Certification for Configurable Program Analysis’

Marie-Christine Jakobs
University of Paderborn
Department of Computer Science
Germany
marie.christine.jakobs@uni-
paderborn.de

ABSTRACT

Configurable program analysis (CPA) is a generic concept
for the formalization of different software analysis techniques
in a single framework. With the tool CPACHECKER, this
framework allows for an easy configuration and subsequent
automatic execution of analysis procedures ranging from
data flow analysis to model checking. The focus of the tool
CPACHECKER is thus on analysis.

In this paper, we study configurability from the point of
view of software certification. Certification aims at pro-
viding (via a prior analysis) a certificate of correctness for
a program which is (a) tamper-proof and (b) more efficient
to check for validity than a full analysis. Here, we will show
how, given an analysis instance of a CPA, to construct a
corresponding sound certification instance, thereby arriving
at configurable program certification. We report on exper-
iments with certification based on different analysis tech-
niques, and in particular explain which characteristics of an
underlying analysis allow us to design an efficient (in the
above (b) sense) certification procedure.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification|: Correctness proofs;

F.3 [Logic and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs; F.3.2 [Semantics
of Programming Languages]: Program Analysis; G.4
[Mathematical Software]: Certification

General Terms
Theory, Verification

Keywords
Proof Carrying Code, Certification, Program Analysis, Con-
figuration

*This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Cen-
tre “On-The-Fly Computing” (SFB 901).

Heike Wehrheim
University of Paderborn
Department of Computer Science
Germany

wehrheim@uni-paderborn.de

Producer Consumer
Program P Property U yes
P=P’
| ™~ /= .u)

(Configurable) (Configurable)

_______ -

Analysis Certificate
Validator
safe
Program P Program P’
+ +
Certificate C(P,U) 4 Certificate C'

Figure 1: Our approach for configurable program
certification

1. INTRODUCTION

Today, software analysis has become an established research
area within the field of software engineering, and the recent
advances in software analysis allow to verify industrial size
programs. Still, software verification remains a task which
cannot be done “on-the-fly” since it requires significant com-
putational resources. Software certification together with
the validation of certificates for programs is one option to
speed up the process of gaining confidence in the program’s
correctness. CertiﬁcatiorE] proceeds by having some analysis
technique verify the correctness of the program (w.r.t. some
property) and at the same time produce a proof of correct-
ness (the certificate). Ideally, checking validity of the cer-
tificate (i.e., whether it shows correctness of the program)
should be computationally more efficient than the original
analysis. Seen as a very general idea, this principle has
already been in use for some time, namely in various forms
of proof carrying code |20]: Code producers attach proofs
to their code which should then be easily checkable by code
consumers. Today ranging from areas as diverse as hardware
|16] to security applications [6] [5], all these techniques have
in common that they target a specific type of property (most
often memory or type safety [19] |14]) and develop specific
analysis techniques tailored towards proof/certificate gen-
eration.

In this paper, we take the opposite approach. Instead of
developing a certification technique for a specific property,
we will present a generic framework for program certifica-
tion which is configurable to specific analysis tasks. Our ap-

!Note that we do not consider certification processes like
carried out by the Software Certification Consortium SCC.

proach builds on an existing framework for configurable pro-
gram analysis with tool support in the form of CPACHECKER
[11). CPACHECKER executes an analysis meta algorithm
generating a (structured) abstract reachability set of a given
program. The meta algorithm can be steered by a number
of user-supplied inputs (e.g., telling CPACHECKER when to
stop the analysis, when to merge states). This presents a
way of uniting different program analysis techniques, rang-
ing from data flow analysis’, computing abstract informa-
tion for control flow graphs, to model checking, computing
a tree-like abstract structure. The generated reach set is
then subject to property checking.

For the certification process, we use the — anyway generated
— reach set as certificate. Similar to the analysis we develop
a generic configurable certificate validation framework with
a corresponding meta algorithm for certificate checking. In
addition, we provide a way of (in a large number of cases
automatically) generating the configuration of the certificate
validation from a given configuration of the analysis. Our
approach is tamper-proof in that the certificate validator
only outputs “yes” in case that the program P remains un-
changed (P = P’) and the obtained (and possibly corrupted)
certificate C’ is a valid certificate for the program P with
respect to a desired property U (see Fig. . We have imple-
mented our technique within the CPACHECKER framework,
and evaluated it on a number of different analysis techniques.
For all of these, certificate validation is faster than analysis.
We furthermore explain which characteristics of the under-
lying analysis technique and program at hand will bring us
significant speed-up.

2. BACKGROUND

For the sake of presentation we restrict the programming
language to a simple imperative language which is limited
to assignments and assume statements on integer VariablesEl
For this paper, we follow the program notation of [9] and
model a program as a control-flow automaton (CFA) P =
(L,G, o), which consists of a set of locations L, a set of
control flow edges G C L X Ops x L and a program entry
location lgp € L. Furthermore, V' denotes the set of program
variables — all variables which occur in an operation op of an
edge (-,0p,) € G. Figure[2| shows our example program SUM
and its CFA. The CFA contains two assignment edges, one
for each assignment in the program, and two assume edges,
reflecting the two evaluations of the condition of the while
statement.

The semantics of a program P = (L,G,ly) is defined by a
labeled transition system T'(P) = (C, G, —) made up by the
set of all concrete states C, labels G (the control flow edges
of P) and the transition relation -C C' x G x C. We write
c 2 for (c,g,¢') €. A concrete state c is a variable
assignment which assigns control variable pc to a location
l € L, c(pc), and every program variable v € V' to an integer
value, c(v), as well as a boolean value, c(vinit) indicating if
v has been initialized. A concrete state ¢ € C' is reachable
from a set of states I C C, denoted by ¢ € Reachp(I), if

there exists a path co 9. 5 Inst ¢n in T'(P) such that
co €1, cn:candV0§i<n:ci$ci+1.

2Qur implementation in CPACHECKER [11] supports pro-
grams written in the C Intermediate Language (CIL) [21].

10: x := 0;

11: while x < N
12: x = x + 1;
13:

Figure 2: Program SUM and its control flow automa-
ton

The Configurable Program Analysis (CPA), on which we
build our certification approach, is a framework in which
customized, abstract interpretation based program analyses
are described. A CPA specifies the abstract domain to-
gether with the transfer relation for computing successors
of abstract states. To integrate different analysis techniques
into the framework, it furthermore has two operators steer-
ing the reachability analysis: a merge and a stop operator.
Data flow analyses typically compute information along the
edges of the CFA, and merge information (abstract states)
at join points. They terminate once a fixpoint has been
reached. On the other side, we have model checking algo-
rithms which do not merge at join points and instead gener-
ate tree-like reachability structures. They stop exploration
once an abstract state is “covered” by an already existing
element. To put these two ends into a common frameworks,
CPAs have merge and stop operators as parameters.

Following the definition of [9], a CPA for a program P is a
four-tuple A = (D, ~», merge, stop) composed of an abstract
domain D, a transfer relation ~-, a merge operator merge
and a termination check operator stop.

1. The abstract domain D = (C, &, [-]) consists of a set of
concrete states C, a semi-lattice £ on a set of abstract
states E and a concretization function [-] : E — 2°,
which assigns every abstract state e € F its meaning.
The semi-lattice £ = (E, T, L,C, 1) is defined by the
set of abstract states E, a top (T) and a bottom (L)
element , a partial order C and the join operator LI, a
total function £ x E — E. For soundness of the CPA
A, the semi-lattice £ must ensure that

[T]=C and [L] =0, (1)
Ve, €E:eCe = [e] C[e] , (2)
Ve, € E:[e]JUfe'] Ceue] . (3)

Based on the partial order = on abstract states, we
define a partial order on sets of abstract states C:

SCS iff YeeS3e' €8 el e .
2. The transfer relation ~~C E X G x E defines the ab-

stract semantics Based on the control-flow edges
G it determines for each abstract state its abstract

3More formally, we have one transfer relation per program,
i.e., arelation ~p. Following [9] we omit P here, and assume
it to be clear from the context, both as parameter to ~» and
as input to the algorithms.

successor states. For soundness of the CPA A the
transfer relation ~» must comply to the requirement:

Vec B,ge G: {clcefe]rnec> eT(P)}
cu [¢] @
= (e,g,e’)E~

3. The merge operator merge : E x E — FE, a total
function, specifies how the information of two abstract
states is combined. For soundness of the CPA A the
result of merge may only be more abstract than the
second parameter:

Ve,e' € E: ¢’ C merge(e,e’) . (5)

4. The termination check operator stop : E x 2F - B, a
total function, examines if an abstract state is covered
by a set of abstract states. To guarantee soundness of
the CPA A the operator stop must fulfill the following
requirement:

Ve € E,S C E:stop(e,S) = [e] € |J[€'] - (6)
e’'eS

Remark 1. 9] also describes the systematic composition
of different CPAs to a Composite CPA, basically via a prod-
uct construction. Since the result is also a CPA, we do not
give formal details here. We will see examples of Composite
CPAs in the evaluation section.

We shortly explain CPAs by introducing the CPA RD, a
reaching definition analysis [22], on our example. The aim
of a reaching definition analysis (a data flow analysis) is to
find out for every program variable v € V' which definitions
of v may reach a certain location ! of a program P.

Ezample 1. The abstract states of the CPA RD are pairs
(I, R) of alocation | € L and a set of definitions R (plus the
top Trp and bottom element Lgp). A definition r = (v, d)
is a pair of a variable v € V' and a definition point d which
is either (1,1") € L X L (v defined on edge [to I") or symbol ?
(undefined). The boxes in Fig. [3| are examples for abstract
states. The partial ordering on abstract states e = (I, R)
ande = (I',R)iseCe iff(=1'"and RC R'.

The transfer relation ~~rp works as follows: for an assume
edge (I,expr,l') € G the abstract successor ¢’ of abstract
state e = (I, R) gets the same set of reaching definitions,
e’ = (I, R). For an assignment edge (I, v := expr,l') € G the
abstract successor ¢ removes from R all definitions for v
(R* = {(v,d)|d € L x LU{?}}) and adds the new defini-
tion: ¢ = (I',R’) and R = ((R\ R") U{(v,(l,I'))}. Like
any data flow analysis, the CPA RD combines information
obtained by the exploration of different branches. Hence,
mergegy, joins abstract states at the same control locations,
mergegp(e,e’) = (LRUR'), ife = (I,R) and ¢’ = (I, R'),
and otherwise mergegp(e,e’) = €. The termination check
operator, stopgp(e,S) = 3¢’ € S : e C €', checks if e does
not contain any new information for e’s location.

A CPA only describes the abstract domain and how to con-
figure the behavior of a reachability analysis. Algorithm

displays the CPA algorithm [9], a meta reachability analysis
which adapts its behavior to the configuration given by the
input CPA. Algorithm [I] computes an abstraction reached
(a set of reachable abstract states) for a given CPA A for
program P and an initial abstract state eg. In line 6 it tries
to combine e’ with already reached states using merge. Of-
ten, merge(e’, ") will give e’ (and hence enew # €) when
the results from the exploration of different branches should
be integrated. Note that in line 10 operator stop normally
returns true if ¢’ is combined with another state e’ into epew -

Algorithm 1: CPA algorithm taken from [9)

Input: CPA A = ((C,(E, T, L,C,U),[]), ~, merge, stop),
e € F

Output: a set of reachable abstract states

Data: a set reached of elements of E, a set waitlist of
elements of £

1 waitlist:={eo }; reached:={eo};
2 while waitlist# () do
pop e from waitlist;
for each €’ with (e, -, e') €~ do
for each e’ € reached do
enew := merge(e’, e”);
if enew # €’ then
waitlist := (waitlist U {enew }) \ {€"};
reached := (reached U {enew }) \ {€"};
if —stop(e’, reached) then
waitlist := waitlist U {e'};
reached := reached U {¢};
12 return reached

HO ©W-No oA W

o

Coming back to our running example the boxes in Fig. [3]
describe the abstract states obtained when executing the
CPA algorithm with reaching definition analysis RD ap-
plied to our example program SUM and initial abstract state
€0,RD = (lOv {(xv ?)’ (Nv ?)})

| (1, {10, 1), (%, (12, 1), (N,?)})|

X:=x+1

(o, {(x2), (N.2)) (1) [(s 10000, 1), (2 1), (N2))

[. {0l), (. (s 1), (N2

Figure 3: CFA of program SUM enriched by result of
CPA RD

To be useful the CPA algorithm must compute a sound over-
approximation of the reachable concrete states. The fol-
lowing theorem, taken from [9], states that the abstraction
computed by the CPA algorithm is indeed sound.

THEOREM 1 (SOUNDNESS OF THE CPA ALGORITHM[9]).
The result, reached, of the CPA algorithm for a given CPA A
and an initial abstract state ey overapproximates the reach-
able concrete states: Reachp([eo])) € U, creacheall®] -

In our certification approach (like in verification) this ab-
straction is used to show that a program P is safe w.r.t.
some property of interest. To also capture this aspect in the
framework we introduce an extension of the CPA concept.
In our setting safety simply means that certain unsafe states
cannot be reached. To this end we use a safety condition
which specifies the unsafe states in the abstract domain.

Definition 1. Let D = (C,&,[]) be an abstract domain.
A safety condition is a set of (unsafe) abstract states U C Eg.

A set of abstract states S C Fg¢ is safe w.r.t. a safety

condition U iff
Utln UJle1=0 .

eeS e'eU

A program P is safe w.r.t. a safety condition U and a set of
initial states I C C iff Reachp(I) is safe w.r.t. U.

To complete our running example we present a safety con-
dition Ugrp for our reaching definition analysis RD. The
safety condition Urp states that variable N, a possible input
parameter of our program SUM, is never redefined. Formally,

Urp = {(I, R)|(I,R) € Exp ATI',1" € L : (N, (I',l")) € R} .

To also show that a program P is safe w.r.t. to a safety
condition U, we add an additional operator, the safety check,
to a CPA A ending up with a CPA Ay.

Definition 2. A safety check safey implementing a safety
condition U C E is a total function safey : 2 — B that
fulfills

VS C E :safey(S) = U[[e]]ﬂ U [e€]=0 .

e€eS e'eU

Remark 2. The composition of program analyses as de-
scribed in [9] can easily be adapted to our extension of
CPAs. As long as the composite safety condition Uy is
not more restrictive than all safety conditions considered
by the component CPAs, U,y [e] € Ui, Uercr, [e',
the composite safety check safey,, can be implemented as a
conjunction of the safety checks of the component CPAs.

The safety check safeyy,, for the safety condition Urp of our
example is realized purely on the abstract states. It returns
true if for every state (I, R) € S it holds that the set of reach-
ing definitions R does not contain an element (N, (I',1")),
such that I',1" € L.

To make use of the safety check, we adapt Algorithm [I]to use
CPAs Ay. Inline 12, the result of the safety check on the ab-
straction as well as the abstraction itself has to be returned.
The adapted algorithm guarantees that if (¢rue, reached) is
returned, then abstraction reached and program P are safe
w.r.t. U.

Given such a configurable analysis framework, we next de-
velop a corresponding configurable certification framework
which uses the abstraction reached computed by CPAs as
certificates.

3. CONFIGURABLE CERTIFICATION

In a certification approach an analysis, often referred to as
certificate generator, checks the safety of a program and
— upon success — produces a certificate, a witness for the
program’s safety. This part is usually carried out by the
producer of the program (see Fig. . After that, the pro-
gram is shipped to the consumer who validates the certificate
before program execution. Validation of a certificate must
be tamper-proof, i.e., a certificate must be rejected if it is
not a witness for the program’s correctness, possibly due
to a change of the program or the certificate. Note, if the
program satisfies the property but the certificate is not a
witness, the certificate is rejected. Additionally, certificate
validation must be more efficient than analysis (otherwise
the approach is useless).

Here, we present a configurable program certification ap-
proach which is — like a CPA — parametric in the abstract
domain and the execution of the certificate validation algo-
rithm. As certificates it uses a safe abstraction of program
P (as computed by a CPA). For certificate validation we will
provide another meta algorithm, instantiable with the para-
meters of a configurable certificate validator (CCV). The key
contribution is now that the parameters for the CCV can,
in a large number of cases, automatically be computed from
a given CPA.

More precisely, the certification process works as follows.
The producer (certificate generator) uses some appropriate
CPA to show safety of his program P with respect to some
safety condition U and initial abstract state ep. The ab-
straction (set reached) computed by the CPA and used to
show safety is sent as a certificate C' with the program P to
the consumer. The consumer receives a possibly corrupted
program P’ and certificate C’. First, the consumer derives
a configuration for the CCV from the CPA’s configuration.
With this at hand he checks the validity of the certificate
C' for the program P’ and checks whether it certifies safety
w.r.t. safety condition U and initial abstract state eoEl

In the following, we present a systematic and in many cases
automatic approach to get a certificate validator CCV for
an arbitrary CPA and an arbitrary safety condition U. Our
approach requires that the CPA, the safety condition and
the initial abstract state use the same abstract domain D.
The generated validator should fulfill two objectives.

e [t should be sound, i.e., only accept valid certificates
being witnesses for the safety of program P’ w.r.t. U
and [eo].

e It should be relatively complete regarding certificate
generation, i.e., if generator and validator use the same
program, initial abstract state and safety condition,
then the validator must accept the certificate that the
generator produced.

We start the presentation of the validator with the definition
of a certificate.

4Similar to [3], our approach allows the validator to use a
stronger initial abstract state ey, [ev] C [eo], or a weaker

safety condition Uv, U, ¢y, [e] € U, cp[€]-

Definition 3. Let Ay be a CPA. A certificate Cy is a sub-
set of the set of abstract states E defined by the abstract
domain D of Ay, Cy C E.

For our example, the set Crp = {(lo, {(z,?),(N,?)})} is a
certificate but it does not witness the safety of program SUM
w.r.t. safety condition Urp and initial states I, represented
by abstract state eg rp. Certificate Crp does not consider all
concrete states reachable from I. Hence, we need to know,
when it is safe to accept a certificate, i.e. when a certificate
is valid.

Definition 4. Let P be a program, ep an initial abstract
state and U a safety condition. A certificate Cy is valid for
P and U if

1. it overapproximates the set of reachable states of P,
Reachp([eo]) C U.cq, [els

2. and it is safe w.r.t. U.

The validator’s task is to determine if a possibly modified
certificate C’ is a witness for the safety of program P’ which
is possibly unequal to P. For this, it uses a validation rule
consisting of three conditions. When all three conditions
are satisfied, the validity of the certificate is guaranteed.
Conditions (a) and (b) ensure that Ca overapproximates
Reachp:([eo]) and condition (c) ensures the safety of the
certificate. We must check for certificate C if

(a) all initial states are contained, [eo] C U, c¢, [€],

(b) it is closed under successor computation,
VgeGecCu: {dlcefe]ne>c eT(P)}
g Ue’QCA[[eIH)

(c) it is safe w.r.t. U.

We want to provide a systematic and mainly automatic way
to get a validation rule for a certificate of an arbitrary CPA
and an arbitrary safety condition. Since we do not know the
CPA nor the safety condition in advance, we cannot use a
CPA independent realization of (a)-(c).

Next, we explain how we realize conditions (a) to (c). The
following explanation is independent of the structure of the
validator and focuses on the validator’s soundness, relative
completeness is discussed later. For (b) we must show that
the certificate is closed under successor computation. Our
idea is to recompute the abstract successors using the trans-
fer relation ~» of the CPA and check that the certificate
is closed under abstract successor computation, Vg € G,
e € Oy :(e,g,¢') €~ implies [e'] € U.ncq, [¢”]. Further-
more, (a) and (b) need to examine if a set of states, given
by the initial abstract state or an abstract successor, is con-
tained in the certificate. For this, both need a coverage

5Modification which do not lead to certificates result in a
syntactic rejection.

check cover which checks containment for an arbitrary ab-
stract state and which ensures that cover(e, Ca) only returns

true if [e] C U, cq, Ie'].

Condition (c) states that the certificate must be safe w.r.t.
to a safety condition U. Our extended version of a CPA Ay
already provides an operation, safey, which checks that a
set of abstract states, e.g. a certificate, is safe w.r.t. safety
condition U.

These ideas now let us establish the construction of our
validator. The validator is built from two components, the
Configurable Certificate Validator (CCV) and the CCV algo-
rithm. We start with the CCV which must be constructed
per CPA. The CCV specifies the operations used in the
validation rule. To this end, it provides the abstract domain,
the abstract successor computation, the transfer relation of
the CPA, the coverage check as well as the safety check of
the CPA. The following definition describes the construction
of a CCV for a given CPA.

Definition 5. Let Ay = (D,~, merge, stop,safey) be a
CPA for showing safety w.r.t. safety condition U. A Con-
figurable Certificate Validator (CCV) Cy,, for Ay is a four
tuple Cu,, = (D,~>,cover,safey) such that the coverage
check, a total function cover : E x 2F — B ensures

Ve € E,S C E : cover(e,S) = [e] C U €] -
e'es

Remark 3. A CPA already provides a sort of coverage
check. It is the termination check operator stop. For now,
we will therefore use stop as coverage check.

The CCV CRDUM for our reaching definition example is
(Drp, ~, stopgp, safeu,,).

The last component to be presented is the CCV meta algo-
rithm. It is a parametric implementation of the validation
rule. The operations needed for validation, the successor
computation, the coverage check and the safety check, are
described by the CCV. Next to the CCV, the CCV algorithm
requires the initial abstract state and the certificate. Given
these three input parameters, the CCV algorithm checks the
three conditions of the validation rule. Algorithm [2| shows
an implementation of the CCV algorithm.

4. SOUNDNESS AND COMPLETENESS

Before introducing the technique, we stated two require-
ments on our approach: soundness and relative complete-
ness. Next, we will formally state these two properties and
show when they hold. First to soundness.

THEOREM 2 (SOUNDNESS OF THE VALIDATOR). Let P’
be a program, Ay a CPA for showing safety w.r.t. safety
condition U and eq an initial abstract state. If the CC'V algo-
rithm executed with CCV Cy,, for Au, eo, program P’ and
some certificate Cy returns true, then Cy is a valid certificate
for P' and U.

Algorithm 2: CCV algorithm

Input: CCV
CAU = ((Cv (Ea T,1,5 |—|)7 Hﬂ)a ~~, COVer, saer),
initial abstract state eg € F, certificate Cy C F
Output: Boolean indicator, if certificate Cy is a valid
certificate

// Check if initial element covered by certificate
1 if —cover(eg, Ca) then
2 return false
3 for each e € Cy do
4 for each (e, -, e') e~ do
// Check if successor covered by certificate
5 if —cover(e’,C4) then
6 return false
// Check if certificate is safe w.r.t. U
7 return safey (Ch)

PrOOF. Assume that the CCV algorithm executed with
Cay, €0 and Cy returns true. First, show that the certificate
overapproximates the set of states reachable in P’ from [eo],
Reachp/([eo]) € U,cc,le]- Pick any ¢ € Reachp([eo]).

In—1

By definition it exists a path co 9 B "% e in
T(P') such that ¢y € [eo] and ¢, = c. Show by induction
on the length of that path that VO <i < n:c; € U.cc, [€]-
Second, show that Cy is safe w.r.t. U. Algorithm [2| returns
only true if the safety check in line 7, safey(Cha), returns
true. By Definition 2] it follows that Cy is safe w.r.t. U. [

Hence the validator only accepts those (possibly corrupted)
certificates which are valid for the program at hand and thus
witness safety for it. Our certification approach is tamper-
proof.

Subsequent to soundness, we discuss relative completeness of
our certification approach. A relatively complete validator
accepts any certificate C'y that the generator produced using
the same program and initial abstract state as the validator,
and that the generator successfully checked w.r.t. the safety
condition. Note that all certificates Cy which these rela-
tive complete validators must accept are valid certificates.
In the following, we investigate under which conditions our
validator is relatively complete.

In the realization of conditions (a) and (b), we used the
transfer relation of the CPA and a coverage check cover,
so far implemented by the stop operator of the CPA. It is
the stop operator of the CPA, which might hinder achieving
completeness. To see this, we look at our running example
again and define an alternative stop operation stopgy (e, S) =
e = (,R)A(z,(l2,01)) € RA3e' € S: e C €] (only stop
when the element is of a particular shape). Algorithm [I]then
produces the same result for our example but stopgp, neither
returns true for initial abstract state egrp (an element of
the certificate) nor for its abstract successor. The certificate
validation would thus mistakenly return false. To rule out
such cases, we need to require that cover is consistent with
the partial ordering of the semi-lattice:

VSCE,ec E:(Je €S:eCe)— cover(e, 9)

However, this is not sufficient yet. Again, consider another
stop operator stopgp (e, S) = |S| <3A3e’ € S:eC € (stop
depends on the size of the already constructed reach set
reached). If waitlist in Algorithm (1| pops of the element with
the lowest index for the location element first, it will produce
the same reach set with stopgp,. While constructing it (and
so far having a set with size smaller 4), stopy, returns true
for element e = (l2,{(z, (lo,11)), (z, (I2,11)), (N, ?7)}) but it
does not for e and our certificate Crp,» (the final valuation
of reached). We have a stop operator here which is not
monotonic in the increase of the reach set according to the
partial ordering C. Thus our second requirement on the stop
operator (and thus for cover) is monotonicity:

VS, S CE,e€ Est. SC S :stop(e, S) — stop(e, ') .

For example, the frequently used implementation of stop,
Ve € E,S C E : stop(e,S) = 3e’ € S: e C ¢, fulfills these
two conditions.

The realization of condition (c), checking if the certificate
is safe w.r.t. the safety condition, does not affect relative
completeness because we use the same safety check as the
generator. Summarizing, to get a well-formed CCV, we need
the following additional property.

Definition 6. A CCV Cy, = ((C,&,[]),~, cover, safey)
is well-formed if operator cover

1. is consistent with order C, VS C FE¢,e € Eg :
(e’ € S:eCe') = cover(e,S) ,

2. is monotonic, VS,Ca C Eg,e € Eg s.t. ST Cy :
cover(e, S) = cover(e, Cy),

3. is consistent with stop, VS C E¢,e € F¢ :
stop(e, S) = cover(e, S).

If the operator stop of the given CPA is not consistent with
order C or is not monotonic, the consumer must provide an
own realization for cover. Note that only in this case our
approach is not fully automatic.

We now show that if our validator uses a well-formed CCV
Cuay , it will indeed be relatively complete regarding certificate
generation.

THEOREM 3 (RELATIVE COMPLETENESS OF VALIDATOR).
Let P be a program, Ay a CPA for showing safety w.r.t.
safety condition U and ep an initial abstract state. If the
CPA algorithm (Algorithm executed with Ay, P and e
returned (true, Ca) and the CCV Cy,, for Ay is well-formed,
then the CCV algorithm (Algorithm@) executed with Cy,,,
program P’ = P, eq and Cy returns true.

PROOF SKETCH. Proof by contradiction. Assume C, is a
valid certificate computed by the CPA algorithm for Ay, P
and ep and CCV algorithm executed with well-formed C,,,,

program P’ = P, ey and Cjy returns false. Distinguish three
cases, Algorithm [2] returns false in line 2, 6 or 7. For line 2
show that returning false contradicts the first condition of
Definition @ For line 6 note that for every abstract state
e € C, all its abstract successors (also e’) are computed by
the CPA algorithm (Algorithm and considered in line 10.
Distinguish two cases. First, stop(e’, reached) returned true.
By construction of Cy it holds that reached T Ca. Thus,
returning false contradicts the second or third condition of
Definition @ Second, stop(e’, reached) returned false. By
construction of C exists ¢’/ € Cy : €’ C €”. Again, return-
ing false contradicts the first condition of Definition [f] For
line 7 show that returning false contradicts CPA algorithm
returning (true, Cy). [0

Like many verification approaches our certification approach
is not fully complete, i.e., although certificates generated by
a CPA are accepted, this might not be the case for arbitrary
valid certificates. This is due to the fact that we are working
on an abstraction of the program and never carry out cal-
culations on the concrete state space. Hence, a very precise
certificate which exactly describes the concrete state space
of the program might be rejected since it is not closed under
abstract successor computation.

S. EXPERIMENTAL RESULTS

In our experiments we study the efficiency of our certification
approach. Since the worst case execution times of the CPA
and the CCV algorithm are the same, we study in particular
how much faster certificate validation is than analysis. In
addition, we are interested in finding out which character-
istics of the analysis lead to efficient certificate validations
and for which type of programs.

For the evaluation we used five different CPAs, some being
combinations of basic CPAs. Our reaching definition CPA
is named RID-DF, computing reaching definitions using an
ordinary data flow analysis. In addition we have a reaching
definition analysis RD-ALL computing only one set for the
whole program. This gives us an example of a very coarse ab-
straction, in which the certificate just contains one abstract
state. The second type of analysis is constant propagation
CP-DF [22], executed as data flow analysis. The last two
CPAs are combined ones, the first RD 4+ CP-DF combining
reaching definition and constant propagation (computed via
data flow analysis), the second combining the same, but now
merging on the same location only when the concrete values
for the variables are the same. This is in spirit close to
explicit model checking and presents the finest abstraction,
yielding the largest certificates. Note that it could be seen
as an instance of trace partitioning [23] but our intention
is to configure an analysis finer than data flow analyses. A
simple way to configure such a finer analysis is to combine
two analysis and merge only the states of one analysis. The
analyses have been chosen as to span a broad range of char-
acteristics, not because we think they are typical analyses
for which a certification will frequently be needed.

We integrated our approach into CPACHECKER [11] (svn
v8140) using the operator stop for cover, which in all five
cases gives us well-formed CCVs. Our experiments were
performed on a Intel® Core™i7-2620M @ 2.70GHz run-

ning a 64 bit Ubuntu 12.04 LTSEI with 3600 MB RAM. The
installed Java version was OpenJDK 7u9. For comparability
of analysis and validation we turned off the just in-time com-
pilation off.

Table [I] shows our experimental results for all five CPAs
on three classes of programs, locks, ssh (bitvectors) and nt-
drivers (simplified) taken from the SV-COMP Benchmark
[8]. For each CPA, the analysis time (An) (of the CPA algo-
rithm), the validation time (Val) (of the CCV algorithm plus
the time for certificate reading), and the speed up S = %
are presented. The first observation gained from the ex-
periments is that certificate validation is only in very rare
cases slower than analysis. This is caused by the need for
reading in the certificate, which in all cases consumes a con-
siderable amount of time of the validation. So one conclusion
is that it is worthwhile implementing more efficient ways of
storing and reading certificates.

The second observation is that all types of data flow analyses
are good candidates for an efficient certification, in partic-
ular when the program at hand has lots of loops or nested
branching structures (which the locks programs do not have).
Specifically, a higher ratio of the number of join locations to
the number of program locations is better. In such cases a
speedup greater 10 can be achieved. Certificate validation is
faster in these cases because in contrast to the analysis the
validation has to carry out no fixpoint computations (or, in
terms of the CPA, no complex merges). An exception to this
is CPP-DF, because the information extracted by the analysis
(constant values of variables) can already be used to speed-
up analysis (to avoid looking at particular branches of the
program because of the knowledge about values of branch-
ing conditions). In such situations, a low number of merge
operations are needed in the CPA, and thus knowing the
certificate gives the validation algorithm not much advan-
tage over the analysis.

Further on, our results show that certification for very coarse
analyses like RD-ALL as well as very fine analyses like RD +
CP-JS can still be efficient.

Finally, we report on our experiences with the certificate
size. First, if the analysis technique is coarser the certificate
is smaller. Second, certificates for analyses with less complex
abstract domains are smaller. All in all, only a certificate
for the coarsest analysis RD-ALL has a size smaller than or
similar to the program.

6. CONCLUSION

In this paper, we presented a configurable program certifi-
cation framework based on configurable program analysis
|9]. We showed that the instance of the certificate validator
can in a large number of cases be automatically derived from
the given program analysis instance. We proved soundness
and relative completeness of our technique, for the latter
assuming the program analysis to be of a particular form.
Our experiments confirmed the feasibility of the approach.

Related Work. To our knowledge, there is no configurable

5 Actually, Ubuntu was executed in the virtual machine Vir-
tual Box version 4.2.2 r81494 running on a 64 bit Windows
7 Professional machine with 6 GB RAM.

Table 1: Experimental results

Source RD-ALL RD-DF CP-DF RD + CP-DF RD + CP-JS
An Val S An Val S An Val S An Val S An Val S
locks_5 0.05 | 0.04 | 1.36 0.07 | 0.08 | 0.85 0.05 | 0.08 | 0.66 0.08 | 0.12 | 0.70 5.40 2.91 1.86
locks_6 0.04 | 0.04 | 1.20 0.08 | 0.09 | 0.89 | 0.05 | 0.08 | 0.65 0.11 | 0.13 | 0.84 43.61 19.12 2.28
locks_7 0.05 | 0.04 1.44 0.10 0.10 0.96 0.07 | 0.09 | 0.77 0.11 0.15 0.76 380.93 | 151.77 2.51
s3.clnt_1 | 0.42 | 0.07 | 6.09 873 | 0.60 | 14.63 | 0.53 | 0.29 | 1.81 | 13.63 | 0.75 | 18.05 | 134.27 | 11.57 | 11.61
s3.clnt_2 | 0.40 | 0.07 | 6.03 7.72 | 0.57 | 13.63 | 0.49 | 0.24 | 2.03 | 11.21 | 0.68 | 16.53 | 645.23 | 42.78 | 15.08
s3_clnt_3 0.42 | 0.07 6.18 6.44 0.55 | 11.77 | 0.50 | 0.25 | 2.02 10.23 | 0.67 | 15.35 Timeout after 15 min
s3.srvr_1 | 0.44 | 0.07 | 5.98 10.40 | 0.63 | 16.56 | 0.22 | 0.27 | 0.82 | 11.76 | 0.77 | 15.30 | 173.26 | 13.50 | 12.83
s3.srvr 2 | 0.45 | 0.07 | 6.52 7.95 | 0.61 | 13.00 | 0.25 | 0.27 | 0.92 9.81 | 0.79 | 12.48 Timeout after 15 min
s3.srvr.3 | 0.45 | 0.07 | 6.42 9.98 | 0.60 | 16.69 | 0.21 | 0.27 | 0.78 | 10.91 | 0.76 | 14.40 | 169.42 | 13.35 | 12.70
cdaudio 491 [039 | 12.76 | 45.95 | 4.79 | 9.60 | 8.65 | 6.90 | 1.25 | 21.60 | 9.12 | 2.37 37.22 29.13 1.28
diskperf 1.57 | 0.14 | 11.38 | 48.03 | 1.56 | 30.82 2.34 | 1.87 | 1.25 20.26 | 2.50 8.10 Timeout after 15 min
floppy3 1.69 | 0.13 | 12.56 18.68 | 1.24 | 15.00 | 2.84 | 2.19 | 1.30 12.24 | 2.68 4.57 16.84 17.45 0.96
floppy4 3.30 | 0.24 | 13.95 24.46 | 1.92 | 12.75 | 3.78 | 2.92 | 1.30 16.23 | 4.11 3.95 32.82 27.41 1.20
kbfiltrl 0.41 | 0.06 6.77 4.47 0.41 | 10.83 | 0.69 | 0.61 | 1.13 1.68 0.79 2.12 11.00 7.00 1.57
kbfiltr2 1.16 | 0.10 | 11.62 11.42 | 0.77 | 14.80 1.40 | 1.25 | 1.12 3.61 1.53 2.36 18.58 13.74 1.35
Average 7.55 12.19 1.19 7.86 5.44

certification approach which can handle such a broad range
of program analysis techniques.

There are several approaches, e.g. [24, (7} |13} |3} 4], which con-
sider certification for static program analysis but only [24}
3| 4] use an abstraction as certificate as we do. In principle,
all three re-execute one special analysis step to check if the
abstraction is a fixpoint. [24] |4] certify data flow analyses
on byte code level. Both keep only those elements of the ab-
straction which are affected by backward edges in the con-
trol flow and recompute the missing part during validation.
[3] is the certification of static program analysis closest to
ours. It certifies abstract interpretation for source programs,
however for constraint logic programms not C, and checks
safety by checking if a verification condition computed from
abstraction and safety specification is valid.

For model checking even more certification approaches exist.
We do not discuss approaches based on temporal logic nor
[1] which is based on rewriting logic. In |26] a predicate ab-
straction is computed and transformed into a Boolean pro-
gram, the certificate. The validator checks that the Boolean
program is a valid abstraction of the program and then
model checks it. Similar to us, [17} 18, [15] certify that un-
safe states are unreachable. In principal, a similar type of
validation rule is used there, however, always specified to the
particular analysis carried out. |15] transforms the abstract
model computed during model checking of a concurrent pro-
gram into a verification diagram, the certificate. [17,18] also
consider C programs but they only use predicate abstraction
during analysis. While in [18] the abstraction is the certifi-
cate, in [17] the certificate is a proof of the premises of their
rule.

In [12] a regression verification technique for abstraction-
based analyses with counterexample-guided abstraction re-
finement is presented. This technique may also be used
for certification. The core idea is to store the granularity
of abstraction, the information used to guide the abstract
successor computation, and reuse it as initial granularity in
the next run. In contrast to our approach, the technique is
not tamper-proof and not, if program or certificate changed
and the stored granularity (the certificate) is not sufficient to
show safety further refinement steps will follow, the behavior

intended for regression verification. Furthermore, the tech-
nique is not efficient when no refinement is applied. Then,
verification and certificate checking are the same.

Future Work. In the future, we plan to work on decreas-
ing our certificate size. Similar to e.g. |24l |2, 4], we want
to remove those elements from the abstraction which are
recomputed during validation. A first idea is to keep ele-
ments which are computed for program locations which join
control flows. Furthermore, we will try to speed up valida-
tion by parallelization. A different idea is the extension of
our approach to configurable analysis with dynamic preci-
sion adjustment [10], an extension of the CPA concept. A
slightly different idea, but with the same purpose, is to de-
velop a generic framework for the certification alternative
presented in [25]. Instead of providing a certificate, the ap-
proach presented in [25] (based on a type-state analysis) uses
the analysis result to transform the program into a more easy
checkable one. A generic framework would need to general-
ize this to arbitrary types of analysis, as to get a configurable
approach again.

7. REFERENCES

[1] M. Alba-Castro, M. Alpuente, and S. Escobar.
Automatic certification of java source code in
rewriting logic. In FMICS, pages 200-217, 2007.

[2] E. Albert, P. Arenas-Sanchez, G. Puebla, and M. V.
Hermenegildo. Reduced certificates for
abstraction-carrying code. In ICLP, pages 163-178,
2006.

[3] E. Albert, G. Puebla, and M. V. Hermenegildo.
Abstraction-carrying code. In LPAR, pages 380-397,
2004.

[4] W. Amme, M.-A. Méller, and P. Adler. Data flow
analysis as a general concept for the transport of
verifiable program annotations. Electr. Notes Theor.
Comput. Sci., 176(3):97-108, 2007.

[5] T. Amtoft, J. Dodds, Z. Zhang, A. W. Appel,
L. Beringer, J. Hatcliff, X. Ou, and A. Cousino. A
certificate infrastructure for machine-checked proofs of
conditional information flow. In POST, pages 369-389,
2012.

[6] L. Bauer, M. A. Schneider, E. W. Felten, and A. W.

[19]

[20]

[21]

Appel. Access control on the web using proof-carrying
authorization. In Proceedings of the 3rd DARPA
Information Survivability Conference and Exposition
(DISCEX (2), pages 117-119, 2003.

F. Besson, T. P. Jensen, and D. Pichardie.
Proof-carrying code from certified abstract
interpretation and fixpoint compression. Theor.
Comput. Sci., 364(3):273-291, 2006.

D. Beyer. Second competition on software verification
- (summary of SV-COMP 2013). In TACAS, pages
594-609, 2013.

D. Beyer, T. A. Henzinger, and G. Théoduloz.
Configurable software verification: Concretizing the
convergence of model checking and program analysis.
In CAV, pages 504-518, 2007.

D. Beyer, T. A. Henzinger, and G. Théoduloz.
Program analysis with dynamic precision adjustment.
In ASE, pages 29-38, 2008.

D. Beyer and M. E. Keremoglu. CPAchecker: A tool
for configurable software verification. In CAV, pages
184-190, 2011.

D. Beyer, S. Lowe, E. Novikov, A. Stahlbauer, and

P. Wendler. Precision reuse for efficient regression
verification. In ESEC/SIGSOFT FSE, pages 389-399,
2013.

A. Chaieb. Proof-producing program analysis. In
ICTAC, pages 287-301, 2006.

K. Crary and S. Weirich. Resource bound certification.
In POPL, pages 184-198, 2000.

K. Dréger, A. Kupriyanov, B. Finkbeiner, and

H. Wehrheim. SLAB: a certifying model checker for
infinite-state concurrent systems. In TACAS, pages
271-274, 2010.

S. Drzevitzky, U. Kastens, and M. Platzner.
Proof-carrying hardware: Towards runtime verification
of reconfigurable modules. In International Conference
on Reconfigurable Computing and FPGAs
(ReConFlig), pages 189-194, 2009.

T. A. Henzinger, R. Jhala, R. Majumdar, G. C.
Necula, G. Sutre, and W. Weimer. Temporal-safety
proofs for systems code. In CAV, pages 526-538, 2002.
T. A. Henzinger, R. Jhala, R. Majumdar, and

M. A. A. Sanvido. Extreme model checking. In
Verification: Theory and Practice, pages 332-358,
2003.

K. Klohs and U. Kastens. Memory requirements of
java bytecode verification on limited devices. FElectr.
Notes Theor. Comput. Sci., 132(1):95-111, 2005.

G. C. Necula. Proof-carrying code. In POPL, pages
106-119, 1997.

G. C. Necula, S. McPeak, S. P. Rahul, and

W. Weimer. CIL: intermediate language and tools for
analysis and transformation of C programs. In CC,
pages 213-228, 2002.

F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer Heidelberg, 2004.

X. Rival and L. Mauborgne. The trace partitioning
abstract domain. ACM Transaction on Programming
Languages and Systems, 29(5), 2007.

E. Rose. Lightweight bytecode verification. J. Autom.
Reasoning, 31(3-4):303-334, 2003.

[25] D. Wonisch, A. Schremmer, and H. Wehrheim.
Programs from proofs - a PCC alternative. In CAV,
pages 912-927, 2013.

[26] S. Xia and J. Hook. Certifying temporal properties for
compiled C programs. In VMCAI, pages 161-174,
2004.

	Introduction
	Background
	Configurable Certification
	Soundness and Completeness
	Experimental Results
	Conclusion
	References

