 33, no. 1, 2016, pp.

24–28.

2. G.J. Holzmann, “Cobra: A Light-

Weight Tool for Static and Dynamic

Program Analysis,” Innovations in

Systems and Software Eng., 1 June

2016, pp. 1–15; http://link.springer

.com/article/10.1007/s11334-016

-0282-x.

3. S. Pinker, The Sense of Style, Viking,

2014.

4. R. Cox, “Regular Expression Match-

ing Can Be Simple and Fast,” Jan.

2007; https://swtch.com/~rsc/regexp

/regexp1.html.

5. K. Thompson, “Regular Expression

Search Algorithm,” Comm. ACM,

vol. 11, no. 6, 1968, pp. 419–422.

GERARD J. HOLZMANN works at the Jet

Propulsion Laboratory on developing stronger

methods for software analysis, code review, and

testing. Contact him at gholzmann@acm.org.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

