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Abstract
Specification languages for runtime verification are commonly rooted in formal languages, such as temporal logic, automata,
or regular expressions. We argue that, for practical purposes, specification languages for monitoring should allow language
features similar to those found in general purpose programming languages, in addition to providing specialized monitoring
constructs. Using a realistic and large event-log, we compare two such programming-oriented monitoring language systems
to a temporal logic-based monitoring system that was previously evaluated on the same log. The first programming-oriented
language is a library in Scala developed for runtime verification. The other language is a scripting language, originally
developed for fast static code analysis. We formulate the same reasonably complex properties as in the temporal logic case,
using both methods, and compare the efficiency with which they can be checked against the large event log, and the ease with
which the properties can be formulated.

Keywords Runtime verification · Log analysis · Specification language · Temporal logic · Domain-specific language ·
Scala · C

1 Introduction

Runtime Verification (RV) facilitates monitoring the ex-
ecution of a system against a formal specification of a
property, commonly to detect violations. The system emits
events to a monitor, which then updates its internal state
and emits a message or informs the system in case the
property is violated. Typically in state-of-the-art RV sys-
tems, events are records carrying data. Numerous RV sys-
tems have been developed in the past, including, e.g.,
[3, 4, 7, 10, 11, 13, 16, 18, 21, 22, 24, 26, 28], to mention only
a few. Most of these systems support writing properties in for-
mal languages such as temporal logic, state machines, regular
expressions, grammars, rule systems, or stream processing,
to mention the most common. These formal languages offer
very succinct notations. An attempt to support several com-
mon temporal patterns in one language, focusing on ease of
writing and reading specifications, is described in [8]. Most

of the languages are defined as external DSLs (Domain-
Specific Languages), also referred to as “little languages”
with their own grammar and parser, or deep internal DSLs,
where the user builds an AST (Abstract Syntax Tree) of
the specification using a general purpose programming lan-
guage. In both cases, the expressive power of the specification
language is exactly the expressive power of the “little” DSL.

It is, however, our experience that in practice there is
often a need to program monitors, using more powerful lan-
guage constructs known from general purpose programming
languages. For example, this occurs when complex data pro-
cessing is needed based on the data observed in events. Fur-
thermore, in some cases, it may be desirable for a monitor
to produce a richer data product than just a Boolean valued
verdict, including even trace visualization and general data
analysis. Our thesis consequently is that writing monitors
requires a specification language that is Turing complete,
allowing for arbitrary programming when needed, but with
syntax that also allows reasonably succinct specifications
in cases where the problem is “simple” enough. In other
words, we believe that there is a need for monitor specifica-
tion languages in the space between formal languages at the
one end and general purpose programming languages at the
other end. We refer to such languages as programming log-
ics. There exist other attempts in this direction, including the
stream-based HStriver [15], a deep Haskell DSL allowing
Haskell types to be used in the DSL.
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The authors have in previous work developed two such
programming logics, Daut and Cobra. Daut [17] is an in-
ternal shallow DSL in Scala, effectively a Scala library for
runtime verification. Daut was developed to provide the user
with the expressive power and succinctness of Scala while at
the same time supporting writing a combination of tempo-
ral properties and state machines. Cobra [19] was developed
as a static analysis tool, offering an external scripting-like
DSL, with its own grammar for writing source code queries.
It was developed with execution speed in mind to allow writ-
ing such queries over large code bases and get them executed
within seconds. Cobra was later extended for dynamic analy-
sis (runtime verification) for the work presented in this paper.

We present a case study comparing Daut and Cobra to one
particular instance of these formal language-based frame-
works, namely MonPoly [6], and its temporal logic MFOTL
(Metric First-Order Temporal Logic) that supports past and
future time operators as well as data aggregation operators.
MFOTL properties are translated to automata-based moni-
tors. The case study concerns properties of a large data-set
that was published by Nokia. In the paper [6], the same data-
set was used, with properties specified in the MFOTL logic
and analyzed with the MonPoly tool. We apply Daut and
Cobra to the same data-set and compare with the results pre-
sented in [6], both wrt. performance and wrt. succinctness of
specifications. Note that we do not compare Daut and Cobra
to MFOTL wrt. expressiveness. The general result is that
Daut and Cobra both outperform MonPoly, likely due to the
lower-level programming approach (and Cobra outperforms
Daut). On the other hand, the MonPoly specification is, not
surprisingly, more succinct.

The paper is organized as follows. Section 2 describes the
case-study and the data-set used, as well as the investigated
properties stated in MonPoly’s MFOTL temporal logic. Sec-
tion 3 describes the application of Daut to the case study, and
Sect. 4 describes the application of Cobra. Section 5 presents
the performance measurements of applying the monitors to
the Nokia log, and discusses the specifications and the ef-
forts required to construct them. Finally, Sect. 6 concludes
the paper.

2 The Nokia log and its expected properties

Our case study was presented in [6] and concerns a realis-
tic data-collection campaign performed by Nokia [1]. The
campaign was launched in 2009 and collected information
from cell phones of approximately 180 participants. The data
collected was inserted into three databases db1, db2, and
db3, as shown in Fig. 1 (from [6]). The phones periodically
upload their data to database db1. Every night a script copies
the data from db1 to db2. The script can execute for up to
6 hours. Furthermore, triggers running on db2 anonymize

Fig. 1 Nokia’s Data-collection Campaign (from [6])

and copy the data to db3, where researchers can access and
analyze the anonymized data. These triggers execute imme-
diately and take less than one minute to finish. Participants
can access and delete their own data using a web interface
to db1. This is a distributed application producing events in
different locations that then have to be merged into one log.

The log produced, consisting of these and other events,
contains 218 million events, which is substantial size. This
log is the result of merging logs from different log producers,
as explained in [6]. The merging respects time stamps, all
in seconds, in the sense that in the merged log, one event
e1 from one source will come before another event e2 from
another source if e1’s time stamp is strictly less than e2’s
time stamp. However, in the case where the two events have
the same time stamp, there is no way to know which event
comes before the other in the merged log. The order could be
e1e2 as well as e2e1. It is only guaranteed that events with the
same time stamps are grouped together in the merged log.
This is referred to as a collapse of an interleaving in [6], and
leads to some intricate temporal properties, as we shall see
below, and is part of the challenge addressed in [6].

Collected data must satisfy certain policies, including
policies for how data are propagated between databases. A to-
tal of 14 policies are presented in [6]. We have focused on
two of these, as shown in Fig. 2, expressed in the first-order
linear temporal logic MFOTL [7]. The properties concern
the following two database operations (data are identified by
a unique ID):

• insert(user,db,data): insertion of data into db by user.
• delete(user,db,data): deletion of data from db by user.

Property Ins_1_2 states that data inserted in db1 must be
inserted into db2 within 30 hours (by a script, which is a
kind of user), unless it is deleted from db1 before then. The
time limit is 30 hours since the script runs every 24 hours
and takes up to 6 hours to execute.

Property Del_1_2 is more complicated and states that if
data is deleted from db1, one of two things should be true:
either it is deleted from db2 within 30 hours, or we have the
situation where the data was inserted into db1 within the
past 30 hours, has not been inserted in db2 since then, and
will not be inserted within the next 30 hours. In that second
case, there is no need to delete the data from db2.
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Fig. 2 The properties Ins_1_2 and Del_1_2

Let us now explain the formulas in Fig. 2 in more detail.
MFOTL is a first-order linear time temporal logic with fu-
ture and past time operators annotated with time intervals.
Let N denote the set of natural numbers. An interval has
the form [a,b) where a ∈ N, b ∈ N ∪ {∞}, and a < b. It
denotes the set {x ∈ N | a ≤ x ∧ x < b}. MFOTL formulas
can be composed of predicates, such as insert(user,db,data)
and delete(user,db,data), equality and inequality between
terms, Boolean operators, universal and existential quantifi-
cation over data, and the temporal operators (amongst oth-
ers):�[a,b)ϕ (always ϕ in the future within the interval [a,b)),
�[a,b)ϕ (sometime ϕ in the future within the interval [a,b)),
�[a,b)ϕ (always ϕ in the past within the interval [a,b)), and
�[a,b)ϕ (sometime ϕ in the past within the interval [a,b)).
We also have that �ϕ = �[0,∞)ϕ. Note that in the case of the
past time operators, the interval [a,b) means that a is closest
to “now” and b represents a point in time further back.

Ins_1_2 states that if there is an insert(user,db1,data)
event where data � unknown, then within less than a second
in the past or within 30 hours in the future, a user inserts the
data in db2 or it is deleted from db1. Note that “within less
than a second in the past” effectively means “now”, since the
smallest observable time unit is 1 second. The consequent of
Ins_1_2 is:

�[0,1s)�[0,30h) ∃user′·
insert(user′,db2,data) ∨ delete(user′,db1,data)

Formula �[0,1s)�[0,30h)ψ is equivalent to �[0,1s)ψ∨�[0,30h)ψ.
The subformula �[0,1s)ψ takes care of the situation where ψ
(insertion in db2 or deletion from db1) might occur with
the same time stamp as the insertion in db1 (the antecedent
of Ins_1_2), but in the merged log occurs right before, as dis-
cussed above. The property is in [6] referred to as collapse-
sufficient in the sense that it does not yield false positives and
false negatives when monitoring the collapse of an interleav-
ing, where events with the same time stamps are merged to
be next to each other, but in unknown order.

The property Del_1_2 is collapse-sufficient as well. The
property Del_1_2 should now (with some effort) be compre-

hensible observing that:

�[0,1s)�[0,30h)ψ = �[0,1s) ψ ∨ �[0,30h) ψ

�[0,30h)�[0,30h) ψ = �[0,30h) ψ ∧ �[0,30h) ψ

3 Log analysis with Daut

Daut (an acronym for: ‘Data automata’) [12, 17] is a library
in the Scala [25, 29] programming language for monitoring
event sequences. Programming a monitor in Daut consists
effectively of writing a Scala program using the library. This
results in a framework that combines the expressiveness of
a modern programming language with the domain-specific
features. Scala combines object-oriented and functional pro-
gramming and supports the definition of internal DSLs. An
internal DSL is a library, but defined such that the use of
the library feels like programming in a domain-specific lan-
guage. The library supports a notation that combines state
machines with temporal logic. States and formulas can be
parameterized with data, allowing monitoring of events that
carry data, as we shall see.

Daut is derived from TraceContract [2, 31], also a Scala
library for monitoring, which was used for verifying com-
mand sequences sent to NASA’s LADEE (Lunar Atmosphere
And Dust Environment Explorer) spacecraft during its entire
mission [5, 23]. Daut has furthermore been integrated in the
Mesa tool [30], which supports concurrent monitors commu-
nicating with message passing, using Scala’s actor model, to
check for properties specified using Daut. As a case study,
Mesa has been used to monitor flights from live US airspace
data streams.

In a bird’s eye view of Daut, a monitor is created and
utilized as described below. We first determine what type of
events, say Event, the monitor shall monitor. This can be any
type. Then, the monitor is defined as a subclass, extending
the Monitor[E] class, that is parameterized with the event type E.
We then create an instance of the user defined monitor class
and feed it with events, one by one. Finally, we terminate the
monitor. Events can be fed directly as shown here, read in
from a file, e.g., in a loop, or even produced by a running
program.

type Event = . . .

class MyMonitor extends Moni tor [ Event ] {
. . . / / s p e c i f i c a t i o n to be monitored

}

object Main {
def main ( args : Array [ S t r i ng ] ) : Un i t = {

val m = new MyMonitor
m. v e r i f y ( event1 )
m. v e r i f y ( event2 )
. . .

m. end ( )
}

}
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Fig. 3 The Daut event type

The monitor will issue error messages when violations are
detected. The user can also define a call-back function, which
is called in case of violations, performing any desirable ac-
tions.

3.1 Events

We first have to define our type of events. The CSV log
contains two kinds of events, namely insertions and deletions,
each occupying one line of comma-separated terms, as shown
below, with two line breaks inserted for each event to fit the
printed format.

insert, tp = 349, ts = 1277200700,
u = script, db = db2,
p = 1, d = 66932652

delete, tp = 392593, ts = 1279883112,
u = user18, db = db1,
p = 172, d = 79131680

We need to represent the time stamps (ts), the user (u), the
database (db) being inserted into or deleted from, and the
data (d) being inserted or deleted. We define our event type
to be the trait1 Ev, see Fig. 3, which contains a time value t

(we use short names for presentation purposes to be able to fit
the article format, the actual implementation contains longer,
more explanatory names). Then we define two subclasses of
Ev, namely Ins and Del, representing insertions and deletions,
along with their constructor arguments: time stamp, user,
database and data. The trait Db and its two objects represent
the two databases we are concerned about. When the CSV
file is parsed, objects of type Ins and Del are generated and fed
to our monitors.

3.2 Property Ins_1_2

The monitor corresponding to property Ins_1_2 is shown in
Fig. 4. Before we dive into its contents, we explain briefly
the computation model of Daut. The internal memory of a
monitor is a set of states2 sub-classing the state trait (not

1 A trait is like a class by encapsulating method and field definitions,
but it can contain undefined methods. Unlike class inheritance, in which
each class must inherit from just one superclass, a class can extend any
number of traits.

2 In the basic case it is a set of states. However, states can be organized
in a key-indexed map, supporting more efficient state lookup.

Fig. 4 Daut monitor for property Ins_1_2

shown). Such a state contains a user-defined transition func-
tion. When an event is submitted to the monitor, each state in
the memory is applied to the event, resulting in zero, one, or
more new states to be generated. There are different kinds of
states inspired by temporal logic operators [27]. These states
differ in (1) how they react to an event that does not match
any transition (staying in the state, failing, or droping the
state), (2) how they react to an event that matches a transition
to another state (remaining in the source state or leaving it),
and (3) how they are evaluated at the end of the trace (true
or false). We can now explain how the property is modeled.

3.2.1 Past time

The property requires us to keep track of past insertions
into db2 and deletions from db1. The property, however,
does not require us to record which of the two happened.
Therefore, we define a state I2D1 (lines 5-9) to represent any
of these events. It is parameterized by the time t of insertion
or deletion and the data d inserted or deleted. The transition
function of the state is modeled by the call of the function
watch in lines 6-8: it takes as argument a partial function of
type: PartialFunction [Ev,Set[state ]] . Such partial functions can in
Scala be defined as a list of case statements. The function is
defined for any event matching any (in this case one) of the
“transitions”. In this case, the state will trigger on any event
e where the time value is more than 1 second away from the
parameter value t of the state. That is, once such a state has
been generated, it automatically “goes away again” after a
next event is observed with a bigger time stamp.

The watch function in addition defines a kind of state as
discussed above: (1) it stays in the monitor’s memory in
case no transition triggers, (2) it leaves the state in case a
transition is triggered, and (3) it is a final state, meaning that
it does not cause an error at the end of monitoring when the
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Table 1 The different kinds of states supported by Daut. For each kind
of state it is indicated how it behaves if its transition function does
not match an incoming event, how it behaves if there is a match, and
whether it is an error if such a state exists at the end of monitoring

State If no match If match At end

always stay stay ok
watch stay leave ok
hot stay leave error
wnext error leave ok
next error leave error

end() function is called. The specification contains three such
transition-defining functions: watch, always, and hot. In addition,
Daut offers the transition-defining functions (not used in this
presentation): next and wnext (weak next). The behaviors of the
transition functions are shown in Table 1.

The monitor itself is controlled by an always state, lines 11-
23, which continuously watches new events (if a transition
triggers, the always state stays in the memory). The first two
cases in the transition function, lines 12 and 13, trigger on
deletions from Db1 and insertions into Db2. In both cases, I2D1

state is generated and added to the monitor memory. The last
transition is described in the next section.

3.2.2 Future time

The last transition of the always function, lines 15-22, triggers
in line 15 when an insertion into Db1 is observed, where
the data is not unknown. To better understand lines 16-22,
observe that the following equivalence holds for the Ins_1_2
subformula that occurs after the implication→ in Fig. 2:

�[0,1s)�[0,30h) ∃user′·
insert(user′,db2,data) ∨ delete(user′,db1,data)

=
�[0,1s) ∃user′·

insert(user′,db2,data) ∨ delete(user′,db1,data)
∨

�[0,30h) ∃user′·
insert(user′,db2,data) ∨ delete(user′,db1,data)

That is, we have split the formula into a past time and a fu-
ture time formula. We check the past in line 16 by checking
whether there exists any I2D1 state in the monitor memory
with the values t and d which were matched in line 15. The
quotes around these names in line 16 express that they should
match the previously defined values and not be binding oc-
currences. If such a match exists, the ok state is returned,
which terminates the monitoring corresponding to this par-
ticular Db1 insertion. Otherwise (else), we check the future
by entering a hot state (meaning that the monitor needs to
exit this state before the end of monitoring), which we can
leave in one of three ways: (1) if an event occurs with a time

stamp past 30 hours, or if before that an insertion into Db2 or
deletion from Db occurs of the data.

3.3 Property Del_1_2

The programming of the Daut monitor for property Del_1_2
is not as direct as in the case of the Ins_1_2 property. We
need to perform a sequence of rewrites of the original formula
to reach a formula suitable for coding in Daut. We will go
through these rewrites in the following. For the purpose of
the presentation we assume a function �_� : LTL→ Daut
from LTL to Daut, as it applies to this particular example.3
The resulting Daut monitor is shown in Fig. 5.

Consider the original Del_1_2 property in Fig. 2. First, we
define some short-hands for non-temporal predicates occur-
ring in the formula, with names suggestive of the operations
they represent and the database they operate on:

d1 = delete(user,db1,data) ∧ data � unknown

d2 = ∃user′ · delete(user′,db2,data)

i1 = ∃user′ · insert(user′,db1,data)

i2 = ∃user′ · insert(user′,db2,data)

We can now write the Del_1_2 property as follows:

�∀user · ∀data · d1→ ϕ

where ϕ is the formula:
(�[0,1s)�[0,30h) d2)∨

((�[0,1s)�[0,30h) i1) ∧ (�[0,30h)�[0,30h) ¬i2))

Line 21 in Fig. 5 corresponds to the antecedent of the im-
plication (the left part of→). Wrt. the right-hand side ϕ, we
observe the following equivalences:

�[0,1s)�[0,30h) d2 = �[0,1s) d2 ∨ �[0,30h) d2

�[0,1s)�[0,30h) i1 = �[0,1s) i1 ∨ �[0,30h) i1

�[0,30h)�[0,30h) ¬i2 = �[0,30h) ¬i2 ∧ �[0,30h) ¬i2

With these equivalences we can rewrite the right-hand side
formula ϕ as follows (naming the second disjunct φ):

(�[0,1s) d2 ∨ �[0,30h) d2)∨

((�[0,1s) i1 ∨ �[0,30h) i1) ∧ (�[0,30h) ¬i2 ∧ �[0,30h) ¬i2))
︸�����������������������������������������������������������������︷︷�����������������������������������������������������������������︸

φ

3 We do not claim the existence of a general elegant translation func-
tion from LTL with future and past time operators to Daut. However,
since Daut, as an extension of Scala, is Turing complete, a translation
does exist.
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Fig. 5 Daut monitor for property Del_1_2

3.3.1 Past time

We observe that three past time subformulas occur, namely
�[0,1s) d2 and �[0,30h) i1 and �[0,30h) ¬i2. We thus need to
record and remember all insertions into Db1 and Db2 for 30
hours, as well as all deletions from Db2 for one second. This
is managed by the declaration of the states D and I in lines
5-15, as well as their creation in lines 18-19. Furthermore,
we observe that the leftmost formula �[0,1s) d2 is a past-time
formula, which we can translate into an if-statement:

1 i f (�[0,1s) d2 ) ok else ��[0,30h) d2 ∨ φ�

The resulting remaining formula �[0,30h) d2 ∨ φ to be trans-
lated can be rewritten as follows using the distributive law of
Boolean algebra (p∨ (q ∧ r)) = (p∨ q) ∧ (p∨ r):

�[0,30h) d2 ∨ φ =

(�[0,30h) d2 ∨ �[0,1s) i1 ∨ �[0,30h) i1)
︸�����������������������������������������︷︷�����������������������������������������︸

ψ1

∧

(�[0,30h) d2 ∨ (�[0,30h) ¬i2 ∧ �[0,30h) ¬i2))
︸�������������������������������������������������︷︷�������������������������������������������������︸

ψ2

The subformulas ψ1 and ψ2 are represented in Fig. 5 by the
states s1, lines 24-32, and s2, lines 33-52, respectively. The
result returned is the set of those two states, represented by
the tuple in line 53. Both states have to lead to success (cannot
fail), corresponding to a conjunction.

Let us dive into the definition of s1 and s2. Both states
are defined using an if-statement with a condition corre-
sponding to the past time formulas respectively �[0,30h) i1
and �[0,30h) ¬i2, occurring in ψ1 and ψ2, respectively (the
latter must be negated in the if-statement’s condition):

1 val s1 = i f (�[0,30h) i1 ) ok else ��[0,30h) d2 ∨ �[0,1s) i1�
2 val s2 = i f (¬�[0,30h) ¬i2 ) �[0,30h) d2 else

��[0,30h) d2 ∨ �[0,30h) ¬i2�
3 ( s1 , s2 )

The formulas to translate for the then-parts of the two if-
statements should be obvious by examining the if-conditions
and ψ1 and ψ2. We now proceed with the else-parts.

3.3.2 Future time

For the else-parts, in the case of s1, we need to check the
formula �[0,30h) d2 ∨�[0,1s) i1, which results in the hot state
in lines 27-32. Here we wait for either a deletion from Db2

within 30 hours or an insertion into Db1 in less than 1 second,
effectively meaning this second, namely the same time as t.
In case an event occurs, line 28, with a time passing 30 hours,
a violation has been detected.

The else-part of s2, lines 41-52, modeling the formula
�[0,30h) d2 ∨ �[0,30h) ¬i2, is slightly more complicated and
can be read as follows. If at any time 30 hours have passed
without any insertions into Db2, all is well. If an insertion
into Db2, however, occurs, we continue to monitor for any
deletions from Db2 to occur, in which case all is well.

3.3.3 An adjustment

It turns out that the Del_1_2 monitor in Fig. 5 is very inef-
ficient due to the large amounts of I states (insertions) that
need to be stored and remembered for 30 hours. We therefore
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Fig. 6 Data structure for recording the past

had to re-program the recording of the past differently. Fig-
ure 6 shows the class History for recording updates (insertions
or deletions) to one of the databases as a hashmap from data
to time stamps representing the time they were inserted or
deleted. The history will get cleaned up at every resetBound up-
date to the hashtable, removing all entries older than a given
timeLimit, e.g., 30 hours. The method within (d, now) returns true if
data d was entered in the history within the timeLimit from the
current time now.

Figure 7 shows the modified monitor for the Del_1_2
property using the History class. The changes compared to the
monitor in Fig. 5 are the lines:

• 6-8 (replacing lines 5-15 in Fig. 5), declaring objects of
the History class.

• 11-13 (replacing lines 18-19 in Fig. 5), updating the History

objects.
• 16, 19, and 27 (replacing lines 22, 25-26, and 34-35 in

Fig. 5), calling the within method.

3.4 Monitor execution

Once we have defined our monitors, we can combine them
into one parent monitor, named Monitors, as shown in Fig. 8.
Monitors can generally be combined hierarchically in this
manner, as a way of grouping monitors. Figure 9 shows the
main program creating an instance monitor of Monitors, reading
from the CSV file via an instance of the LogReader class, and
feeding the generated events to the monitor. As we shall see,
the LogReader class filters out irrelevant events, hence there can
be more events (csvFile.hasNext is true), but no more relevant
events remain in the log file, resulting in csvFile.next to return
None. Note also that we pass the line number to the monitor
for error reporting purposes.

Daut detects 82,886 violations of the Ins_1_2 property
and 25 violations of the Del_1_2 property. Each error is

Fig. 7 Daut monitor for property Del_1_2, optimized

Fig. 8 Daut combining monitors into one

Fig. 9 Daut main program

reported by indicating which event caused the monitor to
track an event, the triggering event, and which event actually
caused the monitor to report a violation. As an example,
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the following message reports violation number 144 of the
Ins_1_2 property. The triggering event (matching the pattern
in line 15 of Fig. 4) is event number 324, an insertion of
data 96554472 at time 1276507789, and the violating event
is another insertion at time 1277200698, which is nearly a
week later. Hence no timely insertion into Db2 or deletion
from Db1 of the data 96554472 was observed.

*** ERROR
trigger event: Ins(1276507789,[unknown],Db1,96554472)

event number 324
current event: Ins(1277200698,script,Db2,66935671)

event number 698
Ins_1_2 error # 144

3.5 Parsing CSV files

In this section, we shall briefly discuss how the CSV files
were parsed and how the Ev events (see Fig. 3) were gen-
erated that were fed to the monitors. There are numerous
libraries for parsing CSV files, and we chose FastCsv [14],
claimed to be fast. Figure 10 shows a class FastCSVReader

using this library, and providing effectively two methods
hasNext: Boolean, returning true if there are more rows in the CSV
file, and next (): List [String ], delivering the next row as a list of its
columns. Figure 11 shows the LogReader class, which provides
the same two methods, but where the method next (): Option[Ev]

selects only events that are of interest, namely insertions and
deletions, and only those concerning db1 and db2. It returns
an optional event e of type Ev as Some(e) in case such a row is
found, and None otherwise. Recall that a single row has the
form:
cmd, k1=v1,...,kn=vn

The function getData takes as argument a single row, repre-
sented as the list List("cmd","k1=v1", . . ., "kn=vn"), of its
column elements, and returns a map from the keys to the
values: Map("k1"→ "v1", . . ., "kn"→ "vn").

Fig. 10 Daut CSV parsing

Fig. 11 Daut Log reader

3.6 Indexing

Daut offers a capability for optimizing monitors using a sim-
ple indexing technique. The basic idea consists of structuring
a monitor’s memory as a hash table from keys to sets of states,
where the user defines what the keys should be. The Monitor

class contains the definition of the following function:

def keyOf ( e : Ev ) : Option [ S t r i ng ] = None

which for a given event returns the default None value, sig-
nifying that no key has been defined. The user can override
this function, as shown in Fig. 12 for our example. We have
in this function defined the keys to be the data part of the
events. In the hash table, each datum (the key) is mapped
to the set of states concerning that specific datum. When an
event is submitted to the monitor, we just look up the set of
concerned states and only process those. This can speed up
monitoring considerably, as, for e.g., demonstrated in [30].

The idea of letting the programmer explicitly program the
keyOf function, originally suggested for the Rust programming
language by Rajeev Joshi [20], is related to the automated
slicing approach supported by RV systems such as JavaMop
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Fig. 12 Daut indexing

[24] and MarQ [28]. In these systems, traces are sliced into
subtraces, based on event arguments, where each subtrace
is fed to a propositional monitor. The automated approach
found in these systems is difficult to transfer to Daut due to
the fact that it is an internal shallow DSL, where specifica-
tions are not easily analyzable without dealing with the Scala
compiler.

However, we cannot use this indexing approach for the
monitors shown. The reason is that these monitors refer to
time, and their progress depends on events continuously be-
ing provided with time stamps in order for the monitors to
“know what time it is”. For example, consider line 19 in
Fig. 4: case e if e. t − t > hrs_30⇒ error. This case will not trigger
unless an event arrives with a time stamp beyond 30 hours.
Although such an event may occur, it may not be for the same
data, and hence it will be submitted to a different bucket in
the hash table. Consequently, no error may be issued.

4 Log analysis with Cobra

The Cobra tool [9, 19] was designed as an interactive static
analyzer for large source code archives, and is therefore an
unusual choice for an application of a dynamic instead of
static verification technique. The Cobra tool was designed
to use highly efficient data-structures that can be queried
quickly in interactive analyses of code bases. The tool was
extended more recently with new options for processing also
live data-streams, where the data structure being queried is
maintained as a sliding window into a potentially unbounded
event-stream read from standard input.

Cobra queries can be expressed in three main ways. A first
method is to use the tool’s interactive query language that lets
us navigate the input stream and match on patterns of interest.
This method is typically used in interactive sessions once a
code archive has been read in core as a simple token-stream,
with some minimal pre-processing. A second method is to
use a powerful inline scripting language, interpreted in real-
time, to resolve queries. A third and final method, which is the
most efficient, is to write the queries in unrestricted C code
as a back-end module that can be compiled and linked to the
Cobra front-end, thus providing access to its data structures.

In this paper, we choose to use the interpreted scripting
language to express the two properties from the Nokia study.
This would appear to put the verification process at a dis-
advantage compared to tools that use compiled code for the
queries. We will show, though, that this is not the case. We
begin by exploring how the two fairly complex properties
can be expressed in Cobra’s scripting language.

4.1 Property Ins_1_2

The insert property, formalized in MFOTL in [6], requires
that data inserted into database db1 be migrated to database
db2 within 30 hours, unless the same data are deleted from
db1 first. To check this property, we must remember all
insertion events for database db1 for maximally 30 hours
(108,000 seconds) and unless one of the two other events is
found within that interval, flag a violation.

The Cobra checker script for this property is shown in
Fig. 13. The script is executed once for every token in the
input stream, with a token being created by the Cobra tool
for each lexical symbol in the input stream. We rely on a
small preprocessing step for the checkers that converts the
somewhat redundant CVS format from the original log into
the four relevant values we need to check the properties.
The preprocessing step also handles the time collapse issue
mentioned in [6] where the ordering of events with identical
timestamps is undetermined. If an insert action into db1
follows a delete action from db1 or an insert action into
db2 for the same data id, we know that the insert action into
db1 must have come first.

The script uses a short-hand to match on tokens con-
taining identifiers named insert or delete, in an if-then-else
statement. If matched, the script then locates the timestamp
information, the target database, and the unique data iden-
tifier that follow in the input stream. (Note that a # symbol
followed by a space or tab is considered a comment.)

The dot refers to the current token being processed, and
the two relevant fields of that token we are using here are
named .nxt, which refers to the next token in the sequence,
and .txt, which refers to the text field.

Once the four parameters have been located, we check the
type of event. If it is an insert, we check the target database
value. If it is db1, we remember the insert event in an asso-
ciative array that is indexed with the data identifier field and
stores the timestamp plus 30 hours. This is the time limit for
the migration of the data to db2, unless it is deleted from
db1 first.

An insert event into db2 causes the obligation to be
deleted with an unset operation on the relevant element of
the associative array, and similarly, if we see a delete event
for db1, we remove the obligation for that data item in the
same way. The unset operation has no effect if the item is not
present in the array.
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Fig. 13 Cobra checker script for property Ins_1_2

Note also that variables or arrays need not be declared
before they are used in a script, and their type is derived
from the context in which they are used. Typically, that type
will be a string, but it can also be an integer value or a token
reference.

One final bit of processing is to remove obligations from
the associative array that have passed the maximum time
window waiting for the data migration or deletion. To do so,
we check if the timestamp value has changed since the last
time the script executed, and if so, we iterate through the
elements of array Obligation to find the violations. Those
elements can now be removed from the array. To avoid mod-
ifying the array while we are also iterating over the elements
we remember the indices that can be omitted in a separate
array called Remove and then delete those elements from
array Obligation after the iteration is complete. That helper
array can itself then also be removed once it has fulfilled its
purpose.

The final part of the script in Fig. 13 runs after all tokens
in the input stream have been processed (if that point ever
comes). It checks if there are any remaining unmet obliga-
tions at the point of termination. If so, those will be reported.
This final part of the script ends with a Stop command to

indicate that we don’t intend this part of the processing to
be repeated for more tokens. The script execution terminates
after the warnings and final tally of all violations have been
reported.

4.2 Property Del_1_2

The script for checking the delete property requires some
more processing, but the basic outline is very similar to that
of the insert property.

The property requires that for every delete event of data
from database db1, either the same data is also deleted from
database db2 within a time window of 30 hours, or the
data were inserted into db1 within 30 hours earlier and has
not yet migrated to db2 since then, nor within the next 30
hours. This is a somewhat convoluted statement, when stated
in English, but the check is fairly straightforward to encode
in a Cobra script.

The main part of the script is shown in Fig. 14. We see the
same initial match on the identifier names insert and delete,
and the location of the three additional parameters we need.
We can skip further processing if the target database is db3,
since operations on that database do not affect the property
we are trying to check.

We must now maintain a sliding window of the last 30
hours (108,000 seconds) worth of events, which is done here
with a call to function add_window() that we discuss shortly.
Two other functions take care of the processing of the delete
and insert events, and performing the related checks. The
second script at the end is again used to check for any unmet
obligations when the event stream ends, if indeed it does.

Function definitions and data initialization are performed
in a startup script that runs first. The definition of the function

Fig. 14 Cobra checker script for property Del_1_2, main part
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Fig. 15 Cobra checker script for property Del_1_2, initialization and
function definition

add_window and the global data initialization is illustrated
in Fig. 15.

The window that holds at least the last 30 hours worth
of events is moved forward once every 500,000 calls to the
add_window() function to reduce the overhead a bit. It does
so by calling another function called slide_window().

The script uses Cobra library functions for maintaining a
list of tokens for the sliding window. We obtain a new token
for this purpose with the call to list_tok() and we add it to
a list named window with the call to list_append(). The list
library is more expansive, but these calls suffice for what we
need to do here.

Because we are working with the predefined token struc-
tures, rather than a user-defined data structure, we must store
all the information we have into the available fields of that
structure. Here we store the timestamp value in the field
n.mark, the data id in field n.seq and we convert the database
string into an integer that is stored in field n.curly.

Next, we define the two short functions slide_window()
and handle_insert(), as shown in Fig. 16.

The definitions are fairly straight-forward. In function
slide_window() we traverse the list of earlier relevant events
and check if any are older than 30 hours. If so, we omit them
from the list. The library function list_top() returns the ele-
ment at the head of the list, but does not remove it, and the
function list_pop() is used to remove the first element of the
list.

Function handle_insert() checks if there is a prohibition
on the migration of the data item into database db2 (note
in Fig. 14 that the function is only called for inserts that
target this database). If a violation is found, it is reported

Fig. 16 Cobra checker script for property Del_1_2, functions
slide_window() and handle_insert()

Fig. 17 Cobra checker script for property Del_1_2, function han-
dle_delete()

and the corresponding element is deleted from the associa-
tive array Nonmigration that is used to keep track of these
obligations.

Next, we look at the definition of function handle_delete(),
which does most of the work in this case. It is shown in
Fig. 17.

Processing is again fairly straightforward. We first check
which database is the target of the delete event. If it is db1,
we check if the same data item was inserted into that database
less than 30 hours ago by traversing the list of events that
are remembered for this purpose. If the data item was indeed
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Fig. 18 Cobra checker script for property Del_1_2, function mi-
grated_since()

inserted less than 30 hours ago, we have to create an obliga-
tion to check that it will not migrate to database db2 within
the next 30 hours or, if it has already been migrated, that
the same data item will also be deleted from db2 within the
next 30 hours.

Since the matching data item is not necessarily at the
head of the list, we traverse the list elements by following
.nxt references in this case.

For deletions from db2, we only have to check if an earlier
obligation exists, and if so, delete it. This happens in the else
clause of the conditional statement.

We see one more call to a function we have not defined yet
in this case, which is function migrated_since(). Its definition
is shown in Fig. 18.

In this case, the function returns a value, which is either
one or zero. It simply searches the window of events starting
from the point at which it was called, marked by token ref-
erence q. If a match of the data item is found, for an insert
into database db2 we know that the item was migrated and
return one. If no match is found, zero is returned.

That completes the definition of the delete property.

5 Evaluation

All measurements were made on the same hardware plat-
form: a 64-bit Intel 3.2 GHz 6-core system with 32 GB of
memory running Windows 10, using Cygwin for the Cobra
measurements and Ubuntu 16.04 under the Windows Sub-
system for Linux (WSL) for the measurements with the Daut
tool. We first look at some reference data that was provided
in the original paper that first described the properties we
have specified.

5.1 The MonPoly measurements

In the work that introduced the insert and delete properties
and applied them to the Nokia log [6], only some perfor-
mance measurements were given. The data did not include
measurements for checking the full Nokia log. Table II in
[6] described nine event fragments that were used for the
measurements, each covering 24 hours worth of events, cor-
responding to 2.1% of the full log. A full verification of
the properties, however, requires us to monitor at least 30
hours of events in the past and into the future, which our
measurements allow. For our measurements, we did not use
parallelizations, and we assume neither did the MonPoly
measurements.

The system used for the measurements in [6] was given as
a 1.15 GHz AMD quad-core computer (the operating system
was not specified). This means that to compare with our mea-
surements on a 3.2 GHz system, we should minimally divide
their cpu-times by 3.2/1.15, corresponding to a speedup of
about 2.78.

Table III in [6] gives runtimes and memory use for the nine
tests performed for a number of properties using the authors’
MonPoly tool. We are specifically interested in the results for

Table 2 MonPoly measurements for the Ins_1_2 and Del_1_2 prop-
erties, from [6] Table II and III. The normalized runtimes give the
equivalent times on a 3.2 GHz system instead of the 1.15 GHz system

that was used for the original measurements. The number of violations
found was not reported

Log Ins_1_2 Del_1_2
Memory (MB) Runtime (s) Normalized time (s) Memory (MB) Runtime (s) Normalized time (s)

1 161 13,860 4,986 176 24 8.6
2 103 2,640 950 139 16 5.8
3 107 4,020 1,446 87 13 4.7
4 102 1,440 518 79 11 4.0
5 71 540 194 58 8 2.9
6 65 300 108 53 7 2.5
7 57 180 65 111 12 4.3
8 115 4,380 1,576 184 21 7.6
9 111 2,880 1,036 102 11 4.0

sum 892 30,240 10,228 989 123 41.6
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Table 3 Number of events processed per second by the MonPoly ref-
erence tool

Property Total events Normalized time(s) Events/second

Ins_1_2 8,209,334 10,228 803
Del_1_2 8,209,334 41.6 197,340

properties Ins_1_2 and Del_1_2 here. The MonPoly data are
shown in Table 2. Times in [6] for the insert property were
given in minutes and converted to seconds here.

By taking the number of events that are processed in the
nine 24-hour fragments combined, which is given in [6] as
8,209,334, we can arrive at the event processing rate: the
number of events processed per second for each property as
a basis for comparison with the measurements with the Daut
and Cobra tools. These results are shown in Table 3. Clearly,
the processing rate for the delete property was significantly
higher than for the insert property.

5.2 The Daut and Cobra measurements

The measurements with the Daut and Cobra tools compared
with those of the MonPoly reference, are shown in Table 4.
As noted, the measurements for both tools were made on the
same desktop system, with Cobra running in text-only mode
reading the input log from the standard input, with a stream
buffer size of 500K bytes.

For both Cobra and Daut, the processing rate is notably
higher than for the reference tool. Daut requires the least
amount of memory to perform the verification of the Ins_1_2
property, using more than six times less memory. Cobra, on
the other hand, uses less memory than Daut for the verifica-
tion of the Del_1_2 property. Runtimes are comparable be-
tween Daut and Cobra, and especially close for the Del_1_2
property. We have no memory data for the MonPoly tool
when applied to the full log, so we do not know how that tool
would perform on this metric.

5.3 The specification effort and result

The Daut and Cobra monitors were constructed by the de-
velopers of the respective tools, that is, experts in the use

of these tools, similar to the earlier experiments with the
MonPoly tool. In spite of that it is fair to say that writing
especially the Del_1_2 specification took some effort and
time. This can be seen, for example, by the argumentation
made for the correctness of the Daut monitor, which in fact
was used to construct it. The resulting monitor specifications
are clearly more verbose than the MonPoly versions. This
is especially the case for the Del_1_2 property. The Daut
monitors were developed starting from the MFOTL specifi-
cations, to ensure that the right monitors were implemented.
The Cobra monitor was developed from the plain English
formulation of the problem, using the MFOTL version only
for clarification. The monitors were largely correct as con-
structed, except for a couple of errors, which were corrected,
followed by some optimizations to improve performance fur-
ther. In the case of the Cobra monitors this meant reducing
the amount of logging information and related data that were
used to debug the initial versions.

An interesting question is how these monitors compare
to writing directly in a programming language without any
support for trace analysis. The Cobra monitors are written
in a style similar to how one might write such properties in,
e.g., Python, using the Python dictionary and list data types.
Writing the properties in C would require more effort due to
the lack of built-in support for these data types.

6 Conclusion

In this case study, we compared a declarative logical spec-
ification formalism MFOTL, as used in the MonPoly tool,
with two more operational specification methods, one based
on an internal DSL and the other based on an external DSL.
Perhaps not surprisingly, the more operational formalisms
delivered the best performance, but required more writing to
specify the target properties.

The Daut automata-based formalism is embedded into
a programming language (Scala), which has the advantage
that the user can reach outside the formalism to handle less
common cases. It also adds the advantage of the compila-
tion of the checks into optimized byte code, to improve the
efficiency of the monitoring itself.

Table 4 Comparison of Memory Use and Event Processing Rates for MonPoly, Daut, and Cobra. The MonPoly runs processed a 9 day fragment
of the log. The Daut and Cobra runs processed the entire log

Ins_1_2 Del_1_2

9 days Mem (MB) time (s) events/sec violations Mem (MB) time (s) events/sec violations
MonPoly . . . 10,228 803 . . . . . . 41.6 17,341 . . .
422.5 days Mem (MB) time (s) events/sec violations Mem (MB) time (s) events/sec violations
Daut 282 1,982 108,398 82,886 6,782 524 409,612 25
Cobra 1,746 575 373,467 82,886 2,375 473 453,800 25
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The Cobra specification formalism, on the other hand,
is based on a scripting language, implemented in C, that is
normally used for specifying static analysis queries. The lan-
guage is fairly simple, with support for recursive functions,
the basic data types strings, integers, and references, and
builtin support for lists, associative arrays, and hash-maps.
Even though the scripts are interpreted with each script exe-
cuted once for every token in the input stream, it achieved the
shortest runtimes of the three methods we have considered
here.

The use of the operational formalisms resulted in perfor-
mance of one to two orders of magnitude greater than the
logic-based formalism, more than sufficient to keep up with
long-lasting event streams. In the case study, we considered
an event log spanning 422.5 days, for instance, which could
be processed in minutes. Considering the three E’s of run-
time verification: Elegance of notation, Expressiveness, and
Efficiency, we can therefore see a decisive advantage for the
operational approaches for the third E . Expressiveness is
identical for both operational methods, since their respective
languages are trivially Turing complete, which both are more
expressive than the logical approach. That leaves Elegance,
the first E. If conciseness matters, the advantage is clearly
with the logic based method used in MonPoly, although,
as in other fields, too much conciseness can in some cases
compromise clarity and ease of use.
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