Towards Real-time modelchecking using SPIN

SPIN workshop 1997

Bart Knaack, TUE/KUB

Project: AVOCS/VIRES

bknaack@win.tue.nl
Goals of these projects

• Real time extension of SPIN
 – Partial order methods
 – bitstate hashing
 – collapsing

• Useable r.t.-input language

• Never Claims

• Acceptance and progress conditions
Outline/Research steps

- Underlying formalism
- Execution Model of the formalism
- Discretisation
- Representation
- Reduction
- Language
Formalism
(based on Timed Graphs)

Lossy Channel
Model

- Based on Timed Graphs [Alur]
- Valid endstates (start)
- Communication Function (?req !send)
- Progress and acceptance labels (sent)
- Urgency
Discretisation Methods

- Region Graphs [Alur,Dill]
 - Fine-grained equivalence classes

- Sets of Inequalities
 - Usage of model-specific information

\[
\begin{align*}
x - y &> 3 & q - y &< 3 \\
z - q &< 3 & p - z &< 4 \\
2 &< z &< 4 & q - y &> 2 \\
p - q &< 2 & z - x &< 6
\end{align*}
\]
Example: transforming a SOI

\[
\begin{align*}
\text{send} & \quad \{0 < t < 1; 2 < s < 4; \\
& \quad s - t < 1; t - r < 1; r < 4\} \\
\text{!send} & \quad 2 < t < 4 \\
\text{reset}(t) & \quad \{t = 0; 3 < s < 8; \\
& \quad s - r < 2; r < 8\}
\end{align*}
\]
Representation

• Important operations
 – inclusion
 – equality
 – emptiness

• Canonical

Candidates:

• Difference bounded Matrices [Dill]

• Minimal sets
Minimal sets vs. DBM’s

DBM:

\[
\begin{pmatrix}
 x & y & z & p & q & \bar{0} \\
 x & 0 & 3 & 4 & 8 & 6 & 0 \\
 y & \infty & 0 & 4 & 5 & 3 & 0 \\
 z & \infty & \infty & 0 & 4 & \infty & -2 \\
 p & \infty & \infty & 4 & 0 & \infty & 0 \\
 q & \infty & -2 & 2 & 2 & 0 & -2 \\
 \bar{0} & \infty & \infty & 4 & 8 & \infty & 0 \\
\end{pmatrix}
\]

\[y - x < 3\]

Minimal Set:

\[x - y > 3 \quad q - y < 3\]
\[p - q < 2 \quad p - z < 4\]
\[2 < z < 4 \quad q - y > 2\]

5 April 1997
Reduction

Classical:

- State space explosion

Time:

- Number of time equivalence classes exponential
- Storage of polytopes
Solutions

Classical:

- Partial order techniques
 - Dependency relation influenced by clocks

Time:

- Clock minimalisation [Sifakis]
Partial Order techniques

Simple conditions:

- Untimed SPIN: Global objects
- Timed SPIN: Time as Global object
Dependency

- Time progression

\[x = 0 \]
\[y = 0 \]
\[ax > 3 \]
\[by < 2 \]

- Resets

\[x = 0 \]
\[y = 0 \]
\[ax > 3; \text{Reset}(y) \]
\[bx - y < 2 \]

- Urgency

\[x = 0 \]
\[y = 0 \]
\[ax < 3 \]
\[by < 3 \]
\[\text{!!c } x < 2 \]
\[bx < 3 \]
Input language

- Intuitive

- Expressive

- Transparent

- Examples:
 - Channel latencies: chan a[n][lb,ub] of int;
 - Delay(8,12)
 - Urgency:
 if
 !! ?req;
 :: delay(12,12) -> break;
 fi
Conclusions

State now:

- Formalism worked out
- Implementation discretisation method
- Study Partial order methods

Extensions:

- Simple clockdrifts
- Dynamic time constraints
- Symbolic time constraints

bknaack@win.tue.nl

5 April 1997