Verification = Logic + Algorithmics

Moshe Y. Vardi

Rice University

*See http://www.cs.rice.edu/~vardi for related papers.
Traditional Verification

Deductive Approach:

- Express the correctness of the protocol as a formula in some logic.
- Prove validity of the formula.

Disadvantage: *difficult!*

- Only a small numbers of teams have been able to apply this approach to industrial-scale protocols.
Modern Verification

Model Checking:

- Represent a finite-state protocol as a finite structure.
- Check that the structure is a model of the specification.

Advantage: feasible

- [Apt + Kozen, 1985]: “one of the most exciting developments in the theory of program correctness”
- Impressive record of applicability over the last decade
Linear Temporal Logic

Temporal logic: logic of temporal sequences
Main feature: time is implicit

- next φ: φ holds in the next state.
- eventually φ: φ holds eventually
- always φ: φ holds from now on
- φ until ψ: φ holds until ψ holds.
Examples

- always $\neg (C'S_1 \land C'S_2)$: mutual exclusion (safety)
- always (Request \rightarrow eventually Grant): liveness
- always (Request \rightarrow Request until Grant): liveness
- always eventually Request \rightarrow eventually Grant: liveness
- always (C'S$_1$ \rightarrow (C'S$_1$ until \negC'S$_1$ \land (\negC'S$_1$ until C'S$_2$))): precedence
LTL over Finite Computations

- $\sigma, i \models \text{next } \varphi$ if $i < |\sigma|$ and $\sigma, i + 1 \models \varphi$

Compilation Theorem 1: Given an LTL formula φ, we can construct a finite automaton A_φ such that a computation σ satisfies φ iff A_φ accepts σ. Also, $|A_\varphi| = 4|\varphi|$.

Applications:

- **Satisfiability**: φ is satisfiable iff $L(A_\varphi) \neq \emptyset$
- **Validity**: φ is valid iff $L(A_{\neg \varphi}) = \emptyset$
Compilation

Closure: $cl(\varphi)$: subformulas of φ and their negations

- $cl(\text{always eventually } p) = \{\text{always eventually } p, \neg \text{always eventually } p, \text{eventually } p, \neg \text{eventually } p, p, \neg p\}$

$A_\varphi = (\Sigma, S, S_0, \rho, F)$

- **Alphabet:** $\Sigma = 2^{Prop}$
- **States:** $S \subseteq 2^{cl(\varphi)}$
 - $\psi \in t$ iff $\neg \psi \not\in t$
 - $\psi_1 \land \psi_2 \in t$ iff $\psi_1 \in t$ and $\psi_2 \in t$
- **Initial states:** $S_0 = \{s \in S : \varphi \in s\}$
- **Accepting states:** $F = \{\emptyset\}$
Transition Relation

Case I: \(t' \neq \emptyset \)

\((t, a, t') \in \rho:\)

- \(a \subseteq t\)
- \(\text{next } \psi \in t \iff \psi \in t'\)
- \(\psi_1 \text{ until } \psi_2 \in t \iff \psi_2 \in t \text{ or } \psi_1 \in t \text{ and } \psi_1 \text{ until } \psi_2 \in t'\)

Case II: \(t' = \emptyset \)

\((t, a, t') \in \rho:\)

- \(a \subseteq t\)
- \(\text{next } \psi \notin t\)
- \(\psi_1 \text{ until } \psi_2 \in t \iff \psi_2 \in t\)
Algorithmic

Proposition: $L(A) \neq \emptyset$ iff there is a path in A from an initial state to an accepting state

Complexity:

- *Linear time*: breadth-first search
- *Nondeterministic logarithmic space*: nondeterministic walk

Algorithmics: graph reachability

Complexity of LTL satisfiability and validity:

- Exponential time
- Polynomial space
Model Checking

The following are equivalent:

- P satisfies φ
- $L(P) \subseteq L(A_\varphi)$
- $L(P) \cap \overline{L(A_\varphi)} = \emptyset$
- $L(P) \cap L(A_{\neg \varphi}) = \emptyset$
- $L(P \times A_{\neg \varphi}) = \emptyset$

Complexity:

- **Time:**
 - linear in $|P|$
 - exponential in $|\varphi|$

- **Space:**
 - polylogarithmic in $|P|$
 - polynomial in $|\varphi|$

SPIN: time and space optimizations
Infinite Computations

The problem: fulfillment of eventualities

always eventually P:

- *Finite computations*: P holds in last state
- *Infinite computations*: P holds i.o.

always eventually P and always eventually Q:

- *Finite computations*: $P \land Q$ holds in last state
- *Infinite computations*: P holds i.o. and Q holds i.o.
Automata on Infinite Words

\[A = (\Sigma, S, S_0, \rho, F) \]

- **Alphabet:** \(\Sigma \)
- **States:** \(S \)
- **Initial states:** \(S_0 \subseteq S \)
- **Transition relation:** \(\rho \subseteq S \times \Sigma \times S \)
- **Acceptance condition:** \(F \)

Input word: \(a_0, a_1, \ldots \)

Run: \(s_0, s_1, \ldots \)

- \(s_0 \in S_0 \)
- \((s_i, a_i, s_{i+1}) \in \rho \) for \(i \geq 0 \)

Limit: \(\inf f(r) \) – states visited i.o.

Goal: Compilation theorem for LTL on infinite computations
Streett Automata

Streett acceptance condition: \((L_1, U_1), \ldots, (L_k, U_k)\)

- \(L_i \subseteq S, U_i \subseteq S\)
- acceptance: for each \(I\), infinitely many visits in \(L_i\)
 \(\Rightarrow\) infinitely many visits in \(U_i\)

Compilation Theorem II: [Grumberg + Long, 1991]
For LTL use Streett acceptance condition:

- \(L_i = \{t : \psi_1 \text{ until } \psi_2 \in t\}\)
- \(U_i = \{t : \psi_2 \in t\}\)

Algorithmics: Streett reachability – is there an infinite path, from an initial state, that satisfies Streett condition

Cost: emptiness of Streett automata

- no linear-time algorithm known
- no space-efficient algorithm possible
Generalized Büchi Automata

Generalized Büchi acceptance condition: F_1, \ldots, F_k

- $F_i \subseteq S$
- *acceptance:* for each i, infinitely many visits in F_i

Compilation Theorem II: [Gerth, Peled, Vardi + Wolper, 1995] For LTL use generalized Büchi acceptance condition:

- $F_i = \{ t : \psi_1 \text{ until } \psi_2 \notin t \text{ or } \psi_2 \in t \}$

Algorithmics: *generalized Büchi reachability*

Advantage: easy emptiness test
- linear-time algorithm
- space-efficient algorithm

Disadvantage: tailored to “vanilla” LTL, fails for extensions (ETL, μTL)
- ψ_1 until ψ_2 is fulfilled immediately or persists
Büchi Automata

Büchi acceptance condition: F

- $F \subseteq S$
- *acceptance*: infinitely many visits in F

Compilation Theorem III: [Vardi + Wolper, 1994]
$A_\varphi = \text{local automaton} \times \text{eventuality automaton}$

- *local automaton*: checks local conditions
- *eventuality automaton*: ensures fulfillment of eventualities
- $F = S \times \{\emptyset\}$

Advantages:

- easy emptiness test
- handles extensions of LTL (i.e., ETL, μTL)

Disadvantage: complicated proof
Büchi Reachability

Proposition: \(L(A) \neq \emptyset \) iff there is a path in \(A \) from an initial state \(s_0 \) to an accepting state \(t \) and from \(t \) to itself.

Algorithmics: Büchi reachability

- **Linear-time algorithm**: depth-first search
- **Nondeterministic logspace algorithm**: nondeterministic walk
- **Space-efficient algorithm**: hash functions
Logic vs. Algorithmics

It is in the eye of the beholder:

- So far: “algorithmics” means graph reachability
- Proposal: declare propositional logic as “algorithmics”

Alternating Reachability: reachability in and/or graphs

- ∨-node is reachable if some successor is reachable
- ∧-node is reachable if all successors are reachable

Complexity:

- PTIME-complete
- linear-time algorithm
- essentially: HORNSAT
Alternating Automata

Nondeterminism: \(\exists \) choice

- \(\exists \) choice: some run accepts
- \(\forall \) choice: all runs accept

Alternation: \(\exists + \forall \) choice

2 Formalisms:

- \(\exists \)-states and \(\forall \)-states [Chandra et al.]
- Boolean transitions [Brzozowski + Leiss]
Nondeterminism vs. Alternation

Nondeterminism:

- \((s, a) \mapsto \{s_1, s_2, s_3\}\)
- \(\rho(s, a) = s_1 \lor s_2 \lor s_3\)

Alternation: \(\rho(s, a) = (s_1 \land s_2) \lor (s_1 \land s_3)\)

Positive Boolean Formulas:

\(B^+(X)\) – positive Boolean formulas over \(X\)

- Example: \(x_1 \lor (x_2 \land x_3)\)
Alternating Büchi Automata

- $A = (\Sigma, S, S_0, \rho, F)$
- $\rho : S \times \Sigma \rightarrow B^+(S)$

Example: $\rho(s, a) = (s_1 \land s_2) \lor (s_1 \land s_3)$

Run: An S-labeled tree that satisfies the transition functions

Acceptance: F is visited i.o. along every branch of the run
LTL vs. Alternating Automata

\[\varphi \mapsto A_\varphi = (\Sigma, S, S_0, \rho, F) \]

- \(\Sigma = 2^{\text{Prop}} \)
- \(S = \text{cl}(\varphi) \)
- \(S_0 = \{ \varphi \} \)
- \(F = \{ \neg(\psi_1 \text{ until } \psi_2) \in \text{cl}(\varphi) \} \)

Dualizing Transitions:

- \(\overline{\psi} = \neg \psi \)
- \(\overline{\text{true}} = \text{false} \)
- \(\overline{\text{false}} = \text{true} \)
- \(\overline{\alpha \land \beta} = \overline{\alpha} \lor \overline{\beta} \)
- \(\overline{\alpha \lor \beta} = \overline{\alpha} \land \overline{\beta} \)

Example: \(p \lor (\neg q \land \text{next } p \text{ until } q) \) is
\(\neg p \land (q \lor \neg \text{next } p \text{ until } q) \)
Transition Function

- \(\rho(p, a) = true \) if \(p \in a \)
- \(\rho(p, a) = false \) if \(p \notin a \)
- \(\rho(\psi_1 \land \psi_2) = \rho(\psi_1, a) \land \rho(\psi_2, a) \)
- \(\rho(-\psi, a) = \rho(\psi, a) \)
- \(\rho(\text{next } \psi) = \psi \)
- \(\rho(\psi_1 \text{ until } \psi_2, a) = \rho(\psi_2, a) \lor (\rho(\psi_1), a) \land (\psi_1 \text{ until } \psi_2)) \)

Advantages:

- easy translation
- syntax directed
- extensible
Alternating Automata vs. Games

\[A = (\Sigma, S, S_0, \rho, F), \; w = a_0, a_1, \ldots \]

- **Players**: automaton vs. spoiler
- **Configuration**: \((s, i)\), where \(s \in S\) and \(i \geq 0\)
- **Initial configuration**: \((s_0, 0)\), where \(s_0 \in S_0\)
- **Round**: from \(\rho(s, a_i)\)
 - automaton chooses disjunctions
 - spoiler chooses conjunctions

 until a state \(s' \in S\) is reached; then \((s', i + 1)\) is next configuration

- **Win**: Automaton wins by reaching \(\text{true}\) or visiting \(F\) i.o.

Claim: \(w \in L(A)\) iff automaton has a winning strategy
Alternation vs. Nondeterminism

Theorem: [Miyano + Hayashi, 1984] Automaton has a winning strategy iff automaton has a memoryless winning strategy.

Corollary: Let A be an alternating Büchi automaton. Then A is equivalent to a nondeterministic Büchi automaton A' such that $|A'| = 3|A|$.

Compilation:

- **LTL** \rightarrow alternation automata
- alternation automata \rightarrow nondeterministic automata

Algorithmics: Nontrivial, but only once.
Computation Tree Logic

CTL: logic of computation trees

Main feature: quantification over computations

- $A\text{ next } \varphi$: φ holds in all successor states
- $A\text{ eventually } \varphi$: φ holds eventually inevitably
- $E\text{ always } \varphi$: φ holds from now on some computation
- $E\varphi\text{ until } \psi$: φ holds until ψ holds on some computation

Example: A always ($\text{Request} \rightarrow A\text{ eventually Grant}$)
Complexity

- **Satisfiability**: EXPTIME-complete [Emerson + Halpern]
- **Model Checking**: PTIME-complete [Clarke et al.]

Automata-theoretic approach to satisfiability:

- **Compilation** [VW]: Given an CTL formula φ, we can construct a Büchi tree automaton A_φ such that a tree τ satisfies φ iff A_φ accepts τ. Also, $|A_\varphi| = 2^{O(|\varphi|)}$.

- **Emptiness Test for Büchi Tree Automata** [VW]: quadratic time

Difficulty: automata too large to be used for model checking
Alternation and CTL

Compilation: Given an CTL formula φ, we can construct an alternating tree automaton A_{φ} such that a tree τ satisfies φ iff A_{φ} accepts τ. Also, $|A_{\varphi}| = O(|\varphi|)$.

Emptiness Test:

- **2-letter alphabet**: EXPTIME-complete [MS]
- **1-letter alphabet**: PTIME-complete [BVW]
Alternation and Model Checking

- $\varphi \mapsto A_\varphi$ (linear)
- $P \times A_\varphi \mapsto A_{P,\varphi}$ (linear)
- $L(A_{P,\varphi}) \neq \emptyset$ (linear)

Crux: $A_{P,\varphi}$ is a 1-letter alphabet
In Summary

• Logic is *high-level*, automata are low-level

• Specify with *logic*, but verify with automata

• *Alternation* bridges the gap
 – Unifying framework
 – Uniform algorithms

Caveat: further optimization required!