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Abstract

The use of an Ordered Binary Decision Diagram (OBDD) to store all visited states during on-the-

y model checking (or reachability analysis) is investigated. To improve the time and space e�ciency
a state compression technique is introduced. This compression technique is safe, in the sense that no
two unique states will have the same compressed representation. A number of examples are used to
evaluate an experimental implementation of the OBDD state store within the SPIN validation tool.
In all the examples a reduction in space is achieved when using the OBDD state store as opposed
to the more traditional hash table state store. The memory and time usage when combining partial
orders with the OBDD state store is also considered.

1 Introduction

Temporal logics can express changes over time without introducing time explicitly and is therefore suit-
able for specifying many correctness properties of concurrent systems. Since many interesting programs
can be modelled as �nite-state systems, it was a signi�cant development when algorithmic methods were
discovered to verify temporal properties of �nite-state systems[6]. Since that time a variety of concur-
rent systems have been modelled and automatically veri�ed in this fashion, these include, communication
protocols, hardware designs and operating system kernels. A �nite labelled state-transition graph (also
called a Kripke structure) is used to represent the behaviour of concurrent system and propositional tem-
poral logic formulae are used to express desired properties of the system. A so-called model checker is
then used to check whether the Kripke structure satis�es (is a model of) the temporal formula specifying
the required behaviour. Surveys of model checking techniques can be found in [23] and [5].

Early model checking algorithms[7] required the complete state graph be generated before-hand and
kept in memory throughout the model checking process. Due to the so-called state explosion problem (the
number of reachable states grow exponentially in the number of concurrent components) when analysing
su�ciently large concurrent systems, the state graph is however often too large to �t into memory. This
limits the size of the systems that can be model checked with these algorithms. One possible solution
to this is only to generate the part of the state graph required to validate (or invalidate) the given
temporal logic requirement. This technique is commonly referred to as on-the-
y model checking, since
the state graph is generated during model checking[21, 1]. On-the-
y algorithms generate the state
space in a depth �rst manner and keeps track of all reached states to avoid doing unnecessary work.
The boundaries of on-the-
y techniques were advanced considerably when it was realised that much of
the state explosion problem was due to the generation of all interleavings of independent transitions in
di�erent concurrent components. Partial order reduction techniques were therefore introduced to ensure
that many of these unnecessary interleavings are not explored during state generation [20, 11, 17, 15].

Arguably the biggest advancement in reducing the limitations imposed by the state explosion problem
was made with the advent of symbolic model checking[16]. In symbolic model checking the transition
relation is no longer represented explicitly, but rather implicitly by encoding it with ordered binary
decision diagrams (OBDDs) [4]. The temporal logic formula to be checked is translated into its �xed point
representation. The model checking algorithm proceeds by calculating these �xed points by performing
operations on the OBDD that represents the transition relation. After each iteration of the �xed point
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calculation the set of states obtained are again represented by an OBDD. The main advantage of this
algorithm is therefore that the state graph is never explicitly constructed. If the state space of a system
exhibits some form of regularity then the OBDD representation of a set of its states can be very compact.
Symbolic model checkers are not goal directed, since the complete state space is generated during model
checking.

Unfortunately, both on-the-
y techniques and those using OBDD encodings have potential drawbacks.
The main problem with on-the-
y algorithms is the storage space required to record already visited states
during state generation. For OBDDs, on the other hand, the size of an OBDD is heavily dependent on
the ordering of the boolean variables within it. An even bigger disadvantage of OBDDs is that certain
boolean functions will always have an exponentially sized OBDD regardless of the variable ordering
used[3]. Integer multiplication is an example of such a function. The size of the OBDD representing the
transition relation can therefore cause the symbolic model checking to become impractical.

In this paper we will investigate a combination of on-the-
y model checking and OBDD encodings.
The on-the-
y ethos will be adopted: the algorithm will be goal directed and therefore the state space
will be generated during the model checking process. The transition relation will therefore not be
represented by an OBDD, but, one will be used to represent the set of states already visited during
the state generation. If there are any regularity in the state space generated this would be re
ected
in the size of the OBDD, i.e. its size will increase polynomially, rather than exponentially, with the
increase in states visited. OBDD based model checkers have until now been used mostly for hardware
veri�cation, since hardware systems usually exhibit regular state spaces. These systems also tended to be
synchronous. Since asynchronous software (and hardware) systems have not received the same amount
of attention from the symbolic model checking community, it was decided to apply our technique to
these type of systems. The e�ect of using partial order techniques in combination with OBDDs will also
be investigated.

The outline of the paper is as follows. Section 2 will introduce the basic on-the-
y algorithm used
during state generation. The next two sections will be devoted to explaining our use of OBDDs (section
3) and how it is combined with the SPIN [13] on-the-
y validation system (section 4). In section 5 a
novel way of state compression will be introduced to allow more e�cient OBDD representations. In
sections 5.2 and 6, the results achieved by the technique will be discussed as well as the e�ect of partial
order reductions on the OBDD size. The last section will contain conclusions and some future extensions
to the algorithm.

2 On-the-
y Model Checking

Although it has long been known that linear time temporal logic can be e�ciently model checked by
only generating relevant parts of a state graph[21], it is has only comparatively recently been shown
that the same is true of the branching time temporal logics CTL and CTL* [1, 2]. Here we will only
concentrate on e�cient state storage during on-the-
y model checking and therefore not be concerned
about the temporal logic being used.

In Figure 1 the standard depth-�rst search algorithm is shown that implements the state generation
during model checking. When used during model checking the iterative form of the algorithm is used and
after each state s is generated the model checker will determine the truth-value of the current temporal
logic subformula from the value assignments within s. Since the focus here is on state generation, rather
than the model checking algorithm, and the recursive algorithm in Figure 1 is easier to follow than the
iterative version we will use the recursive one to explain the basic issues involved. Two data structures
are used within the search: a set of all states visited during the search, VisitedStates, and a stack of states
to keep track of the current execution path, Stack. During initialisation the initial state, s0 is entered
into VisitedStates as well as pushed onto Stack. The depth-�rst search is then invoked by calling dfs().
In dfs all transitions enabled in the current state, s, at the top of the stack are executed in a depth-�rst
manner. If the �rst successor state s0 of s has not been reached before, i.e. it is not in VisitedStates,
it is entered into VisitedStates and pushed onto Stack. By calling dfs again s0 now becomes the current
state. When all the successor states from the current state s have been visited then s is removed from
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PROCEDURE DFS()

PROCEDURE dfs()
BEGIN

s = top(Stack);
FOR all transitions t enabled in s DO

s' = successor(s) after executing t;
IF s' NOT IN VisitedStates THEN
Enter s' into VisitedStates;
Push s' onto Stack;
dfs()

END
END;
Pop s from Stack

END dfs;

BEGIN
Enter s0 into VisitedStates;
Push s0 onto Stack;
dfs()

END DFS;

Figure 1: Depth-�rst State Generation during Model Checking.

the stack and previous state on the stack becomes the current state.

The representation of the set VisitedStates has been the focus of much research[12, 10, 24]. This
is not surprising since this is the part of on-the-
y model checking that will determine its tractability
when checking large designs. The most commonly used method is to represent the set as a large hash
table of states. When a new state is generated it is hashed to obtain the index into the table. Since
the states must be stored in its entirety, to allow for comparisons during the resolving of possible hash
con
icts, this method is not very e�cient when a large number of states must be stored. An optimisation
on this method, was to allow table entries to be over-written when the table became too full[11, 22].
The intuition was that the chance of a state being revisited after it was over-written would be small in
practice. However, empirical results showed in many cases as soon as the table entries were over-written
the validation time increased exponentially. The most novel approach to date is the so-called bitstate
hashing[12] used in the SPIN validation system. This technique requires a large vector of bits (of �xed
size) to be maintained in memory to keep track of previously generated states. A hashing technique is
used to compute an index into this bit vector from the value of each state. However, since the validation
results can be invalid when a hash con
ict occurs this technique is not always desirable when validating
safety critical systems. The coverage obtained with bitstate hashing can be improved by either increasing
the number of hashing functions used or using more than one bit to hash into (hashcompact [24]). A
summary of bitstate hashing as well as comparisons with the hashcompact method can be found in [14].

In the next section we will introduce OBDDs as a possible alternative to the above mentioned
representations of VisitedStates. After implementing the OBDD to record visited states in the SPIN
validation system a further state compression method was added to reduce both the time and memory
requirements of this method. This compression method can also be used with the traditional hash table
methods to reduce the memory required, at the price of adding a small constant factor to the run-time.
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Figure 2: Decision tree for the boolean function f(x1; x2; x3) = x1 �x2 �x3 + x1 �x2�x3 + x1 �x2 �x3

3 OBDD State Store

OBDDs are directed acyclic graphs that represent boolean functions in a canonical form. As an example,
let us consider the OBDD that represents the function f(x1; x2; x3) = x1�x2�x3+x1�x2�x3+x1�x2�x3, where
� denotes the AND operation and + the OR operation. The decision tree for this function is given in
�gure 2. Left branches from a node indicates the variable is 0 and similarly right branches indicate value
1. Terminal nodes are labelled with T for true and F for false. To construct the OBDD representation
of f a total ordering on the variables of f must be imposed. In �gure 2 this ordering is x1 < x2 < x3.
There are three transformation rules on these graphs, that do not alter the function represented, but
may reduce their size. An OBDD is the name given to the graph that cannot be reduced any further.
The rules are:

Remove Duplicate Terminals There must remain only one terminal with a given label. All arcs to
duplicate labelled terminals must be redirected to the remaining one. A further optimisation is
not to show any arcs leading to F , although they are implicitly there. In �gure 3 this optimisation
is performed on the decision tree for f .

X 2

X 3

X 2

X X3 3

X 1

T

Figure 3: Removing duplicate T terminals and explicit F terminals from the decision tree of f
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Remove Duplicate Nonterminals If two nonterminal nodes have the same label and their left and
right branches are the same then one must be removed. All arcs must be redirected to the remaining
one. This is shown in �gure 4 where the three nodes labelled x3 (with left arc to T and right to
F ) in �gure 3 have been replaced by one x3 node.

X 1

X 3

T

X 2 X 2

Figure 4: Removing duplicate nonterminals.

Remove Redundant Tests If both arcs from a nonterminal,say n,point to the same node,say n0, then
n must be removed and all its incoming arcs must be redirected to n0. In �gure 4 the left-hand x2
is such a redundant node since both its left and right arcs point to x3. The OBDD for f is shown
in �gure 5 after this last transformation is performed.

X 1

X 3

X 2

T

Figure 5: OBDD for function f after removing redundant tests.

These rules must be applied repeatedly, since the application of one rule can cause more transformations
to be possible on the resulting graph. It will now be shown how an OBDD can be used to represent the
set of states visited during on-the-
y model checking. First, recall that the state, s, of a system consists
of a vector of bits, s = x0; x1; � � � ; xn, where xi is bit i in this so-called state vector. If a state, s, is
visited during a traversal it can be represented by the boolean function f(s) = 1, or, in other words,
f(x0; x1; : : : ; xn) = 1. For example, consider a state vector with only three bits, x1; x2 and x3 and a
state is written as < x1x2x3 >. Assume the following states are visited < 000 >, < 010 > and < 100 >.
Then the OBDD for the boolean function f(x1; x2; x3) = x1 �x2�x3 + x1 �x2�x3 + x1�x2 �x3 will represent
the states visited. Thus if the variable ordering x1 < x2 < x3 is assumed then the OBDD in �gure 5
represents the visited states for this example. To add a state, s, to the set of visited states it is therefore
necessary to �rst convert s to its OBDD representation and then to perform an OR-operation on this
OBDD and the one representing the set of states already visited. The resulting OBDD will represent the
set of states with s added. To establish if a new state, s, is in the set of already visited states, the OBDD
representing the visited states is traversed according to the values of the bits in s. For example, to check
if the state s =< 010 > is in the OBDD of �gure 5 we check if node x1 has a left arc{since x1 = 0 in
s{this arc is traversed to reach node x3; now since x3 = 0 in s the left arc of x3 is traversed and the
resulting terminal node T is found indicating s is in the OBDD. If the existence of state s =< 011 > was
checked then at node x3 the right branch would have been taken leading to the terminal F indicating s
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has not been visited yet. The following three operations are thus the only requirements for implementing
an OBDD state storage mechanism during on-the-
y model checking:

EncodeOBDD(s) This function takes as input a state and returns the OBDD encoding of the state.

OR(OBDD1,OBDD2) Returns the OBDD that is obtained after applying the transformation rules
to the result of adding OBDD1 to OBDD2.

Exists(OBDD1,s) Returns true if state s is in OBDD1 else false.

The advantage of using an OBDD to record visited states becomes apparent when large parts, or even,
the complete reachable state space of a model is visited. Since this will in most cases cause the OBDD
to become smaller, due to the applying of the transformation rules. For example consider the previous
example where the states < 000 >, < 010 > and < 100 > were visited. If we now assume the rest of the
reachable states of this example (the �ve states < 001 >,< 011 >, < 101 >,< 110 > and < 111 >) are
visited as well then the OBDD representing the visited states will only contain the terminal node T .

3.1 Example

Consider the mutual exclusion problem for two processes where each process (i = 1; 2) can be in one of
three code regions: noncritical (Ni), trying (Ti) or critical (Ci). A binary semaphore S is used to protect
the critical region. The value of the semaphore is indicated by Si, where i can be 0 or 1. A process can
only enter its critical region from its trying region if the value of the semaphore is 0. When a process
enters its critical region the value of the semaphore becomes 1 and on leaving the critical region and
entering the noncritical region the value of the semaphore becomes 0 again. The state of the system
consists of the values of the control variable for process1, process2 and the semaphore variable and is
described by (process1; process2; semaphore). An asterisk (\*") in the guard of a transition indicates
that the �eld can hold any value for the guard to be satis�ed in that state. The action part of the
transition will indicate how each �eld is changed, with \*" indicating unchanged �elds. The start state
is (N1; N2; S0) and the transitions are the following:

(N1; �; �) ! (T1; �; �) (1)

(T1; �; S0) ! (C1; �; S1) (2)

(C1; �; �) ! (N1; �; S0) (3)

(�; N2; �) ! (�; T2; �) (4)

(�; T2; S0) ! (�; C2; S1) (5)

(�; C2; �) ! (�; N2; S0) (6)

The two control variables each have three possible values: Ni (0), Ti (1) or Ci (2). The semaphore has
two values: S0 (0) or S1 (1). The two control variables will thus have two bits and the semaphore one
bit allocated for it in the state vector (Figure 6).

State vector: 5 bits
Process1 Process2 Semaphore

4::3 2::1 0

Figure 6: A state vector for the mutual exclusion system

During initialisation the initial state (N1; N2; S0), which corresponds to the state vector < 00000 >,
is inserted into the set of visited states. The next state to be visited is (T1; N2; S0) (< 01000 >) which
is generated after executing transition 1. The OBDD resulting from adding this state to the initial state
is shown on the left-hand of �gure 7. In the rest of �gure 7 the resulting OBDDs are shown after adding
the next three states visited in the depth-�rst search. The OBDD on the right therefore contains the
states < 00000 >, < 01000 >, < 10001 > and < 00010 >. In �gure 8 the OBDD is shown after each of
the remaining four states of this model is added to the set of visited states.
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Figure 7: OBDD representations for adding the �rst four states of the mutual exclusion system to the
state store.
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Figure 8: OBDD representations after the last four states of the example are added. The rightmost one
represents all eight reachable states of the system.

The memory requirement for this method is that of the largest OBDD generated during the search.
For this example it is the memory required to represent the second and third last OBDDs (see �gure 8)
which both have 12 nodes (excluding the implicit F -terminal). Considering that the largest OBDD for a
boolean function with �ve variables is 14, this example perform close to the worst-case1. In general the
OBDD representing the state store will have a best-case performance that is linear and a worst-case that
is exponential in the number of bits in the state vector. As it is unclear what the heuristics should be
for choosing a variable ordering, we will only consider one variable ordering in the sequel. The variable
order will be the same as the order of the bits in the state vector.

4 SPIN with OBDD State Store

With the aid of the BDD package2 fromCarnegie Mellon the two functions EncodeOBDD and Exists were
implemented and the bdd_or function provided were used to add two OBDDs together. The functions
were added to the SPIN3 tool in a straight-forward fashion to obtain an experimental implementation
for an on-the-
y model checker that uses an OBDD to record visited states.

The �rst example on which the method is evaluated is a model consisting of n concurrent counters,
where each counter loops through the values 0 to 9. This example was chosen because it exhibits a regular
state space and would therefore allow the OBDD state store to perform close to optimally. In Table 1
the results for 4, 5 and 6 concurrent counters are shown when using the OBDD state store compared
with the table storage. The rest of the examples in Table 1 are all real-world models: pftp is a protocol
model and snoopy a cache coherence model that are both available with the SPIN system. Scheduler is
a model of a process scheduler that form part of a commercially available micro-kernel[8] and Address

1If n is the number of variables in a boolean function then there are 3 � 2
n

2 � 2 nodes when n is even and 2 � (2d
n

2
e
� 1)

nodes if n is odd in the largest possible OBDD for the function (excluding the implicit F -terminal).
2Available by ftp from emc.cs.cmu.edu (pub/bdd/bddlib.Tar.Z)
3Available by ftp from netlib.att.com (netlib/spin/spin2.8.Src.tar.Z)
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Table Store OBDD Store
Model Memory (Mb) Time (secs) Memory Nodes (largest) Time Bits States

counter 4 0.1 11 0.3 158 358 72 104+1
counter 5 1 647 0.32 233 1580 88 105+1
counter 6 32 3012 0.33 283 18780 94 106+1
address interface 0.7 2.8 0.74 22470 580 608 9491
snoopy 7.7 100 9.97 421165 36824 704 91920
scheduler 14.7 202 0.95 53354 36259 472 256929
pftp 48 600 >36 >106 >60000 928 439895

Table 1: Comparison between an OBDD and a (hash) table for storing visited states in SPIN.

Interface is a model of part of an asynchronous microprocessor [9]. The comparison is done on the
memory used in megabytes and the time4 taken in seconds for the two methods. The number of nodes in
the largest OBDD required, the number of bits in the state vector and the number of reachable states are
also indicated. As expected the counter examples show the biggest improvement when using the OBDD
state store. The memory for the table store increase exponentially (since the number of states increase
exponentially) while the OBDD only require a linear increase, in the number of concurrent counters.

Unfortunately for the real-world examples the OBDD state store does not perform as well as in the
contrived examples of concurrent counters. For example the generation of the state space for the pftp
model was aborted after 16 hours, since only half the number of states were generated by that time. The
reason for this is the performance of the OBDD store is critically dependent on the number of bits in the
state vector. Since every state generated during the search must �rst be checked against the visited states
in the OBDD and then encoded in an OBDD if it has not been visited, the Exists and EncodeOBDD
functions are dependent on the state vector size. Therefore, since the size of the OBDD representing
a new state is dependent on the number of bits in the state vector, so too will the bdd_or function be
dependent on the state vector length. In the next section a compaction scheme will be given that will
compress the length of the state vector, thus allowing the OBDD state store to be more e�ective.

5 State Compression

A model that has n bits in its state vector, seldom visits all 2n states. In SPIN this is mostly due to the
fact that only prede�ned types are available. Therefore when a variable will only be assigned values in
the range 0 : : :7, it would still be required to be of type byte which would mean 8 bits in the state vector
instead of the required 3. In general, however, it is because variables in di�erent concurrent processes
do not \interleave" all their possible values. Finding ways of reducing the state vector size, without
losing information, would therefore seem a worthwhile pursuit. Strangely, however, probabilisticmethods
[14, 24, 19] are attracting more attention than safe reduction methods[22] in the research community.
Probabilistic methods allow the state vector to be compressed in such a fashion that di�erent states
might have the same compressed state. During on-the-
y model checking this might cause a search to
be truncated prematurely in which case certain parts of the state space might be ignored. Here a safe
reduction method will be introduced that will reduce the memory requirements for a large class of models
at the cost of an acceptable run-time overhead.

The intuition behind the method is �rstly described. In the same fashion that a model will seldom
visit all its 2n possible states, so too will a process seldom visit all of its potential states. Furthermore,
a state explosion is seldom caused by one process visiting a large number of states, it is more commonly
caused by the cartesian product of a number of \small" concurrent processes. Now if we consider a
process that is allocated m bits in its state vector but it visits only k = 2n states where k � 2m then
m�n bits will be wasted every time a state is stored during the validation. This becomes more signi�cant
when this process is part of model that generates a large number of states, since m�n bits will be wasted

4The tests were run on a SPARC10 with 64Mb of memory.
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Figure 9: State vector compression via intermediate tables.

not only when the process generates a new state, but whenever any of the other processes in the model
cause a new state to be generated. It would therefore seem sensible to only store each of the 2m states
for the process once and only refer to them indirectly when the states are stored. This is achieved by
storing the k m-bit values in a table and using the index in the table as the state in the state vector. This
would mean only n bits would be required in the state vector for this process. The table will take-up
memory but this will be o�set when a large enough number of states is visited. Thus the only penalty
will be in the run-time since the lookup in the table must be performed for every state generated.

In general, consider the state vector of length n to be constructed of p+1 parts each of length ni with
i = 0 : : : p. The parts ni might be the bits allocated to a process, a variable or even a byte boundary. For
every part ni allocate a table ti with ki entries. Let the compressed state be of length m also consisting
of p + 1 parts each of length mi = log2ki. When a new state s = n0n1 : : :np�1 is generated take part
ni and check if these bits are in the table ti, if so, take the table index and assign it to mi; if ni is
not in the table �nd the next open slot (starting from slot 0) , insert ni, and assign the index to mi.
The compression technique is illustrated in �gure 9. When will this compression fail to save memory?
If there are too many unique ni parts then the table ti will become too large, or if a �xed table size is
assumed, the table will over
ow. Thus this compression method is only suitable for models where each
ni part only has k � 2ni unique states. There is also a break even point in the number of states that
need to be generated before the memory used for the tables is o�set. This value can be calculated as
follows:

Let jsj be the number of states generated. Memory will be saved when the memory used without
compression is greater than the memory required if compression is used. Therefore,

jsj

pX

i=0

ni > jsj

pX

i=0

log2ki +

pX

i=0

mini

and thus if,

jsj >

Pp

i=0miniPp

i=0 ni �
Pp

i=0 log2ki

This is read as, the number of states visited must be larger than the number of bits in the tables
divided by the number of bits saved in each state. This �ts in nicely with the intuition that the method
will only work well if the tables are relatively empty, i.e. each ni part only has a few unique states.
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Compress Collapse New Collapse
Model Memory Time Bytes Memory Time Bytes Memory Time Bytes

address interface 0.17 4.1 19 0.25 5.4 27 0.11 2.3 12
snoopy 1.92 29 22 4.0 33 46 1.57 23.3 18
scheduler 3.67 221 15 7.8 234 32 4.41 226 18
pftp 12 741 29 10.9 730 26 5.8 659 14

Table 2: Results with state compression added to SPIN.

The implementation used here is to divide the state vector into 4 byte parts, i.e. every ni is 4 bytes
long. The table sizes for all ti is �xed at 256, i.e. ki is 256. Thus every ni will be compressed into one
byte in the compressed state. This con�guration was chosen due to its simplistic implementation in the
SPIN tool. The memory required by one table will therefore be 256 � 4 bytes (1 kilobyte). Thus if the
state vector is n bytes (note in SPIN the state vector is always a multiple of 8 bits) long the tables will
require dn

4
e kilobytes of memory.

5.1 Related Work

Independently of the work reported here the compression technique described above was implemented in
the SPIN system by Gerard Holzmann. This implementation, referred to as collapsing the state vector, is
more general than the compression of 4 bytes into one described above (which will be called compression
in the sequel). It allows the collapsing of each process into either 1, 2, 3 or 4 bytes, depending on how
many unique states the largest process generates. Similarly all global variables are grouped together
and collapsed. Since PROMELA (the language used to describe the models to be checked by SPIN)
supports asynchronous communication, every channel (queue) is also collapsed in a similar fashion to
each process. The collapsing of each state therefore consists of three parts: globals (as a unit), processes
(one or more) and channels (zero or more). It was found that each process (and globals) in snoopy, pftp
and scheduler can be collapsed into 2 bytes, and, the processes (and globals) in the address interface
were small enough to be collapsed into 1 byte.

In table 2 the comparative results between collapsing and compression are shown. For each method
the memory (Mb), time (secs) and the number of bytes in the reduced state are shown. As expected
the memory usage show a four fold reduction when using compression. Signi�cantly, though, the time
increase is only 1.46 in the worst case. Note that the concurrent counter models cannot be handled by
this method, since the 4 byte parts generate more than 256 unique states and therefore cause the tables
to over
ow. They were therefore not considered in the comparisons. Unexpectedly, the collapse method
only performed better in reducing the state size for the pftp model. On closer inspection it was found
that redundant information was stored in the state vector when channels were globally de�ned (as is
the case in all four examples). Speci�cally, the channel contents, was stored in the \globals" section
of the reduced state as well as in the \channels" section. The collapse implementation was changed
such that no global channel will be stored in the \channels" section of the reduced state. This caused
a considerable reduction in the state size as can be seen from the last column in �gure 2. Now for all
but the scheduler example the collapse method saves memory. A further optimisation to the collapse
method would be to allow the user to specify the number of bytes each process will require in the reduced
state. Currently, the largest process, globals or channels determine how many bytes will be used during
collapsing of the state vector. For example, in the scheduler only the globals (281 states) and one of
the processes (274 states) require 2 bytes and all the other processes generate less than 256 states and
can therefore be collapsed into 1 byte. Therefore, the reduced state of the scheduler could be 12 bytes
instead of the current 18. As is the case with compression the time increase incurred is not signi�cant.
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OBDD + Compress OBDD + Collapse
Model Memory Nodes Time Memory Nodes Time

address interface 0.29 11246 340 0.2 6950 212
snoopy 1.97 108193 3910 2.6 126141 4613
scheduler 0.49 19705 6891 0.48 18474 6185
pftp 6.3 349210 17403 3.43 167767 15870

Table 3: OBDD results with state compression/collapsing added to SPIN.

5.2 Combining Compression with the OBDD State Store

In the previous section it was shown how the state vector length can be reduced. The e�ect of this
reduction on the performance of the OBDD state store will now be investigated. Note however that any
reduction technique can be combined with the OBDD state store, even probabilistic ones. The results
of this experiment are shown in table 3. The results indicate that the compression scheme now makes
the OBDD state store a much more viable option. For instance, the pftp model that took more than
16 hours to generate only halve its reachable states when just the OBDD state store was used can now
complete the search in a reasonable time when compression is added. When considering the memory
required for the normal hash table state store (table 1) it is evident that the OBDD state store combined
with state compression is more space e�cient for all four of the examples. The best reduction is achieved
for the scheduler where 30 times less memory is required.

Interestingly, in the snoopy and scheduler models the compression method that yielded the best
reduction in the size of the state vector did not save the most memory when the OBDD state store was
added. However, in both these cases the di�erence in state size is small and the results just highlights
the unpredictability of the growth of OBDDs. In the pftp example, where the di�erence in state size is
signi�cant, the method which yielded the smaller state vector (collapse) also required less nodes in its
largest OBDD.

Unfortunately, time requirements are now becoming an increasing problem. It would seem that the
space savings are almost directly proportional in the time increase. This would seem to indicate that this
method of combining an OBDD state store and state compression will only be suitable where memory
is a bottle-neck. Until now, however, we have only considered models where the complete state space is
traversed. With the use of partial order methods it might be unnecessary to traverse all interleavings of
transitions in concurrent processes. Using partial orders in combination with the OBDD state store will
be investigated in the next section.

6 Partial Orders

Partial orders will not be discussed in any great detail here, the interested reader is referred to [20,
11, 17, 15]. It is su�cient to know that when partial orders are exploited during state generation it
might cause certain states never to be generated. This is due to the fact that certain interleavings of
independent transitions might not be considered. In [15] the implementation of partial order rules in the
SPIN system are described.

When combining the OBDD state store (with the collapse method of state compression) with the
partial order rules the results were surprising (see table 4). The expected reduction in memory is less
than might have been anticipated, especially considering so many fewer states are visited. In fact,
when considering the second last column in table 4, showing the memory required if partial orders and
compression were used with the traditional hash table (i.e. not using an OBDD state store), it can
be seen that using the hash table is more memory e�cient than the OBDD state store when used in
combination with partial orders.

In �gure 10 the number of nodes in the OBDD state store is plotted during state generation for
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OBDD + Partial Orders Partial Orders + Collapse
Model States Memory Time Nodes Memory Time

address interface 9491 0.21 242 7229 0.11 2.3
snoopy 15295 0.9 171 44543 0.26 3.1
scheduler 9251 0.29 259 12619 0.13 1.1
pftp 95241 1.72 1325 90057 1.27 19.8

Table 4: OBDD state store with Partial Orders
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Figure 10: OBDD growth with and without partial order rules.

our four examples (with and without partial order rules). For pftp (top left) the OBDD grows faster
when partial order rules are used. Even more surprising is the graph for the address interface: here
the same number of states are visited with and without partial order rules, but the OBDD state store
requires more nodes when partial orders are enforced! The reason for this behaviour can be explained by
remembering that OBDDs perform well when there is regularity in the state space, when partial order
rules are used some of this regularity may be removed. This explains the behaviour seen for pftp. In
the case of the address interface, however, it is simply that the states were generated in a di�erent order
when partial orders were used and this resulted in a loss of regularity in the state space.

7 Conclusion

We have investigated a new approach to reduce the memory requirements during on-the-
y model check-
ing. An OBDD encoding of the states visited during the depth-�rst exploration of the state space was
used to achieve this goal. The initial results (table 1) were not encouraging. Therefore, a state com-
pression technique was given that will reduce the length of the state vector and therefore the memory
required during the generation of the state space. This compression method will work well for models
that generate a large number of states k � 2n where n is the length of the state vector. Although the
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Figure 11: ONDD for the mutual exclusion system. Nodes are labelled with the three process variables.

method was introduced to improve the performance of the OBDD state store, it can be used with any
type of state storage method. For instance, combining a speci�c implementation of the state compression
with a hash table as a state store produced a four fold memory reduction while only increasing the time
taken by less than a factor of two compared to the case where no compression was used (see table 2).
The more general implementation of the compression technique that is currently used in SPIN, was also
considered and was found to store unnecessary information in the compressed state in certain cases. The
improved version of this so-called collapse method was found to achieve more than a four fold reduction
in the majority of the examples used. Combining the state compression and the OBDD state store
gave reductions in the memory requirements over both the cases where compression and a hash table
is used and an OBDD state store without compression (table 3). Lastly, the OBDD state store (with
state compression) was combined with a partial order reduction method. Although the partial order
rules did reduce the number of reachable states, the expected memory reductions did not occur. Due
to the removal of certain interleavings during partial order reductions, and therefore certain previously
reachable states, the size of the OBDD state store were not reduced as much as before by the three
OBDD transformation rules. Therefore, when reducing the state space according to partial order rules,
it is in general more space and time e�cient to use a hash table state store (see table 4).

In summary, an OBDD state store must in general be used with some form of compression, even
probabilistic compression, if it is to be a worthwhile mechanism for space saving during on-the-
y model
checking. The only type of model for which this prerequisite do not hold is models where the number
of reachable states is close to the number of potentially reachable states 2n where n is the length of
the state vector. Furthermore, the state compression method introduced in section 5, is safe (i.e. all
reachable states will be visited) and will in most cases reduce memory requirements no matter what
state storage mechanism is used. Again, the only type of model for which the compression will not cause
a memory saving, are those that reach a large portion of its potentially reachable states.

Before this experiment was started the view was expressed that combining an OBDD state store with
the SPIN tool, will not be practical. A combinatorial explosion in the size of the OBDD was expected.
It is our opinion that this view has been dispelled, since a number of real-life examples were chosen and
for all of them a space saving was achieved over the traditional hash table storage method. It must
be said that a substantial time increase is incurred, but this in part due to the way the operations on
the OBDDs were implemented. The operations are by no means time e�cient since this was meant to
be an experiment in memory reduction. Furthermore, no mention is made of the performance of other
variable orderings, but this is again due to the fact that we were interested in the general behaviour of
an OBDD state store and were therefore not concerned about �ne-tuning the method to obtain better
performance. Improving the performance of the three OBDD functions used and experimenting with
heuristics for �nding better variable orderings will be the focus of future work.

Another future extension is to use ordered n-ary decision diagrams (ONDDs)[18] instead of OBDDs.
The main di�erence between ONDDs and OBDDs is that an ONDD node is n-ary, where n is the
cardinality of the domain of the variable it is labelled with. Every node in an ONDD can therefore have
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n possible arcs to the nodes below it in the graph. Since it is possible that many of the arcs from a
node can go to the same node, we will adopt the compaction described in [18] where every arc is labelled
by a range of constants rather than with an individual constant. In �gure 11 the ONDD encoding the
reachable states in the mutual exclusion example is shown. Note that the state compression scheme of
section 5 will �t in nicely with the use of an ONDD state store. For instance, every component mi of the
compressed state (see �gure 9) will be one of the variables of the ONDD. Furthermore, if the indexes of
the tables ti is allocated consecutively (as is the case in all the examples in this paper), then the chances
of compacting the arcs from a node by labelling it with ranges is increased.
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