Satisfiability Modulo Abstraction
for Separation Logic with Linked Lists

Aditya Thakuf, Jason Breck and Thomas Rep$

tUniv. of Wisconsin; Madison, WI
fGrammaTech, Inc.; lthaca, NY
{adi,jbreck,reps@cs.wisc.edu

Abstract

Separation logic is an expressive logic for reasoning abeap
structures in programs. This paper presents a semi-degsaze-
dure for deciding unsatisfiability of formulas in a fragmefisep-
aration logic that includes points-to assertioms+{ y), acyclic-
list-segment assertion$s(z, y)), logical-and, logical-or, separat-
ing conjunction, and septraction (the DeMorgan-dual ofasap
ing implication). The fragment that we consider allows riggaat
leaves, and includes formulas that lie outside other séparbpgic
fragments considered in the literature.

The semi-decision procedure is designed using concepts fro
abstract interpretation. The procedure uses an abstrataidoof
shape graphs to represent a set of heap structures, andtesmpu
abstraction that over-approximates the set of satisfyingets of a
given formula. If the over-approximation is empty, thenfibienula
is unsatisfiable.

This paper presents a semi-decision procedure for decttiang
unsatisfiability of formulas in a fragment of separationiédat in-
cludes points-to assertions (y), acyclic-list-segment assertions
(Is(z,y)), empty-heap assertionsrqp), and their negations; sep-
arating conjunction; septraction; logical-and; and latsior. The
fragment considered only allows negation at the leaves afradla
(§2.1), but still contains formulas that lie outside of prexsty con-
sidered fragments [4, 22, 25, 29, 30]. The semi-decisionguiore
can provevalidity of implications of the form

¥ =(ps A N\ s = 03), @
J
wherep; andy; are formulas that contain only, v, and positive
or negative occurrences efmp, points-to, orls assertions; an@
andq; are arbitrary formulas in the logic fragment defined2nl.
Consequently, we believe that ours is the first procedurectima

We have implemented the method, and evaluated it on a set of Prove the validity of formulas that contain bothand the magic-

formulas taken from the literature. The implementationbkedo
establish the unsatisfiability of formulas that cannot bedhed by
other existing approaches.

1. Introduction

Separation logic [33] is an expressive logic for reasonibgua
heap-allocated data structures in programs. It providesehax
nism for concisely describing program states by expliditlyaliz-
ing facts that hold in separate regions of the heap. In pdatica
“separating conjunction”f; x 2) asserts that the heap can be split
into two disjoint regions (“heaplets”) in which; andy, hold, re-
spectively [33]. A “septraction”$; —® ¢2) asserts that a heaplet
h can be extended by a disjoint heaptetin which ¢, holds, to
create a heapldi; U h in which o2 holds [38]. The—® opera-
tor is sometimes calledxistential magic wandbecause it is the
DeMorgan-dual of the magic-wand operate#” (also called sep-
arating implication); i.e.p1 —® 2 iff (1 — —2).

wand operator—. Furthermore, the semi-decision procedure is
able to proveunsatisfiability of interesting classes of formulas
that are outside of previously considered fragments, dinty (i)
formulas that useonjunctions of separating-conjunctions with
or negations below separating-conjunctiossich as
(Is(al, a2) % 1s(a2, a3)) A (—emp=* —emp)
A (al — el xtrue) A el =nil,

and (ii) formulas thatontain botHs and septraction{®), such as
(a3 +— a4 —®1s(al, ad)) A (a3 = a4 V —Is(al, a3)). The former
are useful for describing overlaid data structures; thelatre use-
ful in dealing with interference effects when using relydgantee
reasoning to verify programs with fine-grained concurrd8¢g8].

The key insight behind our approach is that the semi-detisio
procedure is designed using concepts from abstract iet@imn
[12]. Given a formulayp, the semi-decision procedure sets up an
appropriate abstract domain that is tailored for repreésgnnfor-
mation about the meanings of subformulaspoft uses an abstract
domain of shape graphs [34] to represent a set of heap stesctu

The use of separation logic in manual, semi-automated, and The proof calculus that we present performs a bottom-upuatian

automated verification tools is a burgeoning field [5, 14185 27].
Most of these incorporate some form of automated reasoming f
separation logic, but only limited fragments of separatagic are
typically handled.

[Copyright notice will appear here once 'preprint’ opticrémoved.]

of ¢, using a particular shape-graph interpretation. It compain
abstract value that over-approximates the set of satigfiyindels

of . If the over-approximation is the empty set of shape graphs,
theny is unsatisfiable. I is satisfiable, then the procedure reports
a set of abstract models.

This use of abstract domains to prove unsatisfiability [Hane
work squarely in a recent line of research on using absti@oes
drawn from an abstract domain as a way to represent knowledge
in implementations of decision procedures [16-18, 36, 87¢¢h-
nigue we call “Satisfiability Modulo Abstraction™). Our wiois the
first to apply this idea to a fragment of separation logic.

One of the main advantages of the Satisfiability Modulo Ab-
straction approach is that it is able to reuse abstractgre&ation
machinery to implement decision procedures. In [37], fetance,
the polyhedral abstract domain—implemented in PPL [3]-siscl

2014/4122

to implement a decision procedure for the logic of lineaiorz!
arithmetic. In this paper, we use the abstract domain ofeshap
implemented in TVLA [34]—in a novel way to implement a semi-
decision procedure for separation logic. The challenge tovas-
stantiate the parametric framework of TVLA to preciselyresgnt
the literals and capture the spatial constraints of ournfiexg of
separation logic.

The nature of our semi-decision procedure is thus much dif-
ferent from other decision procedures for fragments of Isjmm
logic that we are aware of. Most previous decision procesiare
proof-theoretic In some sense, our methodrsodel-theoreticit
uses explicitly instantiated sets ®fvalued structures to represent
overapproximations of the models of subformulas.

The contributions of our work include the following:

e \We show how a canonical-abstraction domain can be used to

overapproximate the set of heaps that satisfy a separatipo-
formula §2).

e We present rules for calculating the overapproximation of a
separation-logic formula for a fragment of separationddpat
consists of separating conjunction, septraction, logacel, and
logical-or 4).

e The semi-decision procedure is parameterized by a shape ab-

straction, and can be instantiated to handle (positive ganhe
tive) literals for points-to or acyclic-list-segment aggms—
and hence can prove the validity of implications of the kind
shown in formula (1) §4).

83 illustrates the key concepts used in the semi-decisiocepiure.
We evaluated our approach on a set of formulas taken fronitthe |

erature §5). The implementation and benchmarks can be accessed

(anonymously) at [1]. To the best of our knowledge, the imse-
tation is able to establish the unsatisfiability of formutlzet cannot
be handled by other existing approaches.

2. Separation Logic and Canonical Abstraction

In this section, we provide background on separation logid a
introduce the separation-logic fragment considered inphyeer.

We then show how a canonical-abstraction domain can be used

to approximate the set of models that satisfy a separatigic-|
formula.

2.1 Syntax and Semantics of Separation Logic

Formulas in our fragment of separation log8L) are defined as
follows:

e u= pApleVelpxp|e—®¢|atom|-atom
atom == true |emp|z=y|x— y]|ls(z,y)

The set of literals, denoted Bis, is the union of the positive and
negative atoms L.

The semantics ofSL is defined with respect to memory
“statelets”, which consist of storeand aheaplet A store is a func-
tion from variables to values; a heaplet is a finite functiamf lo-
cations to locations. Ldtoc andVar be disjoint countably infinite
sets, neither of which containil.

val £ Locw {nil}

HeapletZ Loc —, Val Statelet™ Storex Heaplet

Loc represents heap-node addresses. The domatn é@ém(h),
represents the set of addresses of cells in the heaplet. Gamdis
h1, ho aredisjoint, denoted byri #he, if dom(hi) Ndom(h2) =
(. Given two disjoint heapletd; and h2, h1 - he denotes their
disjoint unionh: W ho. A stateletis denoted by a paifs, h).
Satisfaction of arsL formula with respect to statelés, h) is
defined in Fig. 1. Furthermore, in this paper, we considerafita
to be satisfiable only if it is satisfiable over aoyclic heap.[¢]

Store & Var — val

Voc = {eq p1,...
\Vocy, denotes the set df-ary symbols.

(S,h) 'ZL)OlALPQ Iff (37h) ':Lpl and(svh) |:§02
(s,h) E w1V iff (s,h) |=pr0r(sh) = e
(8, h) ': ©1 * P2 iff th, ho. hl#hz andh1 ~ho =h and

(57 hl) ': ©1 and(s, h2) ': V2

(8, h) ': ©1 —® P2 iff Jhq. h1#h and(s, h1) ': ©1 and
(shah) e

(s,h) = —atom iff (s,h) [~ atom

(s, h) = true iff true

(s,h) E emp iff dom(h) =0

(s.h) Ee=y if s(@)=s(y)

(s.,h) Earsry it dom(h) = {s(x)} andh(s(x)) = s(y)

(s,h) Els(z,y) iff if s(x) = s(y)thendom(h) = 0,

else there is a nonempty acyclic
path froms(x) to s(y) in h, and
this path contains all heap cells/n

Figure 1:Satisfaction of arsL formula ¢ with respect to stateldts, h).

Predicate Intended Meaning

eq(vi,v2) Dow; andve denote the same memory cell?
q(v) Does pointer variablg point to memory celb?
n(vi,v2) Does then-field of v1 point tove?

Table 1:Core predicates used when representing states made upct€acy
linked lists.

denotes the set of statelets that satisfifo] < {(s, h) | (s, h) =
e}

2.2 2-Valued Logical Structures

We model full states—not statelets—I2yvalued logical struc-

tures A logical structure provides an interpretation of a vodabu
, pn } Of predicate symbols (with given arities).

DEFINITION 1. A 2-valued logical structure S over Voc is a pair
= (U,), whereU is the set ofndividuals, and. is theinterpre-

tation. LetB = {0, 1} be the domain of truth values. Fpre Vog,
t(p): U" — B. We assume that eg Vog is the identity relation:
(i) forall w € U, v(eq)(u,u) = 1, and (i) for all u1,uz € U such
thatw; andu. are distinct individualsy(eq) (u1, u2) = 0.

The set of2-valued logical structures over Voc is denoted by
2-STRUCTVod.

A concrete state is modeled byavalued logical structure over
a fixed vocabulary of core predicatesCore predicates are part of
the underlying semantics of the linked structures that mgkéhe
states of interest. Tab. 1 lists the core predicates thatssee when
representing states made up of acyclic linked lists.

Without loss of generality, vocabularies exclude constart
function symbols. Constant symbols can be encoded via unary
predicates, and-ary functions vian + 1-ary predicates. In both
cases, we neeidtegrity rules—i.e., global constraints that restrict
the set of structures considered to the ones that we intéraisat of
unary predicates, Vqc always contains predicates that encode the
variables of the formula. In a minor abuse of notation, werloas
“x" to denote both the name of variableand the unary predicate

() that encodes the variable. The binary predicate= Voc;
encodes list-node linkages. In essence, the followingyiitierules
restrict eachr € Var C Voc; to serve as a constant, and restrict
relationn to encode a partial function:

for eachz € Var, Vo, ve : z(v1) A z(v2)

Y1, v2,vs : n(vs,v1) An(vs, v2)

= eq(vh UQ)
= eq(vh UQ)

2014/4122

2.3 Connecting 2-Valued Logical Structures and SL Statelst

We use unarydomain predicatestypically denoted byd, d’,
di,...,dr € Voc, to pick out regions of the heap that are of in-
terest in the state that a logical structure models. The extion

between2-valued logical structures argi. statelets is formalized
by means of the operatiafi| 4.y, which performs a projection of
structureS with respect to a domain predicaie

S|4y = (s, h), where

s = {(p7u) |p€varsyu S US,andp(u)} (2)

“\ U {(g,nil) | g € Var® and—Tv : q(v)}
h={(u1,u2) | u1,us € U°,d(u1),andn(ur,uz)}. (3)
The subscript (d, -)” serves as a reminder that in Eqgn. (3), only
u1 needs to be in the region defined dyWe lift the projection
operation to apply to a set SS @fvalued logical structures as

follows: S§4,.) e {8,y | S € SS}.
2.4 Representing Sets of SL Statelets using Canonical
Abstraction

In the framework of Sagiv et al. [34] for logic-based abstrac
interpretation 3-valued logical structure@rovide a way to over-
approximate possibly infinite sets @fvalued structures in a fi-
nite way that can be represented in a computer. The applicati
of Eqgns. (2) and (3) t8-valued structures means that the abstract-
interpretation machinery developed by Sagiv et al. pravalénite
way to overapproximate a possibly infinite setSofstatelets.

In 3-valued logic, a third truth value, denoted b2, represents

uncertainty. The sef £ B U {1/2} of 3-valued truth values is

partially ordered I' — 1/2 for I € B”. The values0 and 1 are
definitevalues;1/2 is anindefinitevalue.

DEFINITION 2. A 3-valued logical structure S = (U, ¢) is almost
identical to a2-valued structure, except thamaps each € Vog

to a3-valued function(p): U* — T. In addition, (i) for allu € U,
v(eq)(u,u) 3 1, and (ii) for all ui,u2 € U such thatu; and us
are distinct individuals,(eq)(u1, u2) = 0. (An individual v for
which.(eq)(u, u) = 1/2 is called asummary individual.)

The set of3-valued logical structures over Voc is denoted by

3-STRUCTVod. Note that 2-STRUQVod < 3-STRUCTVod.

As we will see below, a summary individual may represent more
than one individual from certai?-valued structures.

A 3-valued structure can be depicted as a directed graph with

individuals as graph nodes (see Fig. 2). A summary inditidhia
depicted with a double-ruled border. A unary predicate Var
is represented in the graph by having an arrow from the pagslic
namep to all nodes of individuals: for which ¢(p)(u) 2 1. An
arrow between two nodes indicates that a binary predicdtisho
for the corresponding pair of individuals. (To reduce duttin
the figures in this paper, the only binary predicate showrhés t
predicaten € Voc,.) A predicate value ol /2 is indicated by a
dotted arrow, a value of by a solid arrow, and a value of by
the absence of an arrow. A unary predicate (Moc; — Var) is
listed, with its value, inside the node of each individudbr which
t(p)(w) 3 1. A nullary predicate is displayed in a rectangular box.
To define a suitable abstraction fvalued logical structures,
we start with the notion of structure embedding [34]:

DEFINITION 3. GivenS = (U,) and S’ = (U’,.'), two 3-valued
structures over the same vocabulary Voc, ahdU — U’, a
surjective function,f embeds S in S’, denoted byS Cf ', if
forall p € Voc andu, ...,ur € U,

L(p)(u1, s 7uk) C Ll(p)(f(u1)7 .- 7f(uk))

If, in addition,

L

ul,4.4,ukEU,S.Lf(ui):ug,lgigk

then S’ is thetight embedding of S with respect to f, denoted by

S’ = f(9). (Note that we overloag to also mean the mapping
on structuresf: 3-STRUCTVod — 3-STRUCTVod induced by

f:U-=U")

Intuitively, f(S) is obtained by merging individuals ¢f and by
defining the valuation of predicates accordingly (in the hposcise
way). The relatiori_¢, which will be denoted by, is the natural
information order between structures that share the saimersa.
One hasS T/ &' < f(S) £'¢ S'. Henceforth, we us§ T/ S’

to mean “there exists a surjectiye: U — U’ such thatf(S) C"

S,

However, embedding alone is not enough. The challenge for
representing and manipulating sets®¥alued structures is that
the universe of a structure is af priori unbounded size. Conse-
quently, we need a method that, foRavalued structurdU, ¢) €
2-STRUCTVoc], abstractd/ to an abstract univergé® of bounded
size. The idea behinthnonical abstractiofi34, §4.3] is to choose a
subsetA C Voc; of abstraction predicatesand to define an equiv-
alence relation2, s onU that is parameterized by the logical struc-
tureS = (U,) € 2-STRUCTVoc] to be abstracted:

up s uz < Vp € A u(p)(ur) = o(p)(u2).

This equivalence relation defines the surjective functign U —
(U/ ~,s), which maps an individual to its equivalence class. We
thus have the Galois connection

p(2-STRUCTVod]) < (3-STRUCTVoc))
a(X) ={fE(5)| S € X} 4(Y)={5| S eY nS LS 5},

where 3 in the definition ofa denotes the tight-embedding func-
tion for logical structures induced by the node-embeddingfion
f&: U — (U] ~,s). The abstraction function is referred to as
canonical abstractionNote that there is an upper bound on the size
of each structuréU*, .*) € 3-STRUCTVoc] that is in the image
of a: |U¥| < 2/%—and thus the power-set of the imagecofs a
finite sublattice ofp(3-STRUCTVoc]).

For technical reasons, it turns out to be convenient to work
with 3-valued structures other than the ones in the image;of
however, we still want to restrict ourselves to a finite stitda of
p(3-STRUCTVoc]). With this motivation, we make the following
definition [2]:

DEFINITION 4. A 3-valued structurgU*, .*) € 3-STRUCTVod

is bounded (with respect to abstraction predicatdy if for every
w1, u2 € U¥, whereu; # us, there exists an abstraction predicate
symbolp € A C Vog such that* (p)(u1) = 0 and.?(p)(uz2) = 1,

or i*(p)(u1) = 1 and*(p)(u2) = 0. B-STRUCVoG A] denotes
the set of such structures.

(p)(ul, .. uy) u(p)(u, ... ug)

Defn. 4 also imposes an upper bound on the size of a struc-
ture (U*,/*) € B-STRUCTVoc, A|—again, [U*| < 2/4l—
and thus p(B-STRUCTVoc, A]) is a finite sublattice of
p(3-STRUCTVoc]). It defines the abstract domain that we
use, the abstract domain whose elements are subsets of
B-STRUCTVoc, A], which will be denoted by .A[Voc, A].
(For brevity, we call such a domain adnonical-abstraction
domairf, and denote it by A when Voc and A are un-
derstood.) The Galois connection we work with is thus
p(2-STRUCTVoc]) < p(B-STRUCT|Voc, A]) = A[Voc, Al
aX)={f5S)|SeX} v(Y)={S|S*cY ASCS s*}.

The ordering onp(B-STRUCTVoc, A]) = A[Voc, A] is the
Hoare orderingsS; C S if for all s; € S; there exists: € S
such thats; T s..

2014/4/22

// [N ey \\
/ Al ’/
a ¢ ~ -~
ll \: II K
1 = ‘_I_ - ’l
‘\ ‘l l‘ /' X ¥)I(y
.- ' -
X y 7 . ! i
‘el ! —is_eqx,yl0| 1 |His_ealx,yl()
~ -
[\ [\ [
\\ ,’I \\ ,/I \\\,’,
(a) (b) (c)
X y X y X y
1
"
—is_eaby10| [/ % —is_eq[xyl() —is_eqlxyl()
’
/7
I" N Zr[n,x] Zr[n,x]
ot) d,~d, d, - d,~d, d;
i ' next[n,x] “777\ next[n,x]
! o 1n,yl 1n,yl
: d 0 A) 0
' _ /I _ /I \\ - _ /I
/’ \\ //
\ ! \ ! \ !
\\ ’I \\ ! \\ !
(d) (e) (®

Figure 2:Structures that arise in the meet operation used to analyzey * y — z.

3. Overview

In this section, we illustrate the concepts that we use irstrai-
decision procedure using a formula that is unsatisfiableasyclic
heapsxz — y * y — x. App. A illustrates the procedure using a
formula that is satisfiable over acyclic heaps— y —® Is(z, z).

Considery L y * y — x. We want to computel € A
such thaty(A)|q,) 2 [¢]. The key to handling the operator
is to introduce two new domain predicatés and d2, which are
used to demarcate the heaplets that must sa}aisfgtef x — y and
V2 e y — x, respectively. We have designetlso that there exist
A1, Ay € Asuchthaty(A1)|(q,,.) = [z — y] andy(A2)|(a,,) =
[y — z], respectively. Tab. 2 describes the abstraction predicate
we use.A; and A, each consist of a singlg-valued structure,
shown in Fig. 2(b) and Fig. 2(c), respectively. Furthermdce
satisfyps * 2, d1 andds are required to be disjoint regions whose
union isd. A also contains an abstract value, which we will call
D, that represents this disjointness constraint exa@lyxonsists
of four 3-valued structures. Fig. 2(a) shows the “most general” of
them: it represents two disjoint regiomnk,andds, that partition the
d region (where each af; andd; contain at least one cell). The
summary individual labeleehd, —d1, —d2 in Fig. 2(a) represents a
region that is disjoint from. (See also Fig. 5.)

Note that here and throughout the paper, for brevity the digur
only show predicates that are relevant to the issue undeugon.

Meet for a Canonical-Abstraction Domain. To impose a neces-
sary condition forr — y*y +— x to be satisfiable, we take theeet
of D, A1, andAs: [z — yxy — z] C DM A1 M As. Figs. 2(d),
(e), and (f) show some of the structures that arisBin A; M1 As.

The meet operation itd is defined in terms of the greatest-
lower-bound operation induced by the approximation ordehée
lattice B-STRUCTVoc, A]. Arnold et al. [2] show that in general
this operation is NP-complete; however, they define an dhgar
based on graph matching that typically performs well in ficac
[23, §8.3]. To understand some of the subtleties of meet, consider
Fig. 2(d), which shows one of the structuresinm A; (i.e.,

Fig. 2(a)r1 Fig. 2(b)).

e From the standpoint of Fig. 2(b), meet caused the summary in-
dividual labeled “d;" to be split into two summary individu-
als: “=d, —dy, ~d2” and “d,—dy, d2".

e From the standpoint of Fig. 2(a), meet caused the summary
individual labeled @, d1, —d>" to (i) become a non-summary
individual, (ii) acquire the valué for x, r[n,], andnex{n, y],
and (iii) acquire the value O fay andr|[n, y].

Fig. 2(e) shows one of the structures (i 1 A;) M Ao, i.e.,
Fig. 2(d) 1 Fig. 2(c), which causes further (formerly indefinite)
elements to acquire definite values.

Arnold et al. develop a graph-theoretic notion of the pdssib
correspondences among individuals in the bounded stesthat
are arguments to meet, and structure the meet algorithnrmatbe
set of possible correspondencesg2.2].

Improving Precision Using Semantic-Reduction Operators.
Fig. 2(e) still contains a great deal of indefinite informatibe-
cause the meet operation does not take into account theitpteg
constraints on structures. For instance, for the strusttivat we
use to represent states a$id statelets, we use a unary predicate
nex{n, y], which holds for individuals whose-link points to the

2014/4/22

Predicate Intended Meaning

is_eqz, y]() Are z andy equal?

nex{n, y](v) The target of thex-edge fromw is pointed to byy
t[n](vi, v2) Is v2 reachable via zero or moreedges fromy; ?
r[n, y](v) Fv1.y(v1) A tn](v1,v)

d(v) Isv in heap domainl?

link[d, n,y](v) The target of thex-edge fromw is either ind or is

pointed to byy

Table 2:Voc consists of the predicates shown above, together wétbrles
in Tab. 1. All unary predicates are abstraction predicadtes;is,A = Voc; .

individual that is pointed to by. This predicate has an associated
integrity constraint

Vi, va.nexin, y](vi) A y(v2) = n(vi,v2). (4)
In particular, in Fig. 2(e) the individual pointed to hy has
nex{n, y] = 1; however, the edge to the individual pointed togy
has the valué /2. Similarly, we force the semi-decision procedure
to consider only acyclic heaps by imposing the integritystoaint
—3v1, v2.n(v1,v2) A t[n](ve,v1).

To improve the precision of the (graph-theoretic) meet, the
semi-decision procedure makes usesefmantic-reduction opera-
tors. The notion of semantic reduction was introduced by Cousot
and Cousot [13]. Semantic-reduction operators are usdfahvan
abstract domain is a lattice that has multiple elementsrdmae-
sent the same set of states. A semantic reduction operat@ps
an abstract-domain elemeatto p(A) such that (ip(A) C A, and
(i) v(p(A)) = ~v(A). In other wordsp mapsA to an element that
is lower in the lattice—and hence a “better” representation(A)
in A—while preserving the meaning. In our case, the semantic-
reduction operations that we use convert a s8twdlued structures
XSinto a “better” set of3-valued structureXS’ that describe the
same set of-valued structures.

A semantic-reduction operator can have two effects:

1. In some structur§ € XS some tuple(u) with indefinite value
1/2 may be changed to have a definite valo®X 1).

2. It may be determined that some structdre XSis infeasible:
i.e.,7(S) = 0. In this caseS is removed fronXS

The effect of a precision improvement from a type-1 effeat ca
cause a type-2 effect to occur. For instanceuletind u- be the
individuals pointed to by andy, respectively, in Fig. 2(e).

e Fig. 2(f) is Fig. 2(e) after integrity constraint (4) hagygered
atype-1 change that improves the valuewf., u2) from 1/2
to 1.

e A type-2 rule can then determine that the structure shown in
Fig. 2(f) is infeasible. In particular, the predicatn, x](v)
means that individual is reachable from the individual pointed
to by x alongn-links. The semantic-reduction rule would find
that the values:(u1) = 1, n(ui,u2) = 1, andr[n, z](u2)
0 represent an irreconcilable inconsistency in Fig. 2(fg th
first two predicate values mean that is reachable from the
individual pointed to byz along n-links, which contradicts
r[n, z](uz2) = 0.

The operation that applies type-1 and type-2 rules until moem
changes are possible is callederce(because it coercesSto a
better representatioXS’). Sagiv et al. [34§6.4] and Bogudlov et
al. [6, 7] discuss algorithms faoerce

' p1,d - Ay p2,dIF Ag
(G“t&dWA[() (,01/\(,02,d|FA1|7A2
p1,dIF Sy p2,dIF Ag

©1 \/(p27dW AU Ay

®1, d1 ”— A1 Y2, d2 ”— A2
p1 * @a,d I ([d =d - dz]Ij MmA M Az)éd

(*)

p1,d1 - Ay p2,da I+ As
Q1 —® 2, d - ([dy = d - d1]* M Ay 1 Ag)

7 (—®)

Figure 3:Rules for computing an abstract value that overapproxisniie
meaning of a formula iISL.

x oy
_eq[x,y]()
X y S
\ \ is_eq[x, y1() M
\\
’
I
7
’ \ ’,
\ /I \‘sa'

Figure 4: The abstract value fols(z,y) € atomin the canonical-
abstraction domain.

4. Proof System for Separation Logic

This section describes how we computes .4[Voc, A] such thatd
overapproximates the satisfying modelsco& SL. The vocabulary
Voc and abstraction predicatésare listed in Tab. 2.

The semi-decision procedure works with judgments of thenfor
“p,d I A", whered is a domain predicate. The invariant main-
tained by the semi-decision procedure is that, whenevestibe
lishes a judgmenp,d I A, A € A overapproximates in the
following sensexy(A)|,.y 2 [¢]. Fig. 3 lists the rules used for
calculatingy, d I+ A for ¢ € SL. Using these rules, the semi-
decision procedure performs a bottom-up evaluation ofahmadla
; if the answer is the empty set 8fvalued structures, thep is
unsatisfiable.

For each literal € lits, there is an abstract valué, € A such
thaty(A4¢)|,) = [€]. TheseA, values are used in th@)-rule
of Fig. 3. Fig. 4 shows the abstract valdg used forls(z, y). Ais
consists of three structures:

* Fig. 4(a) represents the empty list frarrto y. That is,z = y
and regiord is empty.

2014/4122

(©

Figure 5: The abstract value fofd; =
abstraction domain.

dj - di]* in the canonical-

¢ Fig. 4(b) represents a singleton list fraito y. That is,z # y
andz # nil, and for all individual in d, v is reachable from
z andlink[d, n, y](v) is true. (See line 6 of Tab. 2.)

¢ Fig. 4(c) represents acyclic linked lists of length two orreo
from z to y.

Fig. 4(b) is the single structure iA,.,. The abstract values for
atomsz = y, true, andemp are straightforward. We see that it
is possible to represent the positive literadse, emp, x Y,
x — y, andis(z, y) precisely inA; thatis, we have 4|4 .y = [I].
Furthermore, because the canonical-abstraction dos@rclosed
under negation [24, 40], we are able to represent the negativ
literalsz # y, —true, —emp, —Is(z,y), and—x — y precisely
in A, as well.

The rest of the rules in Fig. 3 can be derived by reinterpgetie
concrete logical operators using an appropriate abstfzetator.
In particular, logical-and is reinterpreted as meet, argickd-or
is reinterpreted as join. Consequently, ttre)-rule and(V)-rule
are straightforward. ThéA)-rule and(V)-rule are justified by the
following observation: ify(A1)|,) 2 [¢1] and~y(Az)|q,.) 2
[[(pz]], theny(Al M A2)|(d7.) D) [[(p1 A\ Lpg]] andy(Al L A2)|(d7.) D)
[e1 V 2]

For a given structurel = (U, ¢) and unary domain predicade,
we use the phraseridividuals ind;” to mean the set of individuals
{ueU]|u(di)(u) =1}.

The ()-rule computesA € A such thaty(A)|qg.) 2
[1 * v2]. The handling of separating conjunctign * @, is based
on the following insights:

e The domain predicated; and d» are used to capture the
heapletsh; and h. that satisfyp: and 2, respectively. That
is,

Y(AD)l(a, .y 2 [er] andy(A2)[(a,,) 2 [w2]- (5)

e [d = di -ds]* € Ais used to express the constraint that the
individuals ind; are disjoint fromdz, and that the individuals
in d are the disjoint union of the individuals ih andds. With
only a slight abuse of notation, the meaningdf= d; - ds]*
can be expressed as follows:

Y([d = di - da]*) (@) 2 {(5, B, ha, ha) | hatths
andh; - he = h} (6)

Fig. 5 shows the four structures in the abstract vatlie =
dj - dk]ﬁ, whered;, d;, andd, are domain predicates.

e ()4 denotes the structure that results from setting the abstrac
tion predicates td /2 for all individuals not ind, and setting
all domain predicates other tharto 1/2. In effect, this opera-
tion blurs the distinction between individualsdan andds, and
serves as an abstract method for quantifier elimination.

Using Egns. (5) and (6) in the definition gf * ¢2, we have

[e1 * 2]
= {(S,h) | E|h1,h2. h1#h2 andh1 ~ha =h and(s,hl) ': ©Y1

and(s, h2) = ¢2}
c (ld = dy - do]’ M Ar N Ag)g?

The handling of septraction in the-®)-rule is similar to the han-
dling of separating conjunction in the)¢rule, except for the con-
dition thaths = h- hi. This requirement is easily handled by using
[da = d - d1]*. App. Aillustrates the application of the-g)-rule.

THEOREM1. The rules in Fig. 3 are sound; that is, if the rules in
Fig. 3 say thaip, d IF A, theny(A)| 4, 2 [¢]. O

The proof follows from the fact that each of the abstract afmes
is sound.

Discussion.As discussed in [31§4], there exist no methods that
handle negations below a separating conjunction. Our fesujrof
separation logic admits negations at the leaves of formualad,
thus, is the first approach that can handle formulas with tirmga
below a separating conjunction.

It is, however, non-trivial to extend our technique to handl
general negation. Lét)“ denote the set-complement operation. Let
-#(.) denote the abstract negation operation; thatis,” (4)) D
7(A)%, and—=*(A) 3 a(v(A)). Suppose that(4)|,.) 2 [¢];
in general,y(=#(A))|(,. is not guaranteed to overapproximate
the models of-.

Furthermore, it is non-trivial to extend our technique tovar
validity of general implications. Suppose that we woulcelito
prove the validity ofp1 = @2, Wherep1, w2 € SL. Let A; overap-
proximate the set of models ¢f;, and A2 overapproximate the set
of models ofp,. A1 C A, does not imply[e:1] C [e2].

5. Experimental Evaluation

This section presents the results of our experiments taaiathe

costs and benefits of our approach. The implementation amchbe
marks can be accessed (anonymously) at [1]. The experiments

designed to shed light on the following questions:

1. How costly is the semi-decision procedure (in terms o&j)itn

2. How often is the semi-decision procedure able to detezithiat
a formula is unsatisfiable?

2014/4122

emp T=y z—y Is(z,y) @YAp @Ve pxp @-®p Full
+ — + - 4+ — + — Corpus
Group 1 1 5 8 8 13 1 19 10 22 4 12 10 23
Group2 64 22 0 0 22 22 22 22 64 0 64 0 64
Group3 512 218 0 O 218 218 218 218 512 0 512 512 512
Total 577 245 8 8 253 241 259 250 598 4 588 522 599

Table 3: Number of formulas that contain each of tie operators in the three groups of formulas used in the exjerisn The columns labeled-” and
“—"indicate the number of atoms occurring as positive and thegterals, respectively.

3. For unsatisfiable formulas that are beyond the capatsiliof Formula U Time
other existing tools, is the semi-decision procedure digtable
to determine that the formulas are unsatisfiable? (1) al = a2 A -is(al, a2) v 141
(2) al — a2 * a2 +— al v 1.68
Setup. The semi-decision procedure is written in OCaml; it com- (3) —empA (Is(al, a2) * Is(a2, al)) v 2.04
piles a formula to a proof DAG, expressed as an equationmyste (4) al # a2 A (Is(al,a2) *Is(a2, al)) v 191
The abstract-value manipulations in the proof rules of Bigwre (5) (Is(al,a2) *Is(a2, a3)) A -ls(al, a3) v 3.75
performed using ITVLA, a modified version of TVLA [26] that (8) Is(al,a2) AempA al # a2 v 141
was implemented for performing interprocedural shapeyaisl (1) (al = a2strue)A(a2 — a3strue)A(truexa3 —al) v 4.34
[23, §8]. ITVLA (i) replaces TVLAs notion of an intraprocedural (8 (al+ a2 —@true) A (al — a2 = true) v 2.32
contr()I-row graph by the more general notionegfuation system (9) (s(al,a2) « —ls(a2, a3)) A Is(al, a3) v 6.50
in which trapsfer functions may depend on more thaq ONe argu- (10) I5(q1, a2) A Is(al, a3) A —empA a2 £ a3 v 191
ment’ an.d (if) supports a mor_e general language in whichéo-sp (12) (1s(al, a2)*true*a3 — ad)A(truex(Is(a2, al)ra2 # v 30.6
ify equation systems. In particular, the ITVLA language sonts al))
explicit use of the meet operator [2] for a canonical-alzsina (12) (al v a2 xIs(el, e2)) A (a2 > a3 —emp) A (a3 — v 40.5
domain. Experiments were run on a single core of a 2-processo al x =a5 +— a6 * true)
4-core-per-processor 2.27 GHz Xeon computer running Red Ha (13) (—emp* —emp) A (al = nil Val + el V ((al — v 2.37
Linux 6.5. el A el =nil) xtrue)) Als(al, a2)
Test Suite.Our test suite consists of three groups of unsatisfiable (14) EE::&Z}L Z%g n Z}L Z: 212)) :5'15(33;‘;33 tfugf #az)n v 113
formulas: (15) (Is(al, a2) —® Is(al, a2)) A —emp v 1.98
e Group 1, shown in Tab. 4, was chosen to evaluate our procedure (16) (a3 — a4 —®Is(al, a4)) A (a3 = a4 V -ls(al,a3)) v 2.09
on a wide Spectrum of formulas. (17) ((a2 — a3—®Is(a2, ad)) —®Is(al, ad)) A-ls(al, al) 5 gg?
i . 18 a2 — a3 —®Is(a2,a4)) —®Is(a3,al)) A a2 = a4 .
e Group 2was creadt(fad by replacing the Boolean variabksdd (19; Efu o a2 —® |s((a1.,a3)))) A <ﬂ(|s<a2,a)§> V(ue n v 3.52
in the templatly = —a A empA (a * b) with the literalslits (al — el x true)) V al = a3)
of SL; that is,true, emp, = — y, Is(z, y), and their negations. (20) ((Is(al,a2) A al # a2) —® Is(el,e2)) Ael #al A v 4.56
Five of the 64 instantiations of templéfg are shown in Tab. 5. €2 = a2 A -ls(el, al)
)) (21) a1l # a4 A (Is(al,ad) —® Is(el,e2)) Aad = 2 AV 5.62
e Group 3 was created by replacing the Boolean variab)ds —Is(el, al)
andc in the templatéls & empA a A (bx (c —® (empA —a))) (22) ((1s(al,a2) A al # a2) —®Is(el,e2)) Ae2 #a2A v 4.65
with the 8 literals lits of SL. Five of the 512 instantiations of el = al A -ls(a2, e2)
temp|ate{1"2 are shown in Tab. 6. (23) ((a2 = a3 —® |S(a2,a4)) —® |S(a3,a1)) A ? 4.24

(—ls(a4, al) V a2 = ad)

TemplatesT; and 7> are based on work by Hou et al. [22] on
Boolean separation logic. Templatés and 7> are listed as for-
mulas 15 and 19, respectively, in [22, Tab. 2]. In total, ¢heere
599 formulas in our test suite. Tab. 3 summarizes the clexistits
of the corpus based on the occurrences ofstheperators.

Though not shown in this section, we also evaluated our proce
dure on a set of satisfiable formulas. The procedure rep@es af

abstract models when given a satisfiable formula. The tikentéo . .
compute these abstract models is similar to that for profongu- Group 2 Results. The 64 formulas instantiated from the template

las unsatisfiable. Ty £ —a AempA (a * b) took between 0.80 and 13.5 seconds

We now answer Questions 1-3 posed at the beginning of this t0 check, with a mean of 2.91 and a median of 1.63 seconds. Our
section using the three groups of formulas. procedure was able to prove unsatisfiability for all 64 folasuAll

L instantiations off; that contain an occurrence of tkepredicate
Group 1 Results. The running time of our procedure on the for- are beyond the capabilities of existing tools
mulas listed in Tab. 4 was often on the order of five seconds. Th The formulas that took the greatest arﬁount of time and the
procedure was aple to prove unsatisfiability for all fornsulex- second-greatest amount of time are (5) and (4), respegtiirel
cept (23). We believe that formulas (9)—(23) are beyond 60p& 15, '5 | oth cases, a large amount of time was requiredibeca
of existing tools. Formulas (9)—(14) demonstrate that werzmdle of the presence ofils, which is represented b4 structures—a
formulas that describe overlapping data structures, digucon- much larger number fhan is needed for the other literals.
junctions of separating conjunctions. Formulas (15)—@dmnon-
strate that we can handle formulas that contain occurresfdasth
Is and septraction.

Table 4:Unsatisfiable formulas. A in the U-column indicates that the
semi-decision procedure was able to prove the formula isfisite; a?
indicates that the semi-decision procedure was not abl®tephe formula
unsatisfiable. The time is in seconds.

Group 3 Results.The 512 formulas instantiated from the template

T, EempAaA (b (c—® (empA —a))), took between 0.79 and

7 2014/4122

Formula U Time
(1) —(al = a2) AempA (al — a2 * a3 — a4) v’ 3.40
(2) a1l — a2 AempA (—(al — a2) * a3 — ad) v 4.97
(3) —(al = a2) AempA (al — a2 * Is(a3, ad)) v 5.64
(4) I1s(al,a2) AempA (—lIs(al, a2) Is(a3, ad)) v 113
(5) —lIs(al,a2) A empA (Is(al, a2) Is(a3, a4)) v 135

Table 5:Example instantiations o} £ —a A emp A (a * b), where

a, b € lits. A v in the U-column indicates that the semi-decision procedure
was able to prove the formula unsatisfiable. The time is ios@s.

Formula U Time

(1) empAls(al, a2) A (Is(a3, a4) * (Is(a5, a6) —® (empA v 6.07
—Is(al, a2))))

(2) empA —empA (Is(a3, a4) * (~(a5 — a6) —® (empA v 3.34
emp)))

(3) empA al — a2 A (a3 — ad % (ab — a6 —® (empA v 3.79
=(al — a2))))

(4) emp A —Is(al,a2) A (—ls(a3,ad) = (Is(a5,a6) —® v 8.05
(empAls(al, a2))))

(5) empA-ils(al, a2) A(Is(a3, a4) *(Is(a5, a6) —® (empA v 8.10

Is(al, a2))))

Table 6: Example instantiations afy & emp A a A (b * (c —® (emp A
—a))), wherea, b, c € lits. A v in the U-column indicates that the semi-
decision procedure was able to prove the formula unsatisfiabe time is
in seconds.

sents the first important step in designing a verificationesyghat
uses a richer fragment of separation logic.

Most approaches to separation-logic reasoning use a syntac
tic proof-theoretic procedure [4, 30]. Two exceptions dre ap-
proaches of Cook et al. [11] and Enea et al. [20], which use@mo
semantics-based approach: they represent separationfoomu-
las as graphs in a particular normal form, and then provedhat
formula entails another by finding a homomorphism between th
corresponding graphs. Our approach is also semanticskbhse
has more of an algebraic flavor: our method performs a bottpm-
evaluation of a formule using a particular shape-analysis interpre-
tation (Fig. 3); if the answer is the empty set3efalued structures,
theny is unsatisfiable.

To deal with overlaid data-structures, Enea et al. [20bitice
thex,, operator: the,, operator specifies data structures that share
sets of objects as long as they are built over disjoint sefielfs
Their approach, however, does not handle conjunctionspairag-
ing conjunctions or negations of tkepredicate. Thus, [20] cannot
handle formulas (9)—(14) in Tab. 4, even though these faamdb
not contain septraction. Note that, for instance, the llgionjunc-
tion in formula (9) cannot be replaced by thg operator.

Piskac et al. [31] present a decision procedure for a delddab
fragment of separation logic based on a reduction to a pdatic
decidable first-order theory. Unlike our approach, the apgh in
[31] does not handle septraction or negations below a sépgra
conjunction.

The explicit use of abstract values drawn from an abstract do
main as a way to represent knowledge in implementations -of de
cision procedures is a technique that has been receivingased
attention of late [16—18, 36, 37]. As far as we know, our warthie
first to apply this idea to a fragment of separation logic.

Many researchers pigeonhole TVLA [26] as a system exclu-

8.10 seconds to check using our procedure, with a mean of 2.20 sively tailored for “shape analysis”. In fact, it is actyedl metasys-
and a median of 1.83 seconds. Our procedure was able to provetem for (i) defining a family of logical structures 2-STRU{¥ac],

unsatisfiability for all 512 formulas. All instantiationg @% that
contain an occurrence of tiepredicate are beyond the capabilities
of existing tools.

Discussion.The slow runtimes have more to do with the imple-
mentation, and less to do with the approach. There is a large c
for starting an ITVLA process—this startup cost, for inst@nac-
counts for approximately half of the runtime of formula (1) i
Tab. 4. Apart from the startup cost, most of the runtime goés i
coerce. Bogudlov et al. [6] describe improved implemeatetiof
coerce and other primitives for manipulating 3-valued citrtes.
We are in the process of adapting the ITVLA implementationde
these optimized primitives. We believe that these optichizemi-
tives will lead to a significant speed-up in the semi-decigicoce-
dure: in their experiments, Bogudlov et al. obtained as nagh
50-fold speedup compared to the prior version of TVLA.

6. Related Work

The literature related to reasoning about separation lisgi@st,
and we mention only a small portion of it in this section. REci
ability results related to first-order separation logicdiszussed in
[8, 10]. A fragment of separation logic for which it is dedidia to
check validity of entailments was introduced by Berdinel ef4.
The fragment includes points-to and linked-list predisataut no
septraction, or negations of points-to or linked-list pcates. More
recent approaches deal with fragments of separation lbgicare
incomparable to ours [22, 25, 29]; in particular, none of Ittter
papers handle linked lists. We based our experiments onufasm
listed in Hou et al.'s work on Boolean separation logic [22he-
only paper we found that listed formulas outside the syitdicg-
ment defined by Berdine et al. We believe that our technigpeere

and (ii) defining canonical-abstraction domains whose elgm
represent sets of 2-STRUQMc]. The ITVLA [23, §8] variant
of TVLA is a different packaging of the classes that make up th
TVLA implementation, and demonstrates better that carabrib-
straction is a general-purpose method for abstractingttbetares
that are a logic’'s domain of discourse.

To simplify matters, the separation-logic fragment adskeesn
this paper does not allow one to make assertions about ncimeri
valued variables and numeric-valued fields. Our approaatddme
extended to support such capabilities using methods deeelm
work on abstract interpretation that combines canonicstrabtion
with numeric abstractions [21, 28].

7. Conclusion and Future Work

This paper showed how to create a semi-decision procedure fo
a fragment of separation logic. The fragment of separatgicl
that we use has empty-heap assertioms), equalities £ =

y), points-to assertionsc(+— y), acyclic-list-segment assertions
(Is(z,y)), and their negations as literals; it provides the connesti

x, —®, A, andV. We believe that this is an interesting fragment,
in that it contains formulas for which existing approachesndt
apply.

For eachsL formula ¢, the procedure performs a bottom-up
evaluation of the formula, using a particular shape-arslyger-
pretation; if the answer is the empty seBefalued structures, then
 is unsatisfiable. Thus, the work reported in the paper sugpor
the thesis that abstract-interpretation concepts canihelpe de-
sign and implementation of decision procedures.

Moreover, ify is satisfiable, then the procedure reports a set of
abstract models—i.e., a value in the canonical-abstractamain
that overapproximatefp]. As we have shown in other work (us-

2014/4/22

ing a variety of other techniques, and for a variety of otlgids),
a decision-procedure-like method that is prepared to mesuch
“residual” answers provides a way to generate sound ab$taas-
formers automatically [32, 35, 37, 39]. In particular, whespec-
ifies the transition relation between the pre-state and-gast of a

[12] P. Cousot and R. Cousot. Abstract interpretation: Afiedilattice
model for static analysis of programs by construction orapma-
tion of fixpoints. InPOPL, 1977.

[13] P. Cousot and R. Cousot. Systematic design of prograafysis
frameworks. InPOPL, 1979.

concrete transformer, a residuating decision procedure provides a [14] D. Distefano, P. O'Hearn, and H. Yang. A local shape ysialbased

way to create a sound abstract transformiefor 7, directly from a

on separation logic. ITACAS 2006.

specification in logic ofr's concrete semantics. Consequently, the [15] D. Distefano and M. Parkinson. jStar: towards pradtigaification

work reported in the paper also supports the thesis thataaibst
interpretation-based decision procedures provide mummise for
automating the construction of program-analysis toolsngsur

semi-decision procedure, we now have a way to create abstrac

transformers based on canonical-abstraction domainstigifeom
a specification of the semantics of a language’s concratefyam-
ers, written inSL.

Although TVLA and separation logic have both been applied

to the problem of analyzing programs that manipulate linttath
structures, there has been only rather limited crossovieleak be-
tween the two approaches. Our semi-decision proceduréli®hu
the connection between TVLA states &8idstatelets described in
§2.3, which represents the first formal connection betweerwio
approaches. For this reason, the semi-decision procelautdsbe
of interest to both communities: (i) For the TVLA communitiye
procedure illustrates a different and intriguing use fonaracal-
abstraction domains. The domains that we use are tailoretido
particular formula, but, more importantly, provide an etiog that

can be connected to th&L semantics: see Eqns. (2) and (3) in

§2.3, and the use of domain predicates to express disjoBings.
(i) For the separation-logic community, the procedurevehbow

using TVLA and canonical-abstraction domains leads to aghod

theoretic approach to the decision problemdbithat is capable of
handling formulas that are beyond the capabilities of exgsools.

We believe that the approach presented in this paper hathe p

tential to be extended to deal with richer fragments of sajar
logic—in particular, fragments that contain both sepamtmpli-
cation and acyclic linked-list predicates.

References

[1] https://www.dropbox.com/s/vzbcvigbwdo9bh9/thakur_
breck_reps_SPIN2014_versl.tar.gz.

[2] G. Arnold, R. Manevich, M. Sagiv, and R. Shaham. Comkirshape
analyses by intersecting abstractionsVMCAI, 2006.

[3] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Pebjia
Library: Toward a complete set of numerical abstractions tfe
analysis and verification of hardware and software systei®8€PR,
72(1-2):3-21, 2008.

[4] J. Berdine, C. Calcagno, and P. O'Hearn. A decidablerfrexgt of
separation logic. IFSTTCS2004.

[5] J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: niadauto-
matic assertion checking with separation logicFMCO, 2005.

[6] 1. Bogudlov, T. Lev-Ami, T. Reps, and M. Sagiv. RevampifyLA:
Making parametric shape analysis competitiveCH, 2007.

[7] 1. Bogudlov, T. Lev-Ami, T. Reps, and M. Sagiv. RevampifgLA:
Making parametric shape analysis competitive. Tech. R&s2007-
01-01, Tel-Aviv Univ., Tel-Aviv, Israel, 2007.

[8] R. Brochenin, S. Demri, and E. Lozes. On the almighty waindor-
mation and Computatiqr211:106-137, 2012.

[9] C. Calcagno, V. Vafeiadis, and M. Parkinson. Modulaesathecking
for fine-grained concurrency. BAS 2007.

[10] C. Calcagno, H. Yang, and P. O’'Hearn. Computability aomhplexity
results for a spatial assertion language for data struetind=-STTCS
2001.

[11] B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. &lorr
Tractable reasoning in a fragment of separation logicCONCUR
2011.

for Java. INOOPSLA 2008.

[16] V. D'Silva, L. Haller, and D. Kroening. Satisfiabilityobvers are static
analyzers. I'rBAS2012.

[17] V. D'Silva, L. Haller, and D. Kroening. Abstract conflidriven
learning. INPOPL, 2013.

[18] V. D'Silva, L. Haller, and D. Kroening. Abstract sat&ftion. In
POPL, 2014.

[19] K. Dudka, P. Muller, P. Peringer, and T. Vojnar. Predatotool for
verification of low-level list manipulations. IMACAS 2013.

[20] C. Enea, V. Saveluc, and M. Sighireanu. Compositiomahiiant
checking for overlaid and nested linked lists.HSOR 2013.

[21] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv.
domains with summarized dimensions. TIACAS 2004.

[22] Z. Hou, R. Clouston, R. Gore, and A. Tiu. Proof searchgospo-
sitional abstract separation logics via labelled sequenits POPL,
2014.

[23] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relatioapproach
to interprocedural shape analysEOPLAS 32(2), 2010.

[24] V. Kuncak and M. Rinard. On the boolean algebra of shayzyais
constraints. Technical Report MIT-LCS-TR-916, M.I.T. CBAAug.
2003.

[25] W. Lee and S. Park. A proof system for separation logithwmagic
wand. InPOPL, 2014.

[26] T. Lev-Ami and M. Sagiv. TVLA: A system for implementinstatic
analyses. II8AS 2000.

[27] S. Magill, J. Berdine, E. Clarke, and B. Cook. Arithneesitrengthen-
ing for shape analysis. IBAS 2007.

[28] B. McCloskey, T. Reps, and M. Sagiv. Statically infagicomplex
heap, array, and numeric invariants.3AS 2010.

[29] J. Park, J. Seo, and S. Park. A theorem prover for BooRanIn
POPL, 2013.

[30] J. A. N. Pérez and A. Rybalchenko. Separation logic pesposition
calculus = heap theorem prover. DI, 2011.

[31] R. Piskac, T. Wies, and D. Zufferey. Automating separekogic using
SMT. InCAV, 2013.

[32] T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementatifthe best
transformer. IVMCAI, 2004.

[33] J. Reynolds. Separation logic: A logic for shared mig¢atata struc-
tures. InLICS, 2002.

[34] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shapeyaimlvia
3-valued logic. TOPLAS 24(3):217-298, 2002.

[35] A. Thakur, M. Elder, and T. Reps. Bilateral algorithnos §ymbolic
abstraction. I'BAS 2012.

[36] A. Thakur and T. Reps. A generalization of Stalmarakisthod. In
SAS 2012.

[37] A. Thakur and T. Reps. A method for symbolic computatibprecise
abstract operations. IBAV, 2012.

[38] V. Vafeiadis and M. Parkinson. A marriage of rely/guae®e and
separation logic. ICONCUR 2007.

[39] G. Yorsh, T. Reps, and M. Sagiv. Symbolically computimgpst-
precise abstract operations for shape analysiSAIBAS 2004.

[40] G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logical chateriza-
tions of heap abstraction&CM Trans. Comput. Log8(1), 2007.

Nuroeri

2014/4122

A. A Satisfiable Formula
Consider the formulap £ 2z — y —® Is(z,z). We want to

computeA € A such thaty(A4)|q,.y 2 [e]. Similar to what x oz oy

was done ir§3 for thex operator, we introduce two new domain ST
predicatesd; and d2, which are used to demarcate the heaplets /,’ ,"l; :—~—f—~:’\‘,v'\ '

that must satisfyp; & z +— y andg, = Is(z, z). By design, - "’/‘\ v -«
there existd;, A2 € A such thaty(A1)|,,) = [z~ y] and H s K
¥(A2)|(a,,y = [Is(x,)], respectively.A; consists of the single \ Y ,'I
3-valued structure shown in Fig. 6(b). Fig. 6(c) shows onehef t o ‘.' -/
structures inAs; it represents an acyclic linked list from to z % [J
whose length is greater thanFurthermore, to satisfy; —® 2, d RN 77

andd, are required to be disjoint regions whose unioiisA also
contains an abstract value, which we will cal, that represents
this disjointness constraint exactliy consists of four3-valued
structures. Fig. 6(a) shows the “most general” of themgtesents
two disjoint regionsd andds, that partition thel> region (where N
each ofd andd; contain at least one cell). The summary individual
labeled—d, —d1, —dz in Fig. 6(a) represents a region that is disjoint @
from ds. y
To impose a necessary condition for — y —® Is(x, z) \
to be satisfiable, we take theneet of D, A;, and A-:
[z — y—®Is(z, 2)] € DM A1 N As. Fig. 6(d) shows one of the
structures that arises i M A M A», after the semantic-reduction
operators have been applied. A few points to note about élig+
tant structure:

—is_eq[x,y]()

e The summary individual in regiod. present in thds(z, z)
structure in Fig. 6(c) is split in Fig. 6(d) into a singletom- i
dividual pointed to byy and a summary individual.

¢ The individual pointed to by is in regionsd; anddz, but not
d.

e The individual pointed to by is in regionsd andd., but not
ds.

e The variables andy are not equal.

¢ Allthe individuals ind are reachable from, not reachable from
z, and havéink[d, n, 2] true.

Fig. 6(e) shows the structure after we have projected thp hea
onto the heap regiod; that is, the values of the domain predicates
d, and d> have been set of /2 on all individuals, and all the
abstraction predicates have been sdt/ton all individuals not in
d. In effect, this operation blurs the distinction betweea tbgion
that is outsidel, but ind2, and the region that is outside @fand
d». Note that the fact that andy are not equal is preserved by the
projection operation. This projection operation, dendtgd-) 4 ¢
in §4, serves as an abstract method for quantifier elimination.

Note that Fig. 6(e) represents an acyclic linked-list frgrto
z with z # vy, which is one of the models that satisfies—

y —®Is(zx, z).

Figure 6: Some of the structures that arise in the meet dparat
used to evaluate — y —® Is(z, z).

10 2014/4/22

