Backward Coverability with Pruning for Lossy Channel Systems

Thomas Geffroy
Jérôme Leroux
Grégoire Sutre
Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France
Talence, France

ABSTRACT
The study of coverability problem for Petri nets has regained interests in the recent years [7, 14, 16, 20]. In particular in [16] we presented an algorithm that uses downward-closed over-approximations, called invariants, to accelerate the computation. We are interested of applying some of these techniques to lossy channel systems (LCSs). These models have links with weak-memory model [6]. In this paper, we propose to generalize this approach to others models and in particular for LCSs. We then proposed three invariants for LCSs. Two of them aim to keep tracks of the order of the messages and a third count the number of messages in channels. An experimental evaluation demonstrates the benefits of our approach.

KEYWORDS
Model-Checking, Well-Structured Transition Systems, Lossy Channel Systems

ACM Reference format:

1 INTRODUCTION
Context. Lossy channel systems (LCSs) have been introduced by Abdulla and Jonsson to verify protocols that are designed to operate correctly even in presence of messages losses [4]. In recent years LCSs regained interests because of the works on verification with weak-memory models [6]. LCSs are indeed closely connected to weak-memory. Some business protocols [22] were also tested and improved to work correctly with unreliable channels. Another use of LCSs is to see them as over-approximations of systems with reliable channels. If a safety property is satisfied for a system with unreliable communications, the property will be satisfied for the same system with reliable communications.

The verification of a system can be often reduced to a control-state reachability question.

Related work. The control-state reachability problem for LCSs was shown to be hyper-ackermanian [10]. This complexity could leave us hopeless for practical implementations. But even if the coverability problem for Petri nets is EXPSPACE-complete, tools were recently implemented with great success in practice [7, 14, 16, 20]. We can hope to repeat this success for LCSs. Both Petri nets and LCSs are well-structured transition systems (WSTSs).

Some tools already exist to solve the coverability problem for LCSs, TReX [5] and McScM [19]. The latter was not dedicated on solving LCSs. There is also LASH [8] for systems with reliable channels.

Our contribution. We present a generic backward coverability algorithm that relies on downward-closed (forward) invariants to prune the exploration of the state space. This algorithm works not only for LCS but for a more generic model WSTSs. We present three invariants for LCS that can be used by this algorithm. The one we call state inequation forget the order of the messages but count the number of each message in each channel. The two others invariants forget the numbers of messages but look at the order of messages in the channels. One is based on simple regular expressions that have some downside because of its size and another one is based on quasi-ordering that aims to accelerate the computation. The second can be viewed as an abstraction of the first: this is a trade-off between precision and rapidity. We implemented the algorithm and three invariants. We found an acceleration for these invariants.

Outline. Section 2 recalls the coverability problem for well-structured transition systems. Sections 3 and 4 present our generalized backward coverability algorithm with pruning based on downward-closed invariants. Section 5 recalls the lossy channel systems. Sections 6 and 7 presents two invariants that keeps track of the order of messages in the channels. Section 8 presents the invariant called state inequation. It counts the number of each message in each channel. Section 9 presented our experiment evaluation.

2 COVERABILITY PROBLEM FOR WELL-STRUCTURED TRANSITION SYSTEMS
The class of Well-Structured Transition Systems (WSTS) [15] is a large class of systems with many decidable properties. In fact many classical problems (some termination and safety properties), can be decided with generic algorithms. The coverability problem is such a problem. It is motivated by the formal verification of some safety properties. In this section, we recall in three sub-sections (1) classical results about well quasi-orders, (2) the definition of WSTS, and (3) the coverability problem.
2.1 Well Quasi-Ordering
We first recall some properties about well quasi-orders (see [15] for additional properties and definitions).

A quasi-ordering over a set S is a binary relation \leq over S that is transitive and reflexive. Given a subset $X \subseteq S$, we let $\uparrow X$ and $\downarrow X$ denote its upward closure and downward closure, respectively. These sets are defined as follows.

$$\uparrow X = \{ s \in S | \exists x \in X : x \leq s \}$$

$$\downarrow X = \{ s \in S | \exists x \in X : x \geq s \}$$

A subset $U \subseteq S$ is called an upward-closed set when $U = \uparrow U$, and a subset $D \subseteq S$ is called a downward-closed set when $D = \downarrow D$. A basis of an upward-closed set U is a set $B \subseteq U$ such that $\uparrow B = U$. Upward closed sets can be denoted by finite bases when \leq is a well quasi-order.

A well quasi-ordering (wqo) over S is a quasi-ordering \leq over S such that, for every infinite sequence $x_0, x_1, \ldots \subseteq S$, there exist i and j with $i < j$ and $x_i \leq x_j$. This implies that any wqo is well-founded: it admits no strictly decreasing infinite sequence.

Proposition 2.1 ([13, 15, 18]). For a quasi-ordering \leq over a set S, the following propositions are equivalent

- \leq is wqo.
- Every upward-closed set has a finite basis.
- Every infinite non-decreasing sequence $U_0 \subseteq U_1 \subseteq \cdots$ of upward-closed sets eventually stabilizes: there exists $k \in \mathbb{N}$ such that $U_k = U_{k+1} = U_{k+2} = \cdots$

Notation: For the remainder of the paper, we will simply write x in place of $\{x\}$ for singletons, when it causes no confusion. In particular $\uparrow x$ denotes $\{ s \in S | x \leq s \}$.

2.2 WSTS
We recall the definition of Well-Structured Transition Systems.

Definition 2.2 (Transition System). A transition system is a tuple $\mathcal{S} = (S, s_{init}, \rightarrow)$ where S is a set of states, s_{init} is the initial state and $\rightarrow \subseteq S \times S$ is the transition relation.

We note \rightarrow^* the reflexive and transitive closure of \rightarrow.

Definition 2.3 (Well-Structured Transition System [2, 15]). A Well-Structured Transition System (WSTS) is a transition system $\mathcal{S} = (S, s_{init}, \rightarrow)$ equipped with a wqo \preceq over S that is compatible with \rightarrow: for all states s_1, s_2, t_1 with $s_1 \rightarrow s_2$ and $s_1 \preceq t_1$, there exists $t_2 \in S$ such that $t_1 \rightarrow t_2$ and $s_2 \preceq t_2$.

2.3 Coverability Problem
The coverability problem is a natural problem of safety verification. Formally, a state s_{final} of a WSTS $\mathcal{S} = (S, s_{init}, \rightarrow, \preceq)$ is said to be coverable if there exists a state s such that $s_{init} \rightarrow s$ and $s \preceq s_{final}$. The coverability problem consists in deciding if a state is coverable. The set of coverable configurations is denoted by $\text{Cover}_\mathcal{S}$ and it is called the coverability set.

Notice that $\text{Cover}_\mathcal{S}$ is a downward closed set and in particular its complement is an upward closed set that admits a finite basis as any upward closed set. It follows that if B is a finite basis of that set, the coverability problem for a state s_{final} reduces to check that s_{final} is not in $\uparrow B$, i.e. check if $\bigwedge_{b \in B} b \not\preceq s_{final}$. Unfortunately, for some natural classes of WSTSs (like the lossy channel systems introduced in the sequel), such a finite basis B is not computable [21].

Anyway, the coverability problem can be decided thanks to a generic algorithm. This algorithm is based on the following definitions of predecessor sets. Formally, the one-step predecessors function $\text{pre}_\mathcal{S}$ and the many-step predecessors function $\text{pre}_{\mathcal{S}}^*$ are functions from $\mathcal{P}(S)$ to $\mathcal{P}(S)$, defined for any $X \subseteq S$ by:

$$\text{pre}_\mathcal{S}(X) = \{ s \in S | \exists x \in X : s \rightarrow x \}$$

$$\text{pre}_{\mathcal{S}}^*(X) = \{ s \in S | \exists x \in X : s \rightarrow^* x \}$$

We recall from [15] that $\text{pre}_{\mathcal{S}}^*(U)$ is an upward closed set for any upward closed set U, and a state s_{final} is coverable if, and only if, $s_{init} \in \text{pre}_{\mathcal{S}}^*(\downarrow s_{final})$. The coverability problem is shown to be decidable for WSTSs, thanks to an algorithm computing inductively a basis of the upward closed set $\text{pre}_{\mathcal{S}}^*(\downarrow s_{final})$. In the next section we introduce a new generic algorithm for deciding the coverability problem that takes benefit of an over-approximation of the coverability sets.

3 BACKWARD COVERABILITY ANALYSIS WITH PRUNING
The coverability problem is a fundamental question for formal verification and there have been a lot of different methods proposed to solve this problem efficiently. For Petri Nets, a class of WSTS, in recent years, methods were proposed using structural analysis mixed with SMT solving [7, 14], and the use of continuous coverability in Petri Nets to accelerate the backward coverability decision [7].

Inspired by those new methods, we proposed in [16] one of the top most efficient algorithm for deciding the coverability problem for Petri nets. In that paper, the correctness of our approach relies on the following two properties satisfied by Petri nets:

- strong compatibility: for all states $s_1 \leq t_1$ such that $s_1 \rightarrow s_2$, there exists $t_2 \in S$ such that $t_1 \rightarrow t_2$ and $s_2 \leq t_2$.
- upward closed predecessors: for any state s the set of predecessors $\text{pre}_{\mathcal{S}}^*(\uparrow s)$ is upward-closed.

In this section we proposed to generalize our approach to the full class of WSTSs. The generalization is obtained by adapting proofs in such a way we do not rely anymore on those two previously given properties.

The classical backward coverability algorithm [2, 15] for WSTS computes a growing (meaning non-decreasing in the sequel) sequence $U_0 \subseteq U_1 \subseteq \cdots$ of upward-closed subsets of S that converges to $\text{pre}_{\mathcal{S}}^*(\uparrow s_{final})$. In [16] we proposed a way to improve the convergence with the help of a known over-approximation of the coverability set. The idea is to prune U_j with the help of that over-approximation.

Formally, an invariant for a WSTS $\mathcal{S} = (S, s_{init}, \rightarrow, \preceq)$ is a downward-closed set of S that contains the coverability set. In Sections 6 to 8 we present efficient algorithms for computing useful invariants.

For the remainder of this section, we consider a WSTS $\mathcal{S} = (S, s_{init}, \rightarrow, \preceq)$ with a target state s_{final} and we assume that we
are given an invariant I for $S = (S, s_{\text{init}}, \rightarrow, \preceq)$. We introduce the sequence U_0, U_1, \ldots subsets of S defined as follows:

$$U_0 = \top(s_{\text{final}} \cap I)$$
$$U_{k+1} = \top(\text{pre}_S(U_k) \cap I) \cup U_k$$

Observe that each U_k is upward-closed and that $U_0 \subseteq U_1 \subseteq \cdots$. On the contrary to the classical backward coverability approach [2, 15], U_{k+1} does not consider all one-step predecessors of U_k, but discards those that are not in I. Note that by taking $I = S$, which is trivially an invariant, we obtain the same growing sequence as in the classical backward coverability approach [2, 15]. The two following lemmas show that we can use these new sequence to solve the coverability problem.

Lemma 3.1. The sequence $U_0 \subseteq U_1 \subseteq \cdots$ is ultimately stationary. □

Lemma 3.2. It holds that $s_{\text{final}} \in \text{Co}_S$ if, and only if, $s_{\text{init}} \in \bigcup_k U_k$.

Proof. If $s_{\text{final}} \in \text{Co}_S$ then $s_{\text{init}} \overset{*}{\rightarrow} s \geq s_{\text{final}}$ for some states $s \in S$. Since $s_{\text{init}} \overset{*}{\rightarrow} s$, there exists $s_0, \ldots, s_n \in S$ such that $s_{\text{init}} = s_n$, $s_n \overset{*}{\rightarrow} s_{n-1} \cdots \overset{*}{\rightarrow} s_0$ and $s_0 \geq s_{\text{final}}$. First observe that $s_j \in I$ for every $i \in [0, \ldots, n]$ because I is an invariant for S. Moreover, as $s_{\text{final}} \in I$ we get $U_0 = \top s_{\text{final}}$. We prove, by induction on i, that $s_i \in U_i$ for all $i \in [0, \ldots, n]$. The basis $s_0 \in U_0$ follows from the facts that $s_0 \geq s_{\text{final}}$ and $U_0 = \top s_{\text{final}}$. For the induction step, let $i \in [0, \ldots, n-1]$ and assume that $s_j \in U_i$ for all $j \in [0, \ldots, i]$. Recall that $s_{i+1} \in I$ and $s_{i+1} \rightarrow s_i$. It follows that $s_{i+1} \in (\text{pre}_S(U_i) \cap I) \subseteq U_{i+1}$. We have shown that $s_n \in U_n$, hence, $s_{\text{init}} = s_n$ belongs to U_k. Now, let us assume that $s_{\text{init}} \in \bigcup_k U_k$ and let us prove that $s_{\text{final}} \in \text{Co}_S$. We first prove, by induction on k, that $U_k \subseteq \text{pre}_S(\top s_{\text{final}})$. The basis follows from the observation that $U_0 \subseteq \top s_{\text{final}} \subseteq \text{pre}_S(\top s_{\text{final}})$. For the induction step, let $k \in \mathbb{N}$ and assume that $U_k \subseteq \text{pre}_S(\top s_{\text{final}})$. Recall that $U_{k+1} = (\text{pre}_S(U_k) \cap I) \cup U_k$, hence, $U_{k+1} \subseteq \text{pre}_S(U_k) \cup U_k$. As $U_k \subseteq \text{pre}_S(\top s_{\text{final}})$, it follows that $\text{pre}_S(U_k) \subseteq \text{pre}_S(\top s_{\text{final}})$. As $\text{pre}_S(\top s_{\text{final}})$ is upward closed, it follows that $\text{pre}_S(U_k) \subseteq \text{pre}_S(\top s_{\text{final}})$. Hence $U_{k+1} \subseteq \text{pre}_S(\top s_{\text{final}})$. We have thus shown that $U_k \subseteq \text{pre}_S(\top s_{\text{final}})$ for every $k \in \mathbb{N}$. Hence $s_{\text{init}} \in \text{pre}_S(\top s_{\text{final}})$, therefore $s_{\text{final}} \in \text{Co}_S$. □

We have presented in this section a growing sequence of upward-closed sets whose limit contains enough information to decide the coverability problem. Our next step is to transform this sequence into an algorithm.

4 THE ALGORITHM

Now we want to design an algorithm computing with some finite bases the sequence $U_0 \subseteq U_1 \subseteq \cdots$ of upward closed sets introduced in the previous section. The classical sequence without the invariant (or with invariant $I = S$) can be computed [15] for a WSTS $S = (S, s_{\text{init}}, \rightarrow, \preceq)$ when the relation \preceq is computable, and when there exists an effective pre-basis for this WSTS, i.e. an algorithm that computes for every state s, a finite basis $\text{pre}_S(s)$ of the upward closure of $\text{pre}_S(\top s)$. It follows that the following equality holds:

$$\top \text{pre}_S(s) = \top \text{pre}_S(\top s)$$

We present the backward coverability algorithm with pruning for solving the coverability problem for any WSTS $S = (S, s_{\text{init}}, \rightarrow, \preceq)$ with a computable \preceq and a computable function pre_S.

Given a finite set X of S, we denote by $\text{pre}_S(X)$ the union $\bigcup_{x \in X} \text{pre}_S(x)$. □

Lemma 4.1. Let D be a downward-closed set of S. For every finite subset $X \subseteq S$, it holds that $\top \text{pre}_S((\top X) \cap D) = \top \text{pre}_S(\top X) \cap D$.

Proof. We first prove that the equality $\top (\top Y) = \top Y$ holds for every finite set Y and for every downward closed set D. First of all, notice that $Y \cap D \subseteq (\top Y) \cap D \subseteq \top ((\top Y) \cap D)$. It follows that $\top (\top Y) \cap D \subseteq \top (\top Y)$. Conversely, let $s \in \top (\top Y)$. There exists $d \in (\top Y) \cap D$ such that $d \preceq s$. As $d \in (\top Y)$, there exists $y \in Y$ such that $y \preceq d$. As D is downward closed, we derive from $y \preceq d$ that $y \in D$. Thus $y \in Y \cap D$. From $y \preceq d \preceq s \preceq y$, we get $s \in \top y \subseteq \top (\top Y)$. We have proved the other inclusion.

Now, just let $Y = \text{pre}_S(X)$, and observe that $\text{pre}_S((\top X) \cap D) = \top \text{pre}_S(X)$.

We now have everything to propose the pruned backward coverability algorithm for WSTS.

Remark: Line 10 of the algorithm can be implemented just as the assignment $B \leftarrow B \cup P$. However, in order to improve the efficiency of the algorithm, we remove non minimal elements as follows. An element x in a set X of states is said to be redundant if there exists $y \in X$ with $y \neq x$ such that $y \preceq x$. Notice that in that case $|X| = \top Y$ where $Y = X \setminus \{x\}$. Line 10 of the algorithm can be implemented just be removing inductively redundant states one by one. When \preceq is a partial order, this computation returns the set of minimal elements.

Let $\ell_B, \ell_P \in \mathbb{N} \cup \{\infty\}$ denote the numbers of executions of lines 5 and 8, respectively. It is understood that $\ell_B \leq \ell_P \leq \ell_B + 1$, with the convention that $\infty + 1 = \infty$. Let $(B_k)_{k \leq \ell_B}$ and $(P_k)_{k \leq \ell_P}$ denote
the successive values at lines 5 and 8 of the variables B and P, respectively.

Lemma 4.2. For every k with $0 \leq k < \ell_B$, the set B_k is a finite basis of U_k. For every k with $0 \leq k < \ell_P$, the set P_k is a finite basis of U_k.

Proof. It is readily seen that B_k and P_k are finite subsets of states for every k. We first observe that, for every k with $0 \leq k < \ell_P$,

$$\uparrow P_k = \{\text{ipres}_S(B_k) \cap I \}$$

because of [Lines 6-7]

$$\uparrow P_k = \{\text{ipres}_S(B_k) \cap (I \setminus B_k)\}$$

$$\uparrow P_k = \{\text{ipres}_S(B_k) \cap (I \setminus \{B_k\})\}$$

respectively.

Proof. We now prove, by induction on k, that $U_k = \uparrow B_k$ for every k with $0 \leq k < \ell_B$. The basis $U_0 = \uparrow B_0$ follows from lines 1-5 of BCoP and from the definition of U_0. For the induction step, let $k \in \mathbb{N}$ with $k + 1 < \ell_B$, and assume that $U_k = \uparrow B_k$. Line 10 entails that $\uparrow B_{k+1} = \uparrow B_k \cup \uparrow P_k$. It follows that

$$\uparrow B_{k+1} = \{\text{ipres}_S(B_k) \cap I \} \setminus \{B_k\}$$

for every k with $0 \leq k < \ell_P$.

The procedure BCoP terminates on every input and is correct.

Proof. Let us first prove termination. We need to show that any maximal execution of BCoP(S, s_{final}, I) is finite. By contradiction, assume that $\ell_B = \infty$. According to Lemma 3.1, there exists an index $h \in \mathbb{N}$ such that $U_h = U_{h+1}$. We derive from Lemma 4.2 that $P_h = \emptyset$. Therefore, the execution should terminate at line 9 during the $(h+1)$th iteration of the while loop. This contradicts our assumption that $\ell_B = \infty$.

We now turn our attention to the correctness of BCoP. As it is finite, any maximal execution of BCoP(S, s_{final}, I) either returns False at line 9 or returns True at line 11.

- If it returns False then $P_{\ell_P-1} = \emptyset$ and it follows from Lemma 4.2 that $U_{\ell_P} \subseteq U_{\ell_P-1}$. It follows that $U_{\ell_P-1} = \bigcup_k U_k$. Moreover, $s_{init} \notin \uparrow B_{\ell_P-1}$ because the condition of the while loop had to hold. It follows that $s_{init} \notin \bigcup_k U_k$. We derive from Lemma 3.2 that $s_{final} \notin \text{CoV}_S$.

- If it returns True then $s_{init} \in \uparrow B_{\ell_P-1}$ and it follows from Lemma 4.2 that $s_{init} \in U_{\ell_P-1} \subseteq \bigcup_k U_k$. We derive from Lemma 3.2 that $s_{final} \in \text{CoV}_S$. $

In the next section we focus our algorithm on lossy channel systems.

5 LOSSY CHANNEL SYSTEMS

Lossy channel systems (LCSs) have been introduced by Abdulla and Jonsson to verify protocols that are designed to operate correctly even in presence of messages losses [4]. Informally, an LCS is a finite-state automaton equipped with finitely many first-in-first-out channels that are unreliable in the sense that messages can be lost at any time. This section recalls the definition of LCS and shows how to verify them using the BCoP algorithm of the previous section.

5.1 Syntax and Semantics of LCSs

A lossy channel system is a tuple $S = (Q, q_{init}, M, d, \Delta)$ where Q is the finite set of locations, $q_{init} \in Q$ is the initial location, M is the finite alphabet of messages that can be exchanged over the channels, d is the number of channels, and $\Delta \subseteq Q \times Op \times Q$ is the set of transition rules, where $Op = \{!, ?, \} \times M$ is the set of operations over the channels. An operation is

- either a transmission ?m of a message m into a channel i,
- or a reception !m of a message m from a channel i.

Example 5.1. Figure 1 represents the LCS with locations $Q = \{q_1, q_2, q_3, q_{bad}\}$, initial location $q_{init} = q_1$, messages $M = \{a, b\}$, a single channel, and rules $\Delta = \{q_1 \rightarrow a, q_2 \rightarrow a, q_1 \rightarrow b, q_3 \rightarrow a, q_{bad} \rightarrow b\}$. $

The operational semantics of an LCS $S = (Q, q_{init}, M, d, \Delta)$ is given by an infinite-state transition system $[S] = (S, s_{init}, \rightarrow)$ defined as follows. The set of states is $S = Q \times (M^*)^d$. So a state $s = (q, w_1, \ldots, w_d)$ is composed of a location q and of words w_i describing the contents of the channel i. All channels are empty initially, so the initial state is $s_{init} = (q_{init}, \ldots, \ldots)$. For each rule $\delta = (q, op, q')$ in Δ, we define the binary relation \rightarrow over S as follows: $s \rightarrow s'$ with $s = (q, w_1, \ldots, w_d)$ and $s' = (q', w'_1, \ldots, w'_d)$ if and only if

- either op is a transmission ?m in which case $w'_i = w_i \cdot m$ and $w'_j = w_j$ for all $j \neq i$.
- or op is a reception !m in which case $m \cdot w'_i = w_i$ and $w'_j = w_j$ for all $j \neq i$.

The relations \rightarrow capture the perfect semantics of first-in-first-out channels. To capture message losses, we also define the binary relation \rightarrow_j over S. Formally, $s \rightarrow_j s'$ with $s = (q, w_1, \ldots, w_d)$ and $s' = (q', w'_1, \ldots, w'_d)$ if and only if the locations q and q' are the same and there exists a channel i in $\{1, \ldots, d\}$ such that w'_i is obtained from w_i by deleting one message (i.e., $w_i = u \cdot m \cdot v$ and $w'_i = u \cdot v$, for some $m \in M$ and $u, v \in M^*$) and $w'_j = w_j$ for all $j \neq i$. For example, $(q, cd, aba) \rightarrow_1 (q, cd, aa) \rightarrow_2 (q, d, aa)$. We also introduce, for technical reasons, the identity relation $\{(s, s) | s \in S\}$, written \rightarrow_e.

Now, the binary relation \rightarrow over S is defined to be the union of the relation \rightarrow_ϵ, of the relation \rightarrow_λ and of the relations \rightarrow where Δ ranges over Λ.

Conference’17, July 2017, Washington, DC, USA

Thomas Geoffroy, Jérôme Leroux, and Grégoire Sutre
well-structured transition systems. As was already observed in [3, 15], lossy channel systems are well-structured, and so coverability is decidable for them. The well-structuredness allows us to use the algorithm presented in Section 4.

5.2 LCSs are Well-Structured

As was already observed in [3, 15], lossy channel systems are well-structured, and so coverability is decidable for them. The well-structuredness allows us to use the algorithm presented in Section 4. But we need to show that the required effectivity conditions are fulfilled. Let us start by recalling how LCSs can be framed as well-structured transition systems.

For two words u and v in M^*, we say that u is a subword of v, written $u \leq v$, if u can be obtained from v by erasing some letters. In other words, u is a (possibly non-contiguous) subsequence of v. The relation \leq is obviously a partial ordering on M^*. Moreover, it is wqo on M^*. This last result is due to Higman [18].

Given an LCS $S = (Q, q_{init}, M, d, \Delta)$, we define the relation \leq over $S = Q \times (M^*)^d$ as follows. For two states $s = (q, w_1, \ldots, w_d)$ and $s' = (q', w_1', \ldots, w_d')$, let $s \leq s'$ if and only if $q = q'$ and w_i is a subword of w_i' for every $i \in \{1, \ldots, d\}$. It is readily seen that this relation is a partial ordering on S.

Lemma 5.3. The relations \leq and $(\rightarrow_\lambda)^*$ are equal.

Proof. The lemma is an easy consequence of the definitions of \rightarrow_λ and \leq.

It follows from the previous lemma that coverability and reachability coincide for lossy channel systems (equipped with \leq). Indeed, if there exists a state $s \in S$ such that $s_{init} \rightarrow_\lambda^* s \geq s_{final}$ then $s_{init} \rightarrow^* s \rightarrow^* s_{final}$ hence $s_{init} \rightarrow^* s_{final}$. The converse always holds by reflexivity of \leq.

Lemma 5.4. The semantics of a lossy channel system, equipped with the partial order \leq, is a WSTS.

Proof. Since the set Q of locations is finite, equality is a wqo on Q. Recall that \leq is a wqo on M^*. It follows that \leq is a wqo on S. It remains to prove that \leq is compatible with the relation \rightarrow. Consider three states s, s' and t such that $s \rightarrow s'$ and $s \leq t$. By Lemma 5.3, it holds that $t \rightarrow^* s$. Therefore, $t \rightarrow^* s \rightarrow^* s' = t'$, which concludes the proof that \leq is compatible with \rightarrow.

As mentioned previously, we want to solve the coverability problem for lossy channel systems using the BCwP algorithm of Section 4. But several effectivity conditions need to be fulfilled in order to do so, even if we use the trivial invariant $I = S$.

Firstly, we observe that the partial order \leq is computable because there are only finitely many channels and \leq itself is computable.

Secondly, we need to show LCSs admit an effective pre-basis, meaning that there exists an algorithm that, given a state s, computes a finite basis of $\downarrow \text{pre}_S(s)$. Toward this end, we introduce two functions cpre_1 and cpre_2 from $M \times M^*$ to M^* defined as follows:

$$\text{cpre}_1(m, w) = \begin{cases} w' & \text{if } w = w' \cdot m \\ w & \text{otherwise} \end{cases}$$

$$\text{cpre}_2(m, w) = m \cdot w$$

See examples in Figure 2. Now, for a state $s = (q, w_1, \ldots, w_d)$ and a rule $\delta = (p, i\#m, q) \in \Delta$, with $i \in \{1, \ldots, d\}$, we let $\text{cpre}_1(s) = (p, w_1, \ldots, w_{i-1}, \text{cpre}_1(m, w_i), w_{i+1}, \ldots, w_d)$. It is readily seen that cpre_1 is computable. The following lemma shows that LCSs admit an effective pre-basis.

Lemma 5.5. For every state $s = (q, w_1, \ldots, w_d)$ in S, the set

$$\{s\} \cup \{\text{cpre}_1(s) \mid \delta = (p, \text{op}, q) \in \Delta\}$$

is a finite basis of $\downarrow \text{pre}_S(s)$.

Thirdly, line 10 of the BCwP algorithm simply amounts to the computation of the minimal elements of $B \cup P$.

We now have a way to solve the coverability problem for LCSs. To accelerate the computation we need good invariants. The next sections aim to provide that.

5.3 Simple Regular Expressions

The BCwP algorithm of Section 4 makes use of downward-closed invariants in order to accelerate the classical backward coverability analysis. Invariants are potentially infinite sets of states. So before attempting to generate good invariants, we need a finite representation for them. As there are only finitely many locations, the complexity comes from channel contents. These are d-tuples of words over the finite alphabet M of messages. A natural and simple approach consists in using recognizable subsets of $(M^*)^d$ to represent (potentially infinite) sets of channel contents. This is a reasonable limitation since the coverability set of an LCS, which is its most precise downward-closed invariant, is recognizable [4, 9]. By Mezei’s theorem, recognizable subsets are finite unions of cartesian products of regular languages over the alphabet M. Since we are interested in downward-closed invariants, we focus on downward-closed regular languages. Such languages can be represented by simple regular expressions [1].

Let us recall the definition of simple regular expressions. An atom is either $(e + m)$ for a message m in M or $(m_1 + \cdots + m_n)^*$ where m_1, \ldots, m_n are messages in M with $n \geq 1$. A product is a...
finite concatenation $a_1 \cdots a_n$ of atoms. A simple regular expression (SRE) is a finite sum $p_1 + \cdots + p_n$ of products.

The language of an SRE r is the regular language associated with it and will be denoted by $[r]$. The following lemma give us a reason to use SREs to represent downward-closed regular languages.

Lemma 5.6 ([1]). A language $L \subseteq M^*$ is downward-closed if and only if it can be represented by an SRE.

In practice, it is desirable for efficiency reasons to manipulate SREs that do not contain redundancies. We say that a product $p = e_1 \cdots e_n$ is in normal form [1] if and only if for all $1 \leq i \leq n$, we have $[e_i] \cap [e_{i+1}] = \emptyset$. An SRE $p_1 + \cdots + p_n$ is in normal form if all products p_i in normal forms and there are no products p_i and p_j with $i \neq j$ such that $[p_i] \subseteq [p_j]$.

Lemma 5.7 ([1]). For every SRE r, there is a unique (up to commutativity of $+$) SRE in normal form, which is denoted by $\text{nf}(r)$, such that $[\text{nf}(r)] = [r]$. Furthermore, $\text{nf}(r)$ can be computed from r in quadratic time.

We can see that there exist infinite increasing sequences of SREs. This means that we cannot directly use SREs to compute downward-closed invariants via Kleene iteration. Let us illustrate this issue on the LCS of Figure 1. Applying Kleene iteration to the loop $q_1 \xrightarrow{a} q_1$, q_1 leads to the sequence $\epsilon, (a + \epsilon) \cdot (b + \epsilon), (a + \epsilon) \cdot (b + \epsilon) \cdot (a + \epsilon) \cdot (b + \epsilon)$, etc. There exist acceleration techniques that can derive the effect of an arbitrary iteration of the loop $[1]$, and come up with $(a + b)^*$. But, in general, the coverability set of an LCS cannot be computed [21] even though it is downward-closed and, hence, recognizable. Therefore, we settle for over-approximations of the coverability set. In the next section, we will introduce a subclass of SREs, that we call compact simple regular expressions, and show how to use it to compute downward-closed invariants.

6 INVARIANT USING COMPACT SRES

Despite the assumption that messages may be lost, all messages that remain in a channel are in the same order as the order in which they were sent. If a system sends some messages a and then some messages b in a channel, this channel can’t contain a word that contains a message b after a message a. In this section, we propose an abstraction of channel contents that focuses on this kind of properties, and ignores the numbers of occurrences of messages. For instance, this abstraction provides properties of the type: it’s not possible to have a message a after a message b.

We present an invariant generation technique that uses a subclass of SREs, that we call compact simple regular expressions. The idea is to abstract the contents of a channel with simple expressions of the form $(a^* \cdot b^*) + (a^* \cdot (c + d)^*)$.

Formally, a compact simple regular expression (CSRE) is an SRE $\sum p_i$ where every product p_i is a compact product. A compact product is of the form $a_1 \cdots a_n$ with every atom a_i of the form $(m_1 + \cdots + m_k)^*$ such that every two atoms a_i and a_j with $i \neq j$ have distinct messages (i.e., $[a_i] \cap [a_j] = \{\epsilon\}$). Some examples of CSREs are given in Figure 3. We see that every compact product is in normal form. However, not all CSREs are in normal forms. We note CSRE_{nf} the set of CSREs in normal form. It is readily seen that this set is finite. The CSREs of Figure 3 are all in normal form.

$$
csre_1 = (a^* \cdot b^*) + (a^* \cdot c^*)
$$
$$
csre_2 = ((a + b)^*) + ((c + d)^* \cdot e^*)
$$
$$
csre_3 = \varepsilon
$$
$$
csre_4 = \emptyset
$$

Figure 3: Examples of compact simple regular expressions.

$a^* \cdot b^* \cap (a + b)^* = a^* \cup b^*$

$a^* \cdot b^* \cap (a + b)^* = a^* \cdot b^*$

Figure 4: Examples of intersections of compact products.

We define the binary relation \subseteq over CSRE by $r_1 \subseteq r_2$ if and only if $[r_1] \subseteq [r_2]$. This relation is reflexive and transitive hence it is a quasi-ordering. The relation \subseteq is also antisymmetric for CSREs in normal form, therefore \subseteq is a partial order over CSRE_{nf}. Note that \subseteq is not antisymmetric over the full class of CSREs (e.g., $[(a + b)^*] = [(a + b)^* \cdot a^*]$).

We will exhibit a Galois connection between $(\mathcal{P}(M^*), \subseteq)$ and $(\text{CSRE}_{nf}, \subseteq)$. The following lemma is needed.

Lemma 6.1. The set of languages that can be represented by CSREs is closed under intersection.

Proof. The intersection between two CSREs $r_1 = \sum_{i \in I} p_i$ and $r_2 = \sum_{j \in J} p'_j$ is $\text{CSRE}_{nf}(p_i \cap p'_j)$ whenever the intersection between two compact products will need some notations. If $r_1 = \emptyset$ or $r_2 = \emptyset$ then $r_1 \cap r_2 = \emptyset$. Otherwise if $r_1 = \varepsilon$ or $r_2 = \varepsilon$ then $r_1 \cap r_2 = \varepsilon$. Finally, for two compact products $p_1 = a_1 \cdot p_1'$ and $p_2 = a_2 \cdot p_2'$, if we define A_1 and A_2 subset of M such that $a_1 = A_1^*$ and $a_2 = A_2^*$, $i_1 = p_1' \cap ((A_1 \backslash A_2)^* \cdot p_1')$ and $i_2 = (A_1 \backslash A_2)^* \cdot p_2'$ then the intersection between p_1 and p_2 is the sum $i_1 \cap i_2$ (between $(A_1 \backslash A_2)^* \cdot i_1$ and $(A_1 \cap A_2)^* \cdot i_2$) with \cdot between a product p and a CSRE $p + p_2 + \cdots + p_n$ defined by $(p \cdot p_1) + (p \cdot p_2) + \cdots + (p \cdot p_n)$. We need to prove that $(A_1 \cap A_2)^* \cdot i_1$ and $(A_1 \cap A_2)^* \cdot i_2$ are two CSREs. It is true because those two CSREs are composed of product that only have atoms of the form A^* and there is not messages in $(A_1 \cap A_2)$ that are also in i_1 or i_2. Let us prove the correctness by recursion. For the basis it is readily seen that $\varepsilon \cap A = \varepsilon$. For the recursion: let $w \in [p_1 \cap p_2]$. Let us prove that $w \in [i_1 \cap i_2]$.

- There exist w_1 and w_2 in such that $w = w_1 \cdot w_2$ with w_1 composed only of messages of $A_1 \cap A_2$ and w_2 composed only of messages in $M \backslash (A_1 \cap A_2)$. We have $w_1 \in ((A_1 \cap A_2)^* \cdot i_1)$.
- If w_2 is downward-closed, we have $w_2 \in [i_2]$. And by recursion we have $w_2 \in [i_1]$. Therefore $w \in [i_1]$.

See examples of the intersection of CSREs in Figure 4. Let us introduce the concretisation function $\gamma : \text{CSRE}_{nf} \rightarrow \mathcal{P}(M^*)$ defined by $\gamma = [\cdot]$. The corresponding abstraction function $\alpha : \mathcal{P}(M^*) \rightarrow \text{CSRE}_{nf}$ is defined by $\alpha(L) = \text{nf}(\cap [r \in \text{CSRE}_{nf} \mid L \subseteq [r]])$. The function α is well-defined because CSRE_{nf} is closed by intersection and is finite. Note that $\alpha(L)$ is computable when L is a regular language. We observe that (α, γ) is a Galois connection between $(\mathcal{P}(M^*), \subseteq)$ and $(\text{CSRE}_{nf}, \subseteq)$. In order to apply the classical framework of abstract interpretation [11], it remains to show that we
can perform abstractly the operations over the channels, namely transmissions and receptions.

For a language $L \subseteq M^\star$, let $m^{-1}L = \{w \subseteq M^\star \mid m \cdot w \in L\}$. Following the classical framework of abstract interpretation, an abstract transmission is defined by $(tm)^\star(r) = a([r] \cdot m)$ and an abstract receive is defined by $(?m)^\star(r) = a(m^{-1} \cdot [r])$. Let us show how to compute $(tm)^\star(r)$ and $(?m)^\star(r)$ given a CSRE r in normal form. We only need to consider the case where r is a compact product since $(tm)^\star(p_1 + \ldots + p_n) = nf((tm)^\star(p_1) + \ldots + (tm)^\star(p_n))$, and similarly for $(?m)^\star$.

For a compact product $p = a_1 \cdots a_n$, let $merge(a_1 \cdots a_n)$ denote the atom that contains exactly the messages that appear in a_1, \ldots, a_n. Formally, $merge(a_1 \cdots a_n)$ is the atom A' where $A = \{(m \in M \mid m \in [a_1] \cup \cdots \cup [a_n]\}$. We have for a compact product $p = a_1 \cdots a_n$ and a message $m \in M$:

$$(tm)^\star(p) = \begin{cases} a_1 \cdots a_{k-1} \cdot merge(a_k \cdots a_n) & \text{if } m \in [p] \\ p \cdot m^\star & \text{otherwise} \end{cases}$$

$$(?m)^\star(p) = \begin{cases} a_k \cdots a_n & \text{if } m \in [p] \\ \emptyset & \text{otherwise} \end{cases}$$

where, in both cases, k is the unique index such that $m \in [a_k]$.

By a standard construction, we can extend the Galois connection (α, γ) into a Galois connection between $\mathcal{P}(\mathbb{S})$, and the abstract domain consisting of the set of maps from Q to $\mathcal{CSRE}_{\mathcal{A}_{\mathcal{M}}}^\mathcal{A}$ partially ordered by the component-wise extension of \subseteq. So we can apply the classical framework of abstract interpretation [11] to generate an inductive downward-closed invariant by a standard fixpoint computation in this abstract domain. Since the set $\mathcal{CSRE}_{\mathcal{A}_{\mathcal{M}}}$ is finite, the fixpoint computation is guaranteed to converge. We may then use this downward-closed invariant to accelerate the backward coverability analysis, as is done in the BCwP algorithm of Section 4. However, this acceleration comes at a price: the generation of the invariant itself might be costly. We illustrate this issue in the following example.

Example 6.2. Consider an alphabet M containing the distinct messages $x_1, y_1, z_1, \ldots, x_n, y_n, z_n$. Let $L \subseteq M^\star$ be the language

$$L = x_1^* \cdot (y_1^* + z_1^*) \cdot x_2^* \cdot (y_2^* + z_2^*) \cdots x_n^* \cdot (y_n^* + z_n^*)$$

This language can be represented by a CSRE. But the minimal CSRE r with $L = [r]$, is the sum of all compact products of the form $x_1^* \cdot m_1^* \cdot x_2^* \cdot m_2^* \cdots \cdot x_n^* \cdot m_n^*$ where $m_i \in \{y_i, z_i\}$ for all $i \in \{1, \ldots, n\}$. There are exponentially many such products. Observe that r is in normal form.

The potential exponential blow-up illustrated in Example 6.2 may limit, in practice, the usefulness of our invariant generation technique based on CSREs. See Section 9 for experimental results.

The next section aims at solving this problem.

7 INARIANT USING ORDERING FLOWS

In the last section, we saw how to generate downward-closed invariants by an abstraction of channel contents that ignores the numbers of occurrences of messages and only cares about their respective order. This abstraction relies on so-called compact simple regular expressions (CSREs). However, the generation of this invariant might be costly in practice. This comes from the fact that CSREs are, in fact, not compact enough (see Example 6.2).

We now present an invariant generation technique based on quasi-orderings (i.e. transitive and reflexive relations) over messages, that we call message ordering flow (MOFs). The goal is still the same: we want to keep track of which messages can be in which order in each channel. But we want an invariant that is faster to compute than the one based on CSREs.

Let M denote the set of messages of an LCS for which we want to compute a downward-closed invariant. A message ordering flow (MOF) is a pair (A, R) where $A \subseteq M$ and R is quasi-ordering over A. We let MOF denote the set of MOFs. We define the partial ordering \subseteq over MOF by $F_1 \subseteq F_2$ with $F_1 = (A_1, R_1)$ and $F_2 = (A_2, R_2)$ if and only if $A_1 \subseteq A_2$ and $R_1 \subseteq R_2$.

The least upper bound of two MOFs $F_1 = (A_1, R_1)$ and $F_2 = (A_2, R_2)$ is $F_1 \sqcup F_2 = (A, R)$ where $A = A_1 \cup A_2$ and $R = (R_1 \sqcup R_2)^+$, i.e., the transitive closure of $R_1 \sqcup R_2$. The greatest lower bound of F_1 and F_2 is $F_1 \sqcap F_2 = (A, R)$ where $A = A_1 \cap A_2$ and $R = R_1 \cap R_2$.

As in Section 6, we want to exhibit a Galois Connection between $(\mathcal{P}(M^\star), \subseteq)$ and (MOF, \subseteq). Let us start with the abstraction function $\alpha : \mathcal{P}(M^\star) \rightarrow MOF$. For a word $w \in M^\star$, let $\alpha(w) = (A, R)$ in MOF where $A = \{m \in M \mid m \subseteq w\}$ is the set of all messages occurring in w and $R = \{(a, b) \in A \times A \mid a = b \lor ab \leq w\}$. Recall that \leq is the sub-word partial order on M^\star. For a non-empty language $L \subseteq M^\star$, we define $\alpha(L)$ to be the least upper bound of $\{\alpha(w) \mid w \in L\}$. The concretisation function $\gamma : MOF \rightarrow \mathcal{P}(M^\star)$ is defined by $\gamma(A, R) = \{w \in A^* \mid \forall a, b \in w. \gamma(a, b) \in R\}$.

It is readily seen that the concretisation of a MOF is a downward-closed language. But the set $\gamma(MOF)$ of languages that can be represented by a MOF misses an important language, namely the empty language. So we extend the set MOF with a new element, written \perp, whose concretisation is $\gamma(\perp) = \emptyset$. Conversely, the abstraction of the empty language is $\alpha(\emptyset) = \perp$. We also extend \subseteq in the obvious way. For every MOF F, we have $\perp \sqsubseteq F$ and $\perp \sqsubset F = \perp$.

We observe that (α, γ) is a Galois connection between $(\mathcal{P}(M^\star), \subseteq)$ and (MOF, \subseteq). As in Section 6, in order to apply the classical framework of abstract interpretation [11], it remains to show that we can perform abstractly the operations over the channels, namely transmissions and receptions.

Following the classical framework of abstract interpretation, we define $(tm)^\star : MOF \rightarrow MOF$ and $(?m)^\star : MOF \rightarrow MOF$ by $(tm)^\star(F) = \alpha(\gamma(F) \cdot m)$ and $(?m)^\star(F) = \alpha(m^{-1} \cdot \gamma(F))$. Let us show that the functions $(tm)^\star$ and $(?m)^\star$ are computable.

- $(tm)^\star(\perp) = (tm)^\star(\perp) = \perp$.
- $(tm)^\star((A, R)) = (A', R')$ where $A' = A \cup \{m\}$ and $R' = R \cup (\{m\} \cup B)$ for $B = \{b \in A \mid (m, b) \in R\}$ is the set of all messages that can appear after m.
- $(?m)^\star(A, R) = \perp$ if $m \not\in A$, otherwise $(?m)^\star(A, R) = (A', R')$ where $A' = \{b \in A \mid (m, b) \in R\}$ is the set of all messages that can appear after m and $R' = R \setminus (A \times A')$.

As with CSREs, we can extend the Galois connection (α, γ) into a Galois connection between $(\mathcal{P}(\mathbb{S}), \subseteq)$ and the abstract domain consisting of the set of maps from Q to MOF^d, partially ordered by the component-wise extension of \subseteq. Again, we can generate an inductive downward-closed invariant by a standard fixpoint computation in this abstract domain. Since the set MOF is finite, the
The two last invariants focused on the order of messages in the cardinal of the alphabet M of messages of the LCS under analysis.

Example 7.1. Let us revisit Example 6.2. Recall that the language L defined there is

$$L = x_1^* \cdot (y_1^+ + z_1^+) \cdot x_2^* \cdot (y_2^+ + z_2^+) \cdots x_n^* \cdot (y_n^+ + z_n^+)$$

This language can be represented by the MOF $F = (A, R)$ where A contains exactly the messages $x_1, y_1, z_1, \ldots, x_n, y_n, z_n$ and R respects the quasi-ordering shown in Figure 5, that is, R is the reflexive and transitive closure of the arrows depicted in that figure. On the contrary to the minimal CSRE representing L, which is exponential in n, the size of F is quadratic in n. □

8 INVARIANT WITH STATE INEQUATION

The two last invariants focused on the order of messages in the channels. Both invariants don’t take into account the number of messages.

We now present an invariant based on the Petri net state equation. It is a simple invariant that just counts the number of messages that can be in each channel.

The state equation was recently used successfully for solving Petri net coverability problems [7, 14, 16].

Inspired by the state equation for Petri nets, we associate to an LCS and a state $s_{final} = (q_{final}, w_1, \ldots, w_d)$, a system of inequalities that must be satisfiable when s_{final} is coverable. This system is defined over a vector x of free variables ranging over \mathbb{Z}_0. Intuitively, $x(\delta)$ denotes the number of times an execution uses the rule δ to cover the state s_{final}.

We first build a system of equations over x, called the location constraints that takes into account the number of times an execution enters and leaves a location. To do so, we introduce the vector e_i in \mathbb{Z}_0^d defined as zero everywhere except for the index i where it is one. We denote by $Lc_{final}(x)$ the following system of equations:

$$e_{q_{init}} + \sum_{\delta=(p, i, m, q) \in \Lambda} x(\delta)(e_p + e_p) = e_{q_{final}}$$

Next, we build a system of inequalities over x, called the channel constraints that counts the number of times each message m is sent and received in each channel i. To do so, we introduce the vector $e_{i,m}$ defined as the matrix in $\mathbb{Z}_0^{d\times|M|}$ where the value is zero everywhere except for the index i, m where it is one. Given a word w of messages, we denote by $|w|_m$ the number of occurrences of m in w. We denote by $CC_{s_{final}}(x)$ the following system of inequalities where the inequality \geq over the matrices is defined component-wise:

$$\sum_{\delta=(p, i, m, q) \in \Lambda} x(\delta)e_{i,m} \geq \sum_{m \in M} |w_i|_m$$

Finally, we introduce the system of equations $SI_{s_{final}}(x)$ defined as the conjunction $Lc_{s_{final}}(x) \land CC_{s_{final}}(x)$. The proof of the following lemma is immediate by observing that if s_{final} is coverable there exists an execution from s_{init} to a state $s \geq s_{final}$. Denoting by $x(\delta)$ the number of times the rule δ is used by this execution, we get a vector x satisfying $SI_{s_{final}}(x)$.

Lemma 8.1. The system $SI_{s_{final}}(x)$ is satisfiable for every coverable configuration s_{final}.

Corollary 8.2. The set $I_{LCS} = \{s_{final} \mid \exists x SI_{s_{final}}(x)\}$ is an invariant.

9 EXPERIMENTAL EVALUATION

We have presented a coverability checking algorithm, namely BCwP, that is parametrized by a downward-closed invariant. The algorithm uses this invariant in order to accelerate the classical backward coverability analysis. We have also presented three different invariant generation techniques, respectively based on compact simple regular expressions (CSREs), on message ordering flows (MOFs) and on the state inequation (SI). We now present our experimental results.

We want to evaluate two main effects of the invariants: the number of states handled and the time saved or added. If the algorithm handles less states (computes less states with $cpre$, prunes more), this leads to a gain in time. But an invariant can also slow down the computation in two ways, firstly for the generation of the invariant itself, and secondly for checking membership of a given state in the invariant.

We have implemented the BCwP algorithm in the language OCaml. The prototype consists of a little more than three thousands lines of code. It can be found online [17]. For now it only works for lossy channel systems but by modularity it can be extended to all well-structured transition systems with decidable order and effective pre-basis. New invariants can also be added easily. The state inequation invariant needs the help of an SMT-solver. We chose z3 [12].

For the experiments, we used a machine running Ubuntu Linux 14.04, with an Intel i7-4770 CPU at 3.40 GHz and 16 GB of memory.

Our prototype uses the file format smc. This format specifies different communicating automata that use their own locations and rules. This doesn’t fundamentally change the algorithm. We keep the automata because it accelerate the computation: for a state we know that the majority of the rules can’t be apply because those rules are not from the same automaton that the state.

The different examples come with the tool McScM [19]. We present the results of 13 examples. The examples BAwCC, BAwPC, BAwCC_enh, BAwPC_enh are business protocols and came from [22]. The two first are coverable examples and the last two are their enhanced uncoverable version. Others examples included two versions of the peterson protocol, one with three peers, the other with four, a version of the pop3 protocol, a simple server protocol and a
Table 1: Seconds need to solve the coverability problem with different invariants

<table>
<thead>
<tr>
<th></th>
<th>Ø</th>
<th>SI</th>
<th>CSRE</th>
<th>MOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>peterson3</td>
<td>993</td>
<td>248</td>
<td>3351</td>
<td>8256</td>
</tr>
<tr>
<td>peterson4</td>
<td>728</td>
<td>248</td>
<td>3351</td>
<td>8256</td>
</tr>
<tr>
<td>pop3</td>
<td>173</td>
<td>129</td>
<td>16.1</td>
<td>8256</td>
</tr>
<tr>
<td>BAwPC</td>
<td>0.7</td>
<td>0.1</td>
<td>16.1</td>
<td>8256</td>
</tr>
<tr>
<td>BAwCC</td>
<td>2</td>
<td>129</td>
<td>0.1</td>
<td>8256</td>
</tr>
<tr>
<td>BAwCC_enh</td>
<td>4.1</td>
<td>0.1</td>
<td>16.1</td>
<td>8256</td>
</tr>
<tr>
<td>BAwPC_enh</td>
<td>0.8</td>
<td>4.1</td>
<td>0.1</td>
<td>8256</td>
</tr>
<tr>
<td>BRP</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>8256</td>
</tr>
<tr>
<td>server</td>
<td>0</td>
<td>1.3</td>
<td>0.6</td>
<td>8256</td>
</tr>
<tr>
<td>server_err</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8256</td>
</tr>
<tr>
<td>ring2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>8256</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8256</td>
</tr>
<tr>
<td>tcp_err</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8256</td>
</tr>
</tbody>
</table>

We can observe that the MOF protocol with and without an error inserted, and finally a ring protocol.

Even if we presented our algorithm to solve the coverability problem for one target state, it is easy to extend the algorithm for a set of targets: $U_0 = \{S_{final} \cap I\}$ with S_{final} the set of all targets states. And in practice examples often have tens of target states.

We weren’t able to compare our tool with Trex [5] because of a lack of compatibility between file formats. But we tried McScM [19] that uses the same scm format and can solve the coverability problem for LCS, even though this is not its primary goal. McScM has four verification engines. The best engine suited to our examples was cegar. It was able to solve 10 of 13 examples within three minutes but crashed with peterson4 and weren’t finished after two hours for brp and BAwCC_enh. In comparison, our prototype solved all cases with the invariant state inequation. Without invariant and with the invariant MOF it was able to solved all examples except two and with the invariant CSRE all excepted three.

Table 1 compares the time needed to solve the coverability problem without invariant, noted Ø, and with the invariants SI, CSRE and MOF. We can see that SI dramatically accelerates the computation in the biggest examples. MOF too except for peterson4.

Those numbers can be explained by the numbers of operations that the algorithm performed. Table 2 compares the numbers of nodes visited i.e. the numbers of targets states added each step with all states created by the cpre in the line 6 before removing those that are already in $\not{\ni}B$. Sometime the number of visited states is very low compared to the version without invariant. For example for the invariants CSRE and MOF for the examples BAwCC_enh and BAwPC_enh it is 59 and 44 compared to 38218 and 19193. It is because the invariants were able to prune all targets states. Therefore the algorithm didn’t even enter the while loop.

To understand more specifically the pruning for each invariant and each example, we provide Table 3. It shows the number of times the algorithm tested if a state was or was not in the invariant, as well as the percentage of times the state was outside the invariant and hence was pruned.

Table 2: Number of elements visited

<table>
<thead>
<tr>
<th></th>
<th>Ø</th>
<th>SI</th>
<th>CSRE</th>
<th>MOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>peterson3</td>
<td>39131</td>
<td>2127</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>peterson4</td>
<td>852630 TO</td>
<td>TO</td>
<td>TO</td>
<td>TO</td>
</tr>
<tr>
<td>pop3</td>
<td>241595</td>
<td>813</td>
<td>TO</td>
<td>17842</td>
</tr>
<tr>
<td>BAwPC</td>
<td>15266</td>
<td>15266</td>
<td>1587</td>
<td>1587</td>
</tr>
<tr>
<td>BAwCC</td>
<td>31693</td>
<td>31693</td>
<td>2480</td>
<td>2480</td>
</tr>
<tr>
<td>BAwCC_enh</td>
<td>38218</td>
<td>38218</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>BAwPC_enh</td>
<td>19193</td>
<td>12824</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>BRP</td>
<td>9343</td>
<td>470</td>
<td>9132</td>
<td>9343</td>
</tr>
<tr>
<td>server</td>
<td>8873</td>
<td>8873</td>
<td>7720</td>
<td>8873</td>
</tr>
<tr>
<td>server_err</td>
<td>105</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ring2</td>
<td>11141</td>
<td>772</td>
<td>11141</td>
<td>11141</td>
</tr>
<tr>
<td>tcp</td>
<td>1519</td>
<td>1547</td>
<td>1519</td>
<td>1519</td>
</tr>
<tr>
<td>tcp_err</td>
<td>1423</td>
<td>218</td>
<td>1290</td>
<td>1364</td>
</tr>
</tbody>
</table>

Table 3: Number of states tested and percentages of pruned states

<table>
<thead>
<tr>
<th></th>
<th>SI #</th>
<th>SI %</th>
<th>CSRE #</th>
<th>CSRE %</th>
<th>MOF #</th>
<th>MOF %</th>
</tr>
</thead>
<tbody>
<tr>
<td>peterson3</td>
<td>1970</td>
<td>72.2</td>
<td>67</td>
<td>100</td>
<td>67</td>
<td>100</td>
</tr>
<tr>
<td>peterson4</td>
<td>745009</td>
<td>72.0</td>
<td>TO</td>
<td>TO</td>
<td>TO</td>
<td>TO</td>
</tr>
<tr>
<td>pop3</td>
<td>324</td>
<td>61.8</td>
<td>TO</td>
<td>5483</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>BAwPC</td>
<td>3645</td>
<td>0</td>
<td>1069</td>
<td>81.4</td>
<td>1069</td>
<td>81.4</td>
</tr>
<tr>
<td>BAwCC</td>
<td>7186</td>
<td>0</td>
<td>1718</td>
<td>80.6</td>
<td>1718</td>
<td>80.6</td>
</tr>
<tr>
<td>BAwCC_enh</td>
<td>7671</td>
<td>0</td>
<td>59</td>
<td>100</td>
<td>59</td>
<td>100</td>
</tr>
<tr>
<td>BAwPC_enh</td>
<td>2834</td>
<td>0.4</td>
<td>44</td>
<td>100</td>
<td>44</td>
<td>100</td>
</tr>
<tr>
<td>BRP</td>
<td>172</td>
<td>27.3</td>
<td>2692</td>
<td>3.8</td>
<td>2692</td>
<td>0</td>
</tr>
<tr>
<td>server</td>
<td>2037</td>
<td>0</td>
<td>1910</td>
<td>5.3</td>
<td>2037</td>
<td>0</td>
</tr>
<tr>
<td>server_err</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>ring2</td>
<td>490</td>
<td>71.2</td>
<td>2393</td>
<td>0.1</td>
<td>2393</td>
<td>0</td>
</tr>
<tr>
<td>tcp</td>
<td>37</td>
<td>81.1</td>
<td>751</td>
<td>3.1</td>
<td>768</td>
<td>0</td>
</tr>
<tr>
<td>tcp_err</td>
<td>173</td>
<td>47.4</td>
<td>671</td>
<td>8.0</td>
<td>686</td>
<td>3.8</td>
</tr>
</tbody>
</table>

We see that many times the algorithm was able to prune some states and therefore to decrease the number of states handled. But it comes at a cost, since we need to compute a least fixpoint for the invariants CSRE and MOF and to check if state is in the invariant or not. Table 4 shows for each invariant the time spent before starting the algorithm and the total time spent checking if a state is in the invariant. We see that the state inequation is very fast to precompute. The reason is that it just needs to write the inequation for the SMT-solver z3. Satisfiability checks are only accounted for in the times to check membership in the invariant. The invariant CSRE can take too much pre-computation time as explained with the Example 6.2 in the Section 6. The MOF invariant was able to do the computation in less time excepted for the peterson protocols with four peers. Unlike z3 the least fixpoint module wasn’t carefully coded with performance in mind.

To compare MOF and CSRE we see that MOF was better overall. It pruned less in a few examples but the biggest gap was between 5.3% against 0% for server. And in 6 examples out of 11 where they both finished they pruned exactly the same states. Because the
pre-computation times are better for MOF, the invariant MOF is better than CSRE.

We see that the invariant SI didn’t prune states for the models BAwCC and BAwPC but it cost time. Recall that the state inequation keeps track of the numbers of messages in each channels. It means that it wasn’t helpful to have this information.

Overall we see that, except for some very small example, at least one invariant was able to accelerate the computation.

10 CONCLUSION

We have presented in this paper a coverability algorithm for WSTs, parametrized by downward-closed invariants. We introduced three new invariants for lossy channel systems. One of these invariant counts messages and the other two keep track of the order of the messages. We implemented a tool to test the effects of these invariants. The experimental evaluation shows an acceleration of the classical approach for two invariants: the invariant state inequation and the MOFs. The other one accelerates the computation in some cases and took more time in others cases. As future work, we intend to apply these techniques to solve safety property on weak-memory models [6] because they are closely related to LCSs.

REFERENCES

Table 4: Cost in seconds to use invariants

<table>
<thead>
<tr>
<th></th>
<th>SI pre</th>
<th></th>
<th>CSRE pre</th>
<th></th>
<th>MOF pre</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>peterson3</td>
<td>0</td>
<td>2.1</td>
<td>27.7</td>
<td>0</td>
<td>28.4</td>
<td>0</td>
</tr>
<tr>
<td>peterson4</td>
<td>0</td>
<td>2085</td>
<td>TO</td>
<td>-</td>
<td>TO</td>
<td>-</td>
</tr>
<tr>
<td>pop3</td>
<td>0</td>
<td>0.3</td>
<td>TO</td>
<td>-</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>BAwPC</td>
<td>0</td>
<td>4.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BAwCC</td>
<td>0</td>
<td>12.9</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>BAwCC_enh</td>
<td>0</td>
<td>13.6</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>BAwPC_enh</td>
<td>0</td>
<td>3.7</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BRP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>server</td>
<td>0</td>
<td>1.2</td>
<td>0.6</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>server_err</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ring2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tcp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tcp_err</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>