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Abstract
Separation logic is an expressive logic for reasoning aboutheap
structures in programs. This paper presents a semi-decision proce-
dure for deciding unsatisfiability of formulas in a fragmentof sep-
aration logic that includes points-to assertions (x 7→ y), acyclic-
list-segment assertions (ls(x, y)), logical-and, logical-or, separat-
ing conjunction, and septraction (the DeMorgan-dual of separat-
ing implication). The fragment that we consider allows negation at
leaves, and includes formulas that lie outside other separation-logic
fragments considered in the literature.

The semi-decision procedure is designed using concepts from
abstract interpretation. The procedure uses an abstract domain of
shape graphs to represent a set of heap structures, and computes an
abstraction that over-approximates the set of satisfying models of a
given formula. If the over-approximation is empty, then theformula
is unsatisfiable.

We have implemented the method, and evaluated it on a set of
formulas taken from the literature. The implementation is able to
establish the unsatisfiability of formulas that cannot be handled by
other existing approaches.

1. Introduction
Separation logic [33] is an expressive logic for reasoning about
heap-allocated data structures in programs. It provides a mecha-
nism for concisely describing program states by explicitlylocaliz-
ing facts that hold in separate regions of the heap. In particular, a
“separating conjunction” (ϕ1 ∗ϕ2) asserts that the heap can be split
into two disjoint regions (“heaplets”) in whichϕ1 andϕ2 hold, re-
spectively [33]. A “septraction” (ϕ1 −⊛ ϕ2) asserts that a heaplet
h can be extended by a disjoint heapleth1 in which ϕ1 holds, to
create a heapleth1 ∪ h in which ϕ2 holds [38]. The−⊛ opera-
tor is sometimes calledexistential magic wand, because it is the
DeMorgan-dual of the magic-wand operator “−∗” (also called sep-
arating implication); i.e.,ϕ1 −⊛ ϕ2 iff ¬(ϕ1 −∗ ¬ϕ2).

The use of separation logic in manual, semi-automated, and
automated verification tools is a burgeoning field [5, 14, 15,19, 27].
Most of these incorporate some form of automated reasoning for
separation logic, but only limited fragments of separationlogic are
typically handled.
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This paper presents a semi-decision procedure for decidingthe
unsatisfiability of formulas in a fragment of separation logic that in-
cludes points-to assertions (x 7→ y), acyclic-list-segment assertions
(ls(x, y)), empty-heap assertions (emp), and their negations; sep-
arating conjunction; septraction; logical-and; and logical-or. The
fragment considered only allows negation at the leaves of a formula
(§2.1), but still contains formulas that lie outside of previously con-
sidered fragments [4, 22, 25, 29, 30]. The semi-decision procedure
can provevalidity of implications of the form

ψ⇒(ϕi ∧
∧

j

ψj −∗ ϕj), (1)

whereϕi andϕj are formulas that contain only∧, ∨, and positive
or negative occurrences ofemp, points-to, orls assertions; andψ
andψj are arbitrary formulas in the logic fragment defined in§2.1.
Consequently, we believe that ours is the first procedure that can
prove the validity of formulas that contain bothls and the magic-
wand operator−∗. Furthermore, the semi-decision procedure is
able to proveunsatisfiability of interesting classes of formulas
that are outside of previously considered fragments, including (i)
formulas that useconjunctions of separating-conjunctions withls
or negations below separating-conjunctions, such as

(ls(a1, a2) ∗ ls(a2, a3)) ∧ (¬emp∗ ¬emp)
∧ (a1 7→ e1 ∗ true) ∧ e1 = nil,

and (ii) formulas thatcontain bothls and septraction (−⊛), such as
(a3 7→ a4−⊛ ls(a1, a4)) ∧ (a3 = a4 ∨ ¬ls(a1, a3)). The former
are useful for describing overlaid data structures; the latter are use-
ful in dealing with interference effects when using rely/guarantee
reasoning to verify programs with fine-grained concurrency[9, 38].

The key insight behind our approach is that the semi-decision
procedure is designed using concepts from abstract interpretation
[12]. Given a formulaϕ, the semi-decision procedure sets up an
appropriate abstract domain that is tailored for representing infor-
mation about the meanings of subformulas ofϕ. It uses an abstract
domain of shape graphs [34] to represent a set of heap structures.
The proof calculus that we present performs a bottom-up evaluation
of ϕ, using a particular shape-graph interpretation. It computes an
abstract value that over-approximates the set of satisfying models
of ϕ. If the over-approximation is the empty set of shape graphs,
thenϕ is unsatisfiable. Ifϕ is satisfiable, then the procedure reports
a set of abstract models.

This use of abstract domains to prove unsatisfiability places our
work squarely in a recent line of research on using abstract values
drawn from an abstract domain as a way to represent knowledge
in implementations of decision procedures [16–18, 36, 37] (a tech-
nique we call “Satisfiability Modulo Abstraction”). Our work is the
first to apply this idea to a fragment of separation logic.

One of the main advantages of the Satisfiability Modulo Ab-
straction approach is that it is able to reuse abstract-interpretation
machinery to implement decision procedures. In [37], for instance,
the polyhedral abstract domain—implemented in PPL [3]—is used
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to implement a decision procedure for the logic of linear rational
arithmetic. In this paper, we use the abstract domain of shapes—
implemented in TVLA [34]—in a novel way to implement a semi-
decision procedure for separation logic. The challenge wasto in-
stantiate the parametric framework of TVLA to precisely represent
the literals and capture the spatial constraints of our fragment of
separation logic.

The nature of our semi-decision procedure is thus much dif-
ferent from other decision procedures for fragments of separation
logic that we are aware of. Most previous decision procedures are
proof-theoretic. In some sense, our method ismodel-theoretic: it
uses explicitly instantiated sets of3-valued structures to represent
overapproximations of the models of subformulas.

The contributions of our work include the following:

• We show how a canonical-abstraction domain can be used to
overapproximate the set of heaps that satisfy a separation-logic
formula (§2).

• We present rules for calculating the overapproximation of a
separation-logic formula for a fragment of separation logic that
consists of separating conjunction, septraction, logical-and, and
logical-or (§4).

• The semi-decision procedure is parameterized by a shape ab-
straction, and can be instantiated to handle (positive or nega-
tive) literals for points-to or acyclic-list-segment assertions—
and hence can prove the validity of implications of the kind
shown in formula (1) (§4).

§3 illustrates the key concepts used in the semi-decision procedure.
We evaluated our approach on a set of formulas taken from the lit-
erature (§5). The implementation and benchmarks can be accessed
(anonymously) at [1]. To the best of our knowledge, the implemen-
tation is able to establish the unsatisfiability of formulasthat cannot
be handled by other existing approaches.

2. Separation Logic and Canonical Abstraction
In this section, we provide background on separation logic and
introduce the separation-logic fragment considered in thepaper.
We then show how a canonical-abstraction domain can be used
to approximate the set of models that satisfy a separation-logic
formula.

2.1 Syntax and Semantics of Separation Logic

Formulas in our fragment of separation logic (SL) are defined as
follows:

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ∗ ϕ | ϕ−⊛ ϕ | atom| ¬atom
atom ::= true | emp | x = y | x 7→ y | ls(x, y)

The set of literals, denoted bylits, is the union of the positive and
negative atoms ofSL.

The semantics ofSL is defined with respect to memory
“statelets”, which consist of astoreand aheaplet. A store is a func-
tion from variables to values; a heaplet is a finite function from lo-
cations to locations. LetLoc andVar be disjoint countably infinite
sets, neither of which containnil.

Val
def
= Loc⊎ {nil} Store

def
= Var→ Val

Heaplet
def
= Loc⇀fin Val Statelet

def
= Store× Heaplet

Loc represents heap-node addresses. The domain ofh, dom(h),
represents the set of addresses of cells in the heaplet. Two heaplets
h1, h2 aredisjoint, denoted byh1#h2, if dom(h1) ∩ dom(h2) =
∅. Given two disjoint heapletsh1 andh2, h1 · h2 denotes their
disjoint unionh1 ⊎ h2. A stateletis denoted by a pair(s, h).

Satisfaction of anSL formulaϕ with respect to statelet(s, h) is
defined in Fig. 1. Furthermore, in this paper, we consider a formula
to be satisfiable only if it is satisfiable over anacyclic heap.[[ϕ]]

(s, h) |= ϕ1 ∧ ϕ2 iff (s, h) |= ϕ1 and(s, h) |= ϕ2

(s, h) |= ϕ1 ∨ ϕ2 iff (s, h) |= ϕ1 or (s, h) |= ϕ2

(s, h) |= ϕ1 ∗ ϕ2 iff ∃h1, h2. h1#h2 andh1 · h2 = h and
(s, h1) |= ϕ1 and(s, h2) |= ϕ2

(s, h) |= ϕ1 −⊛ ϕ2 iff ∃h1. h1#h and(s, h1) |= ϕ1 and
(s, h1 · h) |= ϕ2

(s, h) |= ¬atom iff (s, h) 6|= atom
(s, h) |= true iff true
(s, h) |= emp iff dom(h) = ∅
(s, h) |= x = y iff s(x) = s(y)
(s, h) |= x 7→ y iff dom(h) = {s(x)} andh(s(x)) = s(y)
(s, h) |= ls(x, y) iff if s(x) = s(y) thendom(h) = ∅,

else there is a nonempty acyclic
path froms(x) to s(y) in h, and
this path contains all heap cells inh

Figure 1:Satisfaction of anSL formulaϕ with respect to statelet(s, h).

Predicate Intended Meaning

eq(v1, v2) Do v1 andv2 denote the same memory cell?
q(v) Does pointer variableq point to memory cellv?
n(v1, v2) Does then-field of v1 point tov2?

Table 1:Core predicates used when representing states made up of acyclic
linked lists.

denotes the set of statelets that satisfyϕ: [[ϕ]]
def
= {(s, h) | (s, h) |=

ϕ}.

2.2 2-Valued Logical Structures

We model full states—not statelets—by2-valued logical struc-
tures. A logical structure provides an interpretation of a vocabulary
Voc = {eq, p1, . . . , pn} of predicate symbols (with given arities).
Vock denotes the set ofk-ary symbols.

DEFINITION 1. A 2-valued logical structure S over Voc is a pair
S = 〈U, ι〉, whereU is the set ofindividuals, andι is theinterpre-
tation. LetB = {0, 1} be the domain of truth values. Forp ∈ Voci,
ι(p) : U i → B. We assume that eq∈ Voc2 is the identity relation:
(i) for all u ∈ U , ι(eq)(u, u) = 1, and (ii) for all u1, u2 ∈ U such
thatu1 andu2 are distinct individuals,ι(eq)(u1, u2) = 0.

The set of2-valued logical structures over Voc is denoted by
2-STRUCT[Voc].

A concrete state is modeled by a2-valued logical structure over
a fixed vocabularyC of core predicates. Core predicates are part of
the underlying semantics of the linked structures that makeup the
states of interest. Tab. 1 lists the core predicates that areused when
representing states made up of acyclic linked lists.

Without loss of generality, vocabularies exclude constantand
function symbols. Constant symbols can be encoded via unary
predicates, andn-ary functions vian + 1-ary predicates. In both
cases, we needintegrity rules—i.e., global constraints that restrict
the set of structures considered to the ones that we intend. The set of
unary predicates, Voc1, always contains predicates that encode the
variables of the formula. In a minor abuse of notation, we overload
“x” to denote both the name of variablex and the unary predicate
x(·) that encodes the variable. The binary predicaten ∈ Voc2
encodes list-node linkages. In essence, the following integrity rules
restrict eachx ∈ Var ⊆ Voc1 to serve as a constant, and restrict
relationn to encode a partial function:

for eachx ∈ Var,∀v1, v2 : x(v1) ∧ x(v2) ⇒ eq(v1, v2)

∀v1, v2, v3 : n(v3, v1) ∧ n(v3, v2) ⇒ eq(v1, v2)
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2.3 Connecting 2-Valued Logical Structures and SL Statelets

We use unarydomain predicates, typically denoted byd, d′,
d1, . . . , dk ∈ Voc1, to pick out regions of the heap that are of in-
terest in the state that a logical structure models. The connection
between2-valued logical structures andSL statelets is formalized
by means of the operationS|(d,·), which performs a projection of
structureS with respect to a domain predicated:

S|(d,·)
def
= (s, h),where

s =

(

{(p, u) | p ∈ VarS, u ∈ US , andp(u)}
∪ {(q, nil) | q ∈ VarS and¬∃v : q(v)}

)

(2)

h = {(u1, u2) | u1, u2 ∈ U
S, d(u1), andn(u1, u2)}. (3)

The subscript “(d, ·)” serves as a reminder that in Eqn. (3), only
u1 needs to be in the region defined byd. We lift the projection
operation to apply to a set SS of2-valued logical structures as
follows: SS|(d,·)

def
= {S|(d,·) | S ∈ SS}.

2.4 Representing Sets of SL Statelets using Canonical
Abstraction

In the framework of Sagiv et al. [34] for logic-based abstract-
interpretation,3-valued logical structuresprovide a way to over-
approximate possibly infinite sets of2-valued structures in a fi-
nite way that can be represented in a computer. The application
of Eqns. (2) and (3) to3-valued structures means that the abstract-
interpretation machinery developed by Sagiv et al. provides a finite
way to overapproximate a possibly infinite set ofSL statelets.

In 3-valued logic, a third truth value, denoted by1/2, represents
uncertainty. The setT

def
= B ∪ {1/2} of 3-valued truth values is

partially ordered “l ⊏ 1/2 for l ∈ B”. The values0 and 1 are
definitevalues;1/2 is anindefinitevalue.

DEFINITION 2. A 3-valued logical structure S = 〈U, ι〉 is almost
identical to a2-valued structure, except thatι maps eachp ∈ Voci
to a3-valued functionι(p) : U i → T. In addition, (i) for allu ∈ U ,
ι(eq)(u, u) ⊒ 1, and (ii) for all u1, u2 ∈ U such thatu1 andu2

are distinct individuals,ι(eq)(u1, u2) = 0. (An individualu for
whichι(eq)(u, u) = 1/2 is called asummary individual.)

The set of3-valued logical structures over Voc is denoted by
3-STRUCT[Voc]. Note that 2-STRUCT[Voc] ( 3-STRUCT[Voc].

As we will see below, a summary individual may represent more
than one individual from certain2-valued structures.

A 3-valued structure can be depicted as a directed graph with
individuals as graph nodes (see Fig. 2). A summary individual is
depicted with a double-ruled border. A unary predicatep ∈ Var
is represented in the graph by having an arrow from the predicate
namep to all nodes of individualsu for which ι(p)(u) ⊒ 1. An
arrow between two nodes indicates that a binary predicate holds
for the corresponding pair of individuals. (To reduce clutter, in
the figures in this paper, the only binary predicate shown is the
predicaten ∈ Voc2.) A predicate value of1/2 is indicated by a
dotted arrow, a value of1 by a solid arrow, and a value of0 by
the absence of an arrow. A unary predicatep ∈ (Voc1 − Var) is
listed, with its value, inside the node of each individualu for which
ι(p)(u) ⊒ 1. A nullary predicate is displayed in a rectangular box.

To define a suitable abstraction of2-valued logical structures,
we start with the notion of structure embedding [34]:

DEFINITION 3. GivenS = 〈U, ι〉 andS′ = 〈U ′, ι′〉, two3-valued
structures over the same vocabulary Voc, andf : U → U ′, a
surjective function,f embeds S in S′, denoted byS ⊑f S′, if
for all p ∈ Voc andu1, . . . , uk ∈ U ,

ι(p)(u1, . . . , uk) ⊑ ι
′(p)(f(u1), . . . , f(uk))

If, in addition,

ι′(p)(u′
1, . . . , u

′
k) =

⊔

u1,...,uk∈U,s.t.f(ui)=u′

i
,1≤i≤k

ι(p)(u1, . . . , uk)

thenS′ is thetight embedding of S with respect to f , denoted by
S′ = f(S). (Note that we overloadf to also mean the mapping
on structuresf : 3-STRUCT[Voc] → 3-STRUCT[Voc] induced by
f : U → U ′.)

Intuitively, f(S) is obtained by merging individuals ofS and by
defining the valuation of predicates accordingly (in the most precise
way). The relation⊑id, which will be denoted by⊑, is the natural
information order between structures that share the same universe.
One hasS ⊑f S′ ⇔ f(S) ⊑id S′. Henceforth, we useS ⊑f S′

to mean “there exists a surjectivef : U → U ′ such thatf(S) ⊑id

S′”.
However, embedding alone is not enough. The challenge for

representing and manipulating sets of2-valued structures is that
the universe of a structure is ofa priori unbounded size. Conse-
quently, we need a method that, for a2-valued structure〈U, ι〉 ∈
2-STRUCT[Voc], abstractsU to an abstract universeU ♯ of bounded
size. The idea behindcanonical abstraction[34,§4.3] is to choose a
subsetA ⊆ Voc1 of abstraction predicates, and to define an equiv-
alence relation≃AS onU that is parameterized by the logical struc-
tureS = 〈U, ι〉 ∈ 2-STRUCT[Voc] to be abstracted:

u1 ≃AS u2 ⇔ ∀p ∈ A : ι(p)(u1) = ι(p)(u2).

This equivalence relation defines the surjective functionfS
A : U →

(U/ ≃AS ), which maps an individual to its equivalence class. We
thus have the Galois connection

℘(2-STRUCT[Voc]) −−→←−−α
γ

℘(3-STRUCT[Voc])
α(X) = {fS

A (S) | S ∈ X} γ(Y ) = {S | S♯ ∈ Y ∧ S ⊑f S♯},

wherefS
A in the definition ofα denotes the tight-embedding func-

tion for logical structures induced by the node-embedding function
fS
A : U → (U/ ≃AS ). The abstraction functionα is referred to as

canonical abstraction. Note that there is an upper bound on the size
of each structure〈U ♯, ι♯〉 ∈ 3-STRUCT[Voc] that is in the image
of α: |U ♯| ≤ 2|A|—and thus the power-set of the image ofα is a
finite sublattice of℘(3-STRUCT[Voc]).

For technical reasons, it turns out to be convenient to work
with 3-valued structures other than the ones in the image ofα;
however, we still want to restrict ourselves to a finite sublattice of
℘(3-STRUCT[Voc]). With this motivation, we make the following
definition [2]:

DEFINITION 4. A 3-valued structure〈U ♯, ι♯〉 ∈ 3-STRUCT[Voc]
is bounded (with respect to abstraction predicatesA) if for every
u1, u2 ∈ U

♯, whereu1 6= u2, there exists an abstraction predicate
symbolp ∈ A ⊆ Voc1 such thatι♯(p)(u1) = 0 andι♯(p)(u2) = 1,
or ι♯(p)(u1) = 1 and ι♯(p)(u2) = 0. B-STRUCT[Voc,A] denotes
the set of such structures.

Defn. 4 also imposes an upper bound on the size of a struc-
ture 〈U ♯, ι♯〉 ∈ B-STRUCT[Voc,A]—again, |U ♯| ≤ 2|A|—
and thus ℘(B-STRUCT[Voc,A]) is a finite sublattice of
℘(3-STRUCT[Voc]). It defines the abstract domain that we
use, the abstract domain whose elements are subsets of
B-STRUCT[Voc,A], which will be denoted byA[Voc,A].
(For brevity, we call such a domain a “canonical-abstraction
domain”, and denote it byA when Voc and A are un-
derstood.) The Galois connection we work with is thus
℘(2-STRUCT[Voc]) −−→←−−α

γ
℘(B-STRUCT[Voc,A]) = A[Voc,A]

α(X) = {fS
A (S) | S ∈ X} γ(Y ) = {S | S♯ ∈ Y ∧ S ⊑f S♯}.

The ordering on℘(B-STRUCT[Voc,A]) = A[Voc,A] is the
Hoare ordering:S1 ⊑ S2 if for all s1 ∈ S1 there existss2 ∈ S2

such thats1 ⊑f s2.
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x y

d,d1,¬d2 d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]
d1

x y

¬d1

¬is_eq[x,y]()

¬r[n,x]

r[n,y]
next[n,x]
d2

x y

¬d2

¬is_eq[x,y]()

(a) (b) (c)

x y

d,d1,¬d2
d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]

¬is_eq[x,y]()

x y

d,d1,¬d2 d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]

¬r[n,x]

r[n,y]
next[n,x]

¬is_eq[x,y]()

x y

d,d1,¬d2 d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]

¬r[n,x]

r[n,y]
next[n,x]

¬is_eq[x,y]()

(d) (e) (f)

Figure 2:Structures that arise in the meet operation used to analyzex 7→ y ∗ y 7→ x.

3. Overview
In this section, we illustrate the concepts that we use in thesemi-
decision procedure using a formula that is unsatisfiable over acyclic
heaps:x 7→ y ∗ y 7→ x. App. A illustrates the procedure using a
formula that is satisfiable over acyclic heaps:x 7→ y −⊛ ls(x, z).

Considerϕ
def
= x 7→ y ∗ y 7→ x. We want to computeA ∈ A

such thatγ(A)|(d,·) ⊇ [[ϕ]]. The key to handling the∗ operator
is to introduce two new domain predicatesd1 andd2, which are
used to demarcate the heaplets that must satisfyϕ1

def
= x 7→ y and

ϕ2
def
= y 7→ x, respectively. We have designedA so that there exist

A1, A2 ∈ A such thatγ(A1)|(d1,·) = [[x 7→ y]] andγ(A2)|(d2,·) =
[[y 7→ x]], respectively. Tab. 2 describes the abstraction predicates
we use.A1 andA2 each consist of a single3-valued structure,
shown in Fig. 2(b) and Fig. 2(c), respectively. Furthermore, to
satisfyϕ1 ∗ϕ2, d1 andd2 are required to be disjoint regions whose
union isd. A also contains an abstract value, which we will call
D, that represents this disjointness constraint exactly.D consists
of four 3-valued structures. Fig. 2(a) shows the “most general” of
them: it represents two disjoint regions,d1 andd2, that partition the
d region (where each ofd1 andd2 contain at least one cell). The
summary individual labeled¬d,¬d1,¬d2 in Fig. 2(a) represents a
region that is disjoint fromd. (See also Fig. 5.)

Note that here and throughout the paper, for brevity the figures
only show predicates that are relevant to the issue under discussion.

Meet for a Canonical-Abstraction Domain. To impose a neces-
sary condition forx 7→ y∗y 7→ x to be satisfiable, we take themeet
of D, A1, andA2: [[x 7→ y ∗ y 7→ x]] ⊆ D ⊓ A1 ⊓ A2. Figs. 2(d),
(e), and (f) show some of the structures that arise inD ⊓A1 ⊓A2.

The meet operation inA is defined in terms of the greatest-
lower-bound operation induced by the approximation order in the
lattice B-STRUCT[Voc,A]. Arnold et al. [2] show that in general
this operation is NP-complete; however, they define an algorithm
based on graph matching that typically performs well in practice
[23, §8.3]. To understand some of the subtleties of meet, consider
Fig. 2(d), which shows one of the structures inD ⊓ A1 (i.e.,
Fig. 2(a)⊓ Fig. 2(b)).

• From the standpoint of Fig. 2(b), meet caused the summary in-
dividual labeled “¬d1” to be split into two summary individu-
als: “¬d,¬d1,¬d2” and “d,¬d1, d2”.

• From the standpoint of Fig. 2(a), meet caused the summary
individual labeled “d, d1,¬d2” to (i) become a non-summary
individual, (ii) acquire the value1 for x, r[n, x], andnext[n, y],
and (iii) acquire the value 0 fory andr[n, y].

Fig. 2(e) shows one of the structures in(D ⊓ A1) ⊓ A2, i.e.,
Fig. 2(d)⊓ Fig. 2(c), which causes further (formerly indefinite)
elements to acquire definite values.

Arnold et al. develop a graph-theoretic notion of the possible
correspondences among individuals in the bounded structures that
are arguments to meet, and structure the meet algorithm around the
set of possible correspondences [2,§4.2].
Improving Precision Using Semantic-Reduction Operators.
Fig. 2(e) still contains a great deal of indefinite information be-
cause the meet operation does not take into account the integrity
constraints on structures. For instance, for the structures that we
use to represent states andSL statelets, we use a unary predicate
next[n, y], which holds for individuals whosen-link points to the
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Predicate Intended Meaning

is eq[x, y]() Are x andy equal?
next[n, y](v) The target of then-edge fromv is pointed to byy
t[n](v1, v2) Is v2 reachable via zero or moren-edges fromv1?
r[n, y](v) ∃v1.y(v1) ∧ t[n](v1, v)
d(v) Is v in heap domaind?
link[d, n, y](v) The target of then-edge fromv is either ind or is

pointed to byy

Table 2:Voc consists of the predicates shown above, together with the ones
in Tab. 1. All unary predicates are abstraction predicates;that is,A = Voc1.

individual that is pointed to byy. This predicate has an associated
integrity constraint

∀v1, v2.next[n, y](v1) ∧ y(v2)⇒n(v1, v2). (4)

In particular, in Fig. 2(e) the individual pointed to byx has
next[n, y] = 1; however, the edge to the individual pointed to byy
has the value1/2. Similarly, we force the semi-decision procedure
to consider only acyclic heaps by imposing the integrity constraint
¬∃v1, v2.n(v1, v2) ∧ t[n](v2, v1).

To improve the precision of the (graph-theoretic) meet, the
semi-decision procedure makes use ofsemantic-reduction opera-
tors. The notion of semantic reduction was introduced by Cousot
and Cousot [13]. Semantic-reduction operators are useful when an
abstract domain is a lattice that has multiple elements thatrepre-
sent the same set of states. A semantic reduction operatorρ maps
an abstract-domain elementA to ρ(A) such that (i)ρ(A) ⊑ A, and
(ii) γ(ρ(A)) = γ(A). In other words,ρ mapsA to an element that
is lower in the lattice—and hence a “better” representationof γ(A)
in A—while preserving the meaning. In our case, the semantic-
reduction operations that we use convert a set of3-valued structures
XS into a “better” set of3-valued structuresXS′ that describe the
same set of2-valued structures.

A semantic-reduction operator can have two effects:

1. In some structureS ∈ XS, some tuplep(u)with indefinite value
1/2 may be changed to have a definite value (0 or 1).

2. It may be determined that some structureS ∈ XSis infeasible:
i.e.,γ(S) = ∅. In this case,S is removed fromXS.

The effect of a precision improvement from a type-1 effect can
cause a type-2 effect to occur. For instance, letu1 andu2 be the
individuals pointed to byx andy, respectively, in Fig. 2(e).

• Fig. 2(f) is Fig. 2(e) after integrity constraint (4) has triggered
a type-1 change that improves the value ofn(u1, u2) from 1/2
to 1.

• A type-2 rule can then determine that the structure shown in
Fig. 2(f) is infeasible. In particular, the predicater[n, x](v)
means that individualv is reachable from the individual pointed
to by x alongn-links. The semantic-reduction rule would find
that the valuesx(u1) = 1, n(u1, u2) = 1, andr[n, x](u2) =
0 represent an irreconcilable inconsistency in Fig. 2(f): the
first two predicate values mean thatu2 is reachable from the
individual pointed to byx along n-links, which contradicts
r[n, x](u2) = 0.

The operation that applies type-1 and type-2 rules until no more
changes are possible is calledcoerce(because it coercesXS to a
better representationXS′). Sagiv et al. [34,§6.4] and Bogudlov et
al. [6, 7] discuss algorithms forcoerce.

ℓ ∈ lits, d 
 Aℓ

(ℓ)
ϕ1, d 
 A1 ϕ2, d 
 A2

ϕ1 ∧ ϕ2, d 
 A1 ⊓ A2
(∧)

ϕ1, d 
 S1 ϕ2, d 
 A2

ϕ1 ∨ ϕ2, d 
 A1 ⊔ A2
(∨)

ϕ1, d1 
 A1 ϕ2, d2 
 A2

ϕ1 ∗ ϕ2, d 
 ([d = d1 · d2]
♯ ⊓A1 ⊓ A2) 

d
(∗)

ϕ1, d1 
 A1 ϕ2, d2 
 A2

ϕ1 −⊛ ϕ2, d 
 ([d2 = d · d1]
♯ ⊓ A1 ⊓A2) 

d
(−⊛)

Figure 3:Rules for computing an abstract value that overapproximates the
meaning of a formula inSL.

� �

¬�

��_�	[�, �](	)

(a)

� �

¬�
� �, �

�
���	 �, �

¬� �, �

¬
�_�
[�, �](	)

(b)

���� �, �, �

� �

¬�


 �, �

�
���� �, �, �

¬
 �, �


 �, �
�

¬
 �, �

¬��_
�[�, �](	)

(c)

Figure 4: The abstract value forls(x, y) ∈ atom in the canonical-
abstraction domain.

4. Proof System for Separation Logic
This section describes how we computeA ∈ A[Voc,A] such thatA
overapproximates the satisfying models ofϕ ∈ SL. The vocabulary
Voc and abstraction predicatesA are listed in Tab. 2.

The semi-decision procedure works with judgments of the form
“ϕ, d 
 A”, whered is a domain predicate. The invariant main-
tained by the semi-decision procedure is that, whenever it estab-
lishes a judgmentϕ, d 
 A, A ∈ A overapproximatesϕ in the
following sense:γ(A)|(d,·) ⊇ [[ϕ]]. Fig. 3 lists the rules used for
calculatingϕ, d 
 A for ϕ ∈ SL. Using these rules, the semi-
decision procedure performs a bottom-up evaluation of the formula
ϕ; if the answer is the empty set of3-valued structures, thenϕ is
unsatisfiable.

For each literalℓ ∈ lits, there is an abstract valueAℓ ∈ A such
that γ(Aℓ)|(d,·) = [[ℓ]]. TheseAℓ values are used in the(ℓ)-rule
of Fig. 3. Fig. 4 shows the abstract valueAls used forls(x, y). Als

consists of three structures:

• Fig. 4(a) represents the empty list fromx to y. That is,x = y
and regiond is empty.
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Figure 5: The abstract value for[di = dj · dk]
♯ in the canonical-

abstraction domain.

• Fig. 4(b) represents a singleton list fromx to y. That is,x 6= y
andx 6= nil, and for all individualsv in d, v is reachable from
x andlink[d, n, y](v) is true. (See line 6 of Tab. 2.)

• Fig. 4(c) represents acyclic linked lists of length two or more
from x to y.

Fig. 4(b) is the single structure inAx 7→y. The abstract values for
atomsx = y, true, andemp are straightforward. We see that it
is possible to represent the positive literalstrue, emp, x = y,
x 7→ y, andls(x, y) precisely inA; that is, we haveγAl|(d,·) = [[l]].
Furthermore, because the canonical-abstraction domainA is closed
under negation [24, 40], we are able to represent the negative
literals x 6= y, ¬true, ¬emp, ¬ls(x, y), and¬x 7→ y precisely
in A, as well.

The rest of the rules in Fig. 3 can be derived by reinterpreting the
concrete logical operators using an appropriate abstract operator.
In particular, logical-and is reinterpreted as meet, and logical-or
is reinterpreted as join. Consequently, the(∧)-rule and(∨)-rule
are straightforward. The(∧)-rule and(∨)-rule are justified by the
following observation: ifγ(A1)|(d,·) ⊇ [[ϕ1]] andγ(A2)|(d,·) ⊇
[[ϕ2]], thenγ(A1 ⊓A2)|(d,·) ⊇ [[ϕ1 ∧ ϕ2]] andγ(A1 ⊔A2)|(d,·) ⊇
[[ϕ1 ∨ ϕ2]].

For a given structureA = 〈U, ι〉 and unary domain predicatedi,
we use the phrase “individuals indi” to mean the set of individuals
{u ∈ U | ι(di)(u) = 1}.

The (∗)-rule computesA ∈ A such thatγ(A)|(d,·) ⊇
[[ϕ1 ∗ ϕ2]]. The handling of separating conjunctionϕ1 ∗ϕ2 is based
on the following insights:

• The domain predicatesd1 and d2 are used to capture the
heapletsh1 andh2 that satisfyϕ1 andϕ2, respectively. That
is,

γ(A1)|(d1,·) ⊇ [[ϕ1]] andγ(A2)|(d2,·) ⊇ [[ϕ2]]. (5)

• [d = d1 · d2]
♯ ∈ A is used to express the constraint that the

individuals ind1 are disjoint fromd2, and that the individuals
in d are the disjoint union of the individuals ind1 andd2. With
only a slight abuse of notation, the meaning of[d = d1 · d2]

♯

can be expressed as follows:

γ([d = d1 · d2]
♯)|(d,·) ⊇ {(s, h, h1, h2) | h1#h2

andh1 · h2 = h}. (6)

Fig. 5 shows the four structures in the abstract value[di =
dj · dk]

♯, wheredi, dj , anddk are domain predicates.

• (·) d denotes the structure that results from setting the abstrac-
tion predicates to1/2 for all individuals not ind, and setting
all domain predicates other thand to 1/2. In effect, this opera-
tion blurs the distinction between individuals ind1 andd2, and
serves as an abstract method for quantifier elimination.

Using Eqns. (5) and (6) in the definition ofϕ1 ∗ ϕ2, we have

[[ϕ1 ∗ ϕ2]]

= {(s, h) | ∃h1, h2. h1#h2 andh1 · h2 = h and(s, h1) |= ϕ1

and(s, h2) |= ϕ2}

⊆ ([d = d1 · d2]
♯ ⊓ A1 ⊓ A2) 

d

The handling of septraction in the (−⊛)-rule is similar to the han-
dling of separating conjunction in the (∗)-rule, except for the con-
dition thath2 = h ·h1. This requirement is easily handled by using
[d2 = d · d1]

♯. App. A illustrates the application of the (−⊛)-rule.

THEOREM1. The rules in Fig. 3 are sound; that is, if the rules in
Fig. 3 say thatϕ, d 
 A, thenγ(A)|(d,·) ⊇ [[ϕ]]. �

The proof follows from the fact that each of the abstract operators
is sound.

Discussion.As discussed in [31,§4], there exist no methods that
handle negations below a separating conjunction. Our fragment of
separation logic admits negations at the leaves of formulas, and,
thus, is the first approach that can handle formulas with negations
below a separating conjunction.

It is, however, non-trivial to extend our technique to handle
general negation. Let(·)c denote the set-complement operation. Let
¬#(·) denote the abstract negation operation; that is,γ(¬#(A)) ⊇
γ(A)c, and¬#(A) ⊒ α(γ(A)c). Suppose thatγ(A)|(d,·) ⊇ [[ϕ]];
in general,γ(¬#(A))|(d,·) is not guaranteed to overapproximate
the models of¬ϕ.

Furthermore, it is non-trivial to extend our technique to prove
validity of general implications. Suppose that we would like to
prove the validity ofϕ1⇒ϕ2, whereϕ1, ϕ2 ∈ SL. LetA1 overap-
proximate the set of models ofϕ1, andA2 overapproximate the set
of models ofϕ2.A1 ⊑ A2 does not imply[[ϕ1]] ⊆ [[ϕ2]].

5. Experimental Evaluation
This section presents the results of our experiments to evaluate the
costs and benefits of our approach. The implementation and bench-
marks can be accessed (anonymously) at [1]. The experimentswere
designed to shed light on the following questions:

1. How costly is the semi-decision procedure (in terms of time)?

2. How often is the semi-decision procedure able to determine that
a formula is unsatisfiable?

6 2014/4/22



emp x = y x 7→ y ls(x, y) ϕ ∧ ϕ ϕ ∨ ϕ ϕ ∗ ϕ ϕ−⊛ ϕ Full
+ − + − + − + − Corpus

Group 1 1 5 8 8 13 1 19 10 22 4 12 10 23
Group 2 64 22 0 0 22 22 22 22 64 0 64 0 64
Group 3 512 218 0 0 218 218 218 218 512 0 512 512 512

Total 577 245 8 8 253 241 259 250 598 4 588 522 599

Table 3: Number of formulas that contain each of theSL operators in the three groups of formulas used in the experiments. The columns labeled “+” and
“−” indicate the number of atoms occurring as positive and negative literals, respectively.

3. For unsatisfiable formulas that are beyond the capabilities of
other existing tools, is the semi-decision procedure actually able
to determine that the formulas are unsatisfiable?

Setup.The semi-decision procedure is written in OCaml; it com-
piles a formula to a proof DAG, expressed as an equation system.
The abstract-value manipulations in the proof rules of Fig.3 are
performed using ITVLA, a modified version of TVLA [26] that
was implemented for performing interprocedural shape analysis
[23, §8]. ITVLA (i) replaces TVLA’s notion of an intraprocedural
control-flow graph by the more general notion ofequation system,
in which transfer functions may depend on more than one argu-
ment, and (ii) supports a more general language in which to spec-
ify equation systems. In particular, the ITVLA language supports
explicit use of the meet operator [2] for a canonical-abstraction
domain. Experiments were run on a single core of a 2-processor,
4-core-per-processor 2.27 GHz Xeon computer running Red Hat
Linux 6.5.

Test Suite.Our test suite consists of three groups of unsatisfiable
formulas:

• Group 1, shown in Tab. 4, was chosen to evaluate our procedure
on a wide spectrum of formulas.

• Group 2 was created by replacing the Boolean variablesa andb
in the templateT1

def
= ¬a∧ emp∧ (a ∗ b) with the8 literalslits

of SL; that is,true, emp, x 7→ y, ls(x, y), and their negations.
Five of the 64 instantiations of templateT1 are shown in Tab. 5.

• Group 3 was created by replacing the Boolean variablesa, b,
andc in the templateT2

def
= emp∧a∧ (b ∗ (c−⊛ (emp∧¬a)))

with the 8 literals lits of SL. Five of the 512 instantiations of
templateT2 are shown in Tab. 6.

TemplatesT1 and T2 are based on work by Hou et al. [22] on
Boolean separation logic. TemplatesT1 andT2 are listed as for-
mulas 15 and 19, respectively, in [22, Tab. 2]. In total, there were
599 formulas in our test suite. Tab. 3 summarizes the characteristics
of the corpus based on the occurrences of theSL operators.

Though not shown in this section, we also evaluated our proce-
dure on a set of satisfiable formulas. The procedure reports aset of
abstract models when given a satisfiable formula. The time taken to
compute these abstract models is similar to that for provingformu-
las unsatisfiable.

We now answer Questions 1–3 posed at the beginning of this
section using the three groups of formulas.

Group 1 Results.The running time of our procedure on the for-
mulas listed in Tab. 4 was often on the order of five seconds. The
procedure was able to prove unsatisfiability for all formulas, ex-
cept (23). We believe that formulas (9)–(23) are beyond the scope
of existing tools. Formulas (9)–(14) demonstrate that we can handle
formulas that describe overlapping data structures, including con-
junctions of separating conjunctions. Formulas (15)–(21)demon-
strate that we can handle formulas that contain occurrencesof both
ls and septraction.

Formula U Time

(1) a1 7→ a2 ∧ ¬ls(a1, a2) X 1.41
(2) a1 7→ a2 ∗ a2 7→ a1 X 1.68
(3) ¬emp∧ (ls(a1, a2) ∗ ls(a2, a1)) X 2.04
(4) a1 6= a2 ∧ (ls(a1, a2) ∗ ls(a2, a1)) X 1.91
(5) (ls(a1, a2) ∗ ls(a2, a3)) ∧ ¬ls(a1, a3) X 3.75
(6) ls(a1, a2) ∧ emp∧ a1 6= a2 X 1.41
(7) (a1 7→ a2∗true)∧(a2 7→ a3∗true)∧(true∗a3 7→ a1) X 4.34
(8) (a1 7→ a2 −⊛ true) ∧ (a1 7→ a2 ∗ true) X 2.32

(9) (ls(a1, a2) ∗ ¬ls(a2, a3)) ∧ ls(a1, a3) X 6.50
(10) ls(a1, a2) ∧ ls(a1, a3) ∧ ¬emp∧ a2 6= a3 X 1.91
(11) (ls(a1, a2)∗true∗a3 7→ a4)∧(true∗(ls(a2, a1)∧a2 6=

a1))
X 30.6

(12) (a1 7→ a2 ∗ ls(e1, e2))∧ (a2 7→ a3 ∗¬emp)∧ (a3 7→
a1 ∗ ¬a5 7→ a6 ∗ true)

X 40.5

(13) (¬emp ∗ ¬emp) ∧ (a1 = nil ∨ a1 7→ e1 ∨ ((a1 7→
e1 ∧ e1 = nil) ∗ true)) ∧ ls(a1, a2)

X 2.37

(14) ((ls(a1, a2) ∧ a1 6= a2) ∗ (ls(a2, a3) ∧ a2 6= a3)) ∧
((ls(a4, a1) ∧ a4 6= a1) ∗ a1 7→ e1 ∗ true)

X 11.3

(15) (ls(a1, a2) −⊛ ls(a1, a2)) ∧ ¬emp X 1.98
(16) (a3 7→ a4 −⊛ ls(a1, a4)) ∧ (a3 = a4 ∨ ¬ls(a1, a3)) X 2.09
(17) ((a2 7→ a3−⊛ls(a2, a4))−⊛ls(a1, a4))∧¬ls(a1, a3) X 3.89
(18) ((a2 7→ a3 −⊛ ls(a2, a4)) −⊛ ls(a3, a1)) ∧ a2 = a4 X 3.87
(19) (a1 7→ a2 −⊛ ls(a1, a3)) ∧ (¬ls(a2, a3) ∨ (true ∧

(a1 7→ e1 ∗ true)) ∨ a1 = a3)
X 3.52

(20) ((ls(a1, a2) ∧ a1 6= a2) −⊛ ls(e1, e2)) ∧ e1 6= a1 ∧
e2 = a2 ∧ ¬ls(e1, a1)

X 4.56

(21) a1 6= a4 ∧ (ls(a1, a4) −⊛ ls(e1, e2)) ∧ a4 = e2 ∧
¬ls(e1, a1)

X 5.62

(22) ((ls(a1, a2) ∧ a1 6= a2) −⊛ ls(e1, e2)) ∧ e2 6= a2 ∧
e1 = a1 ∧ ¬ls(a2, e2)

X 4.65

(23) ((a2 7→ a3 −⊛ ls(a2, a4)) −⊛ ls(a3, a1)) ∧
(¬ls(a4, a1) ∨ a2 = a4)

? 4.24

Table 4:Unsatisfiable formulas. AX in the U-column indicates that the
semi-decision procedure was able to prove the formula unsatisfiable; a?
indicates that the semi-decision procedure was not able to prove the formula
unsatisfiable. The time is in seconds.

Group 2 Results.The 64 formulas instantiated from the template
T1

def
= ¬a ∧ emp∧ (a ∗ b) took between 0.80 and 13.5 seconds

to check, with a mean of 2.91 and a median of 1.63 seconds. Our
procedure was able to prove unsatisfiability for all 64 formulas. All
instantiations ofT1 that contain an occurrence of thels predicate
are beyond the capabilities of existing tools.

The formulas that took the greatest amount of time and the
second-greatest amount of time are (5) and (4), respectively, in
Tab. 5. In both cases, a large amount of time was required because
of the presence of¬ls, which is represented by24 structures—a
much larger number than is needed for the other literals.

Group 3 Results.The 512 formulas instantiated from the template
T2

def
= emp∧ a∧ (b ∗ (c−⊛ (emp∧¬a))), took between 0.79 and
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Formula U Time

(1) ¬(a1 7→ a2) ∧ emp∧ (a1 7→ a2 ∗ a3 7→ a4) X 3.40
(2) a1 7→ a2 ∧ emp∧ (¬(a1 7→ a2) ∗ a3 7→ a4) X 4.97
(3) ¬(a1 7→ a2) ∧ emp∧ (a1 7→ a2 ∗ ls(a3, a4)) X 5.64
(4) ls(a1, a2) ∧ emp∧ (¬ls(a1, a2) ∗ ls(a3, a4)) X 11.3
(5) ¬ls(a1, a2) ∧ emp∧ (ls(a1, a2) ∗ ls(a3, a4)) X 13.5

Table 5:Example instantiations ofT1
def
= ¬a ∧ emp ∧ (a ∗ b), where

a, b ∈ lits. A X in the U-column indicates that the semi-decision procedure
was able to prove the formula unsatisfiable. The time is in seconds.

Formula U Time

(1) emp∧ ls(a1, a2)∧ (ls(a3, a4)∗ (ls(a5, a6)−⊛ (emp∧
¬ls(a1, a2))))

X 6.07

(2) emp∧¬emp∧ (ls(a3, a4) ∗ (¬(a5 7→ a6)−⊛ (emp∧
emp)))

X 3.34

(3) emp∧ a1 7→ a2 ∧ (a3 7→ a4 ∗ (a5 7→ a6 −⊛ (emp∧
¬(a1 7→ a2))))

X 3.79

(4) emp ∧ ¬ls(a1, a2) ∧ (¬ls(a3, a4) ∗ (ls(a5, a6) −⊛
(emp∧ ls(a1, a2))))

X 8.05

(5) emp∧¬ls(a1, a2)∧(ls(a3, a4)∗(ls(a5, a6)−⊛(emp∧
ls(a1, a2))))

X 8.10

Table 6: Example instantiations ofT2
def
= emp∧ a ∧ (b ∗ (c −⊛ (emp∧

¬a))), wherea, b, c ∈ lits. A X in the U-column indicates that the semi-
decision procedure was able to prove the formula unsatisfiable. The time is
in seconds.

8.10 seconds to check using our procedure, with a mean of 2.20,
and a median of 1.83 seconds. Our procedure was able to prove
unsatisfiability for all 512 formulas. All instantiations of T2 that
contain an occurrence of thels predicate are beyond the capabilities
of existing tools.

Discussion.The slow runtimes have more to do with the imple-
mentation, and less to do with the approach. There is a large cost
for starting an ITVLA process—this startup cost, for instance, ac-
counts for approximately half of the runtime of formula (1) in
Tab. 4. Apart from the startup cost, most of the runtime goes into
coerce. Bogudlov et al. [6] describe improved implementations of
coerce and other primitives for manipulating 3-valued structures.
We are in the process of adapting the ITVLA implementation touse
these optimized primitives. We believe that these optimized primi-
tives will lead to a significant speed-up in the semi-decision proce-
dure: in their experiments, Bogudlov et al. obtained as muchas a
50-fold speedup compared to the prior version of TVLA.

6. Related Work
The literature related to reasoning about separation logicis vast,
and we mention only a small portion of it in this section. Decid-
ability results related to first-order separation logic arediscussed in
[8, 10]. A fragment of separation logic for which it is decidable to
check validity of entailments was introduced by Berdine et al. [4].
The fragment includes points-to and linked-list predicates, but no
septraction, or negations of points-to or linked-list predicates. More
recent approaches deal with fragments of separation logic that are
incomparable to ours [22, 25, 29]; in particular, none of thelatter
papers handle linked lists. We based our experiments on formulas
listed in Hou et al.’s work on Boolean separation logic [22]—the
only paper we found that listed formulas outside the syntactic frag-
ment defined by Berdine et al. We believe that our technique repre-

sents the first important step in designing a verification system that
uses a richer fragment of separation logic.

Most approaches to separation-logic reasoning use a syntac-
tic proof-theoretic procedure [4, 30]. Two exceptions are the ap-
proaches of Cook et al. [11] and Enea et al. [20], which use a more
semantics-based approach: they represent separation-logic formu-
las as graphs in a particular normal form, and then prove thatone
formula entails another by finding a homomorphism between the
corresponding graphs. Our approach is also semantics-based, but
has more of an algebraic flavor: our method performs a bottom-up
evaluation of a formulaϕ using a particular shape-analysis interpre-
tation (Fig. 3); if the answer is the empty set of3-valued structures,
thenϕ is unsatisfiable.

To deal with overlaid data-structures, Enea et al. [20] introduce
the∗w operator: the∗w operator specifies data structures that share
sets of objects as long as they are built over disjoint sets offields.
Their approach, however, does not handle conjunctions of separat-
ing conjunctions or negations of thels-predicate. Thus, [20] cannot
handle formulas (9)–(14) in Tab. 4, even though these formulas do
not contain septraction. Note that, for instance, the logical conjunc-
tion in formula (9) cannot be replaced by the∗w operator.

Piskac et al. [31] present a decision procedure for a decidable
fragment of separation logic based on a reduction to a particular
decidable first-order theory. Unlike our approach, the approach in
[31] does not handle septraction or negations below a separating
conjunction.

The explicit use of abstract values drawn from an abstract do-
main as a way to represent knowledge in implementations of de-
cision procedures is a technique that has been receiving increased
attention of late [16–18, 36, 37]. As far as we know, our work is the
first to apply this idea to a fragment of separation logic.

Many researchers pigeonhole TVLA [26] as a system exclu-
sively tailored for “shape analysis”. In fact, it is actually a metasys-
tem for (i) defining a family of logical structures 2-STRUCT[Voc],
and (ii) defining canonical-abstraction domains whose elements
represent sets of 2-STRUCT[Voc]. The ITVLA [23, §8] variant
of TVLA is a different packaging of the classes that make up the
TVLA implementation, and demonstrates better that canonical ab-
straction is a general-purpose method for abstracting the structures
that are a logic’s domain of discourse.

To simplify matters, the separation-logic fragment addressed in
this paper does not allow one to make assertions about numeric-
valued variables and numeric-valued fields. Our approach could be
extended to support such capabilities using methods developed in
work on abstract interpretation that combines canonical abstraction
with numeric abstractions [21, 28].

7. Conclusion and Future Work
This paper showed how to create a semi-decision procedure for
a fragment of separation logic. The fragment of separation logic
that we use has empty-heap assertions (emp), equalities (x =
y), points-to assertions (x 7→ y), acyclic-list-segment assertions
(ls(x, y)), and their negations as literals; it provides the connectives
∗, −⊛, ∧, and∨. We believe that this is an interesting fragment,
in that it contains formulas for which existing approaches do not
apply.

For eachSL formula ϕ, the procedure performs a bottom-up
evaluation of the formula, using a particular shape-analysis inter-
pretation; if the answer is the empty set of3-valued structures, then
ϕ is unsatisfiable. Thus, the work reported in the paper supports
the thesis that abstract-interpretation concepts can helpin the de-
sign and implementation of decision procedures.

Moreover, ifϕ is satisfiable, then the procedure reports a set of
abstract models—i.e., a value in the canonical-abstraction domain
that overapproximates[[ϕ]]. As we have shown in other work (us-
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ing a variety of other techniques, and for a variety of other logics),
a decision-procedure-like method that is prepared to return such
“residual” answers provides a way to generate sound abstract trans-
formers automatically [32, 35, 37, 39]. In particular, whenϕ spec-
ifies the transition relation between the pre-state and post-state of a
concrete transformerτ , a residuating decision procedure provides a
way to create a sound abstract transformerτ ♯ for τ , directly from a
specification in logic ofτ ’s concrete semantics. Consequently, the
work reported in the paper also supports the thesis that abstract-
interpretation-based decision procedures provide much promise for
automating the construction of program-analysis tools. Using our
semi-decision procedure, we now have a way to create abstract
transformers based on canonical-abstraction domains directly from
a specification of the semantics of a language’s concrete transform-
ers, written inSL.

Although TVLA and separation logic have both been applied
to the problem of analyzing programs that manipulate linkeddata
structures, there has been only rather limited crossover ofideas be-
tween the two approaches. Our semi-decision procedure is built on
the connection between TVLA states andSL statelets described in
§2.3, which represents the first formal connection between the two
approaches. For this reason, the semi-decision procedure should be
of interest to both communities: (i) For the TVLA community,the
procedure illustrates a different and intriguing use for canonical-
abstraction domains. The domains that we use are tailored for the
particular formula, but, more importantly, provide an encoding that
can be connected to theSL semantics: see Eqns. (2) and (3) in
§2.3, and the use of domain predicates to express disjointness in§3.
(ii) For the separation-logic community, the procedure shows how
using TVLA and canonical-abstraction domains leads to a model-
theoretic approach to the decision problem forSL that is capable of
handling formulas that are beyond the capabilities of existing tools.

We believe that the approach presented in this paper has the po-
tential to be extended to deal with richer fragments of separation
logic—in particular, fragments that contain both separating impli-
cation and acyclic linked-list predicates.
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A. A Satisfiable Formula
Consider the formulaϕ

def
= x 7→ y −⊛ ls(x, z). We want to

computeA ∈ A such thatγ(A)|(d,·) ⊇ [[ϕ]]. Similar to what
was done in§3 for the∗ operator, we introduce two new domain
predicatesd1 and d2, which are used to demarcate the heaplets
that must satisfyϕ1

def
= x 7→ y andϕ2

def
= ls(x, z). By design,

there existA1, A2 ∈ A such thatγ(A1)|(d1,·) = [[x 7→ y]] and
γ(A2)|(d2,·) = [[ls(x, z)]], respectively.A1 consists of the single
3-valued structure shown in Fig. 6(b). Fig. 6(c) shows one of the
structures inA2; it represents an acyclic linked list fromx to z
whose length is greater than1. Furthermore, to satisfyϕ1−⊛ϕ2, d
andd1 are required to be disjoint regions whose union isd2.A also
contains an abstract value, which we will callD, that represents
this disjointness constraint exactly.D consists of four3-valued
structures. Fig. 6(a) shows the “most general” of them: it represents
two disjoint regions,d andd1, that partition thed2 region (where
each ofd andd1 contain at least one cell). The summary individual
labeled¬d,¬d1,¬d2 in Fig. 6(a) represents a region that is disjoint
from d2.

To impose a necessary condition forx 7→ y −⊛ ls(x, z)
to be satisfiable, we take themeet of D, A1, and A2:
[[x 7→ y −⊛ ls(x, z)]] ⊆ D ⊓ A1 ⊓ A2. Fig. 6(d) shows one of the
structures that arises inD ⊓A1 ⊓A2, after the semantic-reduction
operators have been applied. A few points to note about this resul-
tant structure:

• The summary individual in regiond2 present in thels(x, z)
structure in Fig. 6(c) is split in Fig. 6(d) into a singleton in-
dividual pointed to byy and a summary individual.

• The individual pointed to byx is in regionsd1 andd2, but not
d.

• The individual pointed to byy is in regionsd andd2, but not
d1.

• The variablesx andy are not equal.

• All the individuals ind are reachable fromy, not reachable from
z, and havelink[d, n, z] true.

Fig. 6(e) shows the structure after we have projected the heap
onto the heap regiond; that is, the values of the domain predicates
d1 and d2 have been set of1/2 on all individuals, and all the
abstraction predicates have been set to1/2 on all individuals not in
d. In effect, this operation blurs the distinction between the region
that is outsided, but ind2, and the region that is outside ofd and
d2. Note that the fact thatx andy are not equal is preserved by the
projection operation. This projection operation, denotedby (·) d

in §4, serves as an abstract method for quantifier elimination.
Note that Fig. 6(e) represents an acyclic linked-list fromy to

z with x 6= y, which is one of the models that satisfiesx 7→
y −⊛ ls(x, z).
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Figure 6: Some of the structures that arise in the meet operation
used to evaluatex 7→ y −⊛ ls(x, z).
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