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ABSTRACT

As asynchronous programming becomes more mainstream,
program analyses capable of automatically uncovering pro-
gramming errors are increasingly in demand. Since asyn-
chronous program analysis is computationally costly, current
approaches sacrifice completeness and focus on a limited set
of thread schedules empirically likely to expose programming
errors. These approaches make use of a parameterized thread
scheduler that explores a set of schedules similar to a default
deterministic schedule. By increasing the parameter, a larger
set of thread interactions can be explored but at a higher
cost. The effectiveness of these approaches depends critically
on the default (deterministic) scheduler on which varying
schedules are fashioned.

We find that the limited exploration of relevant asynchronous
program behaviors can be made more efficient by design-
ing parameterized schedulers that correspond well with the
intended synchronization and ordering of program events,
e.g. arising from waiting for an asynchronous task to complete.
We follow a reduction-based “sequentialization” approach to
analyzing asynchronous programs that can leverage existing
(sequential) program analysis tools by encoding the program
executions according to a “synchronization-aware” scheduler
as executions of a sequential program. Analysis based on our
new scheduler comes at no greater computational cost, and
provides strictly greater behavioral coverage than analysis
based on existing parameterized schedulers; we validate these
claims both conceptually, with complexity and behavioral-
inclusion arguments, and empirically, by discovering actual
reported bugs faster with smaller parameter values.

1. INTRODUCTION

In order to improve program performance and responsive-
ness, many modern programming languages and libraries
promote an asynchronous programming model, in which
“asynchronous procedures” can execute concurrently with
their callers, until their callers explicitly wait for their com-
pletion. Accordingly, as concurrently-executing procedures
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interleave their accesses to shared memory, asynchronous
programs are prone to concurrency-related errors.

In this work, we develop program analyses capable of de-
tecting errors in asynchronous programs. To motivate the
need for such analyses, consider the subtle error in the event-
handling C# code of a graphical user interface found on Stack-
Overflow, which is listed Figure The MySubClass.onNavigatedTo
method accesses image-related information (i.e. m_bmp.PixelWidth)
which is filled in by the Loadstate method, invoked by the
OnNavigatedTo method of the base class. However, the Loadstate
method has been implemented to execute asynchronously so
that its callers can continue to execute while the image file
is read — which is presumably a high-latency operation —
meaning that base.OnNavigatedTo can return before m_bmp has
been initialized. This creates a race between the initializa-
tion of m_bmp and its use in the call to canvas.SetLeft, which
results in an error when its use wins. Not having anticipated
this race, the programmer has failed to provide adequate
synchronization to ensure that the call to Loadstate completes
before m_bmp is accessed by oOnNavigatedTo.

While detecting such concurrency bugs by exhaustive explo-
ration of all possible program schedules is intractable, one
promising approach is the prioritized exploration of behaviors
whose manifestations rely on a small numbering of ordering
dependencies between program operations. In particular,
the delay bounding approach [1] explores the program be-
haviors arising in executions with a given scheduler S(K)
parameterized by a “delay bound” K € N; while S(0) is a
deterministic scheduler, exhibiting only one order of program
operations, S(K) is given additional nondeterministic choice
with each increasing value of K, allowing additional orders,
and ultimately, exhibiting additional observable program be-
haviors. The approach is particularly compelling under the
hypothesis that interesting program behaviors (e.g., bugs)
manifest with few ordering dependencies: Emmi et al. [1]
demonstrate an efficiently-implementable “depth-first” delay-
ing scheduler DF(K) which can expose behaviors with few
ordering dependencies using small values of K.

In practice, the cost of prioritized exploration with a param-
eterized scheduler S(K) is highly sensitive to the value of
K, limiting DF(K)-based exploration to roughly 0 < K < 5,
depending on program size. While such small values of K
may suffice to expose bugs in programs which use very little
synchronization, each program synchronization statement
induces another event-order dependency, possibly forcing



// MySubClass
BitmapImage m_bmp;

protected override async void OnNavigatedTo(NavigationEventArgs e)

{
base.OnNavigatedTo(e);
await PlayIntroSoundAsync();
imagel.Source = m_bmp;

Canvas.SetLeft (imagel, Window.Current.Bounds.Width - m_bmp.PixelWidth);

}

protected override async void LoadState(Object nav, Dictionary<String, Object> pageState)

{
m_bmp = new BitmapImage();

var file = await StorageFile.GetFileFromApplicationUriAsync("ms-appx:///pic.png");

using (var stream = await file.OpenReadAsync())

await m_bmp.SetSourceAsync(stream);
}
// base class
class LayoutAwarePage : Page

{
protected override void OnNavigatedTo(NavigationEventArgs e)
{
/).
this.LoadState(e.Parameter, null);
}

}

Figure 1: This code contains a subtle bug due to a race condition on the m_bmp field.

DF(K) to further deviate from its natural deterministic order
by increasing K. For instance, if DF(K)’s default schedule
encounters a statement which acquires a lock held by an-
other thread, then DF(K) must spend one of its K delays
in order to execute the other thread and eventually progress
past the lock acquisition. In the context of asynchronous
programs, e.g., using C#’s asynchronous methods, DF(K)
must spend one if its K delays to advance past a statement
which waits for a non-completed task to complete. It fol-
lows that program behaviors which can appear only after
a high number of synchronization statements carry a high
number of event-order dependencies, which ultimately may
be exercised by DF(K) only for large values of K. As the
cost of program exploration with DF(K) is sensitive to K,
the discovery of such behaviors may require an unreasonable
amount of computing resources.

In this work we demonstrate a delaying scheduler DFW (K)
for which the cost of exploration is not tied to program
synchronization, and yet which still enjoys DF(K)’s strengths,
in particular:

e Sequentialization The program executions allowed
by DFW(K) can be simulated by a sequential program
with nondeterministically-chosen data values.

e Low Complexity The reachability problem finite-
data programs restricted to DFW(K) executions is
NP-complettﬂ in K.

However, unlike DF(K), the DFW(K) scheduler explicitly
takes program synchronization into account in its schedul-
ing decisions, so that event-order dependencies arising from
synchronization statements do not force K to increase. Ef-
fectively, this means that DFW (K) provides strictly greater
behavioral coverage than DF(K) at virtually no additional
cost.

!This complexity assumes program variables are fixed in
number and size.

Our contributions and outline are:

A formal semantics of asynchronous programs with
synchronization.

§3] A formal description of the DFW(K) scheduler, and
comparison with DF(K).

44 A “compositional semantics” for DFW (K), which fos-
ters sequentialization.

A code translation encoding DFW (K) executions as a
sequential program.

NP-completeness of reachability under DFW (K) for
finite data programs.

n empirical comparison: nds bugs faster,
@ A irical i DFW(K) finds b f;
with smaller K.

In theory, every program behavior observable with DF(K)
is also observable with DFW(K) for any K, yet the reverse
is untrue: for any Ky there exist programs whose sets of
behaviors observable with DFW (Kj) are not all observable
with DF(K) for any K; Section |3| demonstrates this fact.
Empirically, Section |Z| demonstrates that our sequentializa-
tion of DFW(K) is more effective than DF(K) in finding
bugs in real code examples as the number of synchronization
operations grows.

While our development is centered around a simple pro-
gramming model with asynchronous procedure calls, and
“wait” statements which block until the completion of a given
asynchronous call, our technical innovations also apply to
other asynchronous programming primitives provided by
widely-used programming languages, such as the partially-
synchronous procedure calls of C#E| and the wait-for-all

2In C#, executing an “await” inside of a procedure returns
control to the caller, executing the remaining continuation
asynchronously.



synchronization barriers of, e.g., Cilk and X10. We believe
that the same principles would also apply for other synchro-
nization mechanisms such as semaphores and locks.

2. ASYNCHRONOUS PROGRAMS

In order to develop our theory around synchronization-aware
schedulers, we introduce a formal model of asynchronous pro-
grams with asynchronously executing procedure calls, and
blocking wait-for-completion synchronization. When a proce-
dure is called asynchronously, control returns immediately to
the caller, who may store a task identifier with which to refer
to the procedure instance, which we henceforth refer to as a
task. The newly-created task then executes concurrently with
the caller, possibly accessing the same set of global program
variables concurrently. While we suppose for simplicity that
task identifiers are not stored in global program variables,
we do allow task identifiers to be stored in procedure-local
variables, passed as arguments to called procedures, and
returned from procedure calls. A task identifier ¢ may be
used to block the execution of another task j until task ¢
completes, at which point the task’s result may be stored
in a program variable. Together these features comprise an
expressive model of concurrent programs which corresponds
closely to the features in a diverse range of programming
languages including C+#, Cilk, and X10.

Syntacticly, a program is a set of global variable declarations,
along with a set of procedure declarations whose statements
are given by the grammar:

s := s; s | assume e | skip

| if ¢ then s else s | while ¢ do s
| © := e | call =z := p e | return e
| async =z := p e | x := wait e

Here, = ranges over the set Vars of program variables, p
ranges over procedure names, and e ranges over program
expressions — whose grammar we leave unspecified. The set
of program values Vals includes the set IDs of task identifiers,
including a special polymorphic nil value 1. We assume
program expressions are statically typed, that each task-
identifier typed expression evaluates to a single value i € IDs,
and that each non-identifier typed expression evaluates to a
set of values V' C (Vals\ IDs). Furthermore, we suppose that
the set of program expressions contains %, which can evaluate
to any non-identifier program value, and that each program
contains a single entry-point procedure named main.

Aside from the usual sequential programming statements,
we include the statement async x := p e which creates a
new task to execute procedure p with argument e, storing
its identifier in the procedure-local variable z, and the state-
ment x := wait e, which blocks execution until the task
i € IDs referenced by e completes, at which point the result
which i returns is assigned to the variable x. Furthermore,
to facilitate our translations of programs into sequential pro-
grams with nondeterministically-chosen values, which appear
in later sections, we include the assume e statement, which
proceeds only if the expression e evaluates to true, and the
nondeterministic assignment z := *.

A frame f = (¢,s) € Frames is a valuation £ : Vars — Vals to
procedure-local variables, along with a statement s € Stmts

describing the entire body of a procedure that remains to
be executed; s, denotes the statement body of procedure
p. A task t = (i,w,v) is an identifier ¢ € IDs, along with
a procedure frame stack w € Frames™, and a result value
v € (Vals). We say a task t = (i, w,v) € Tasks is completed
when v # 1, and we maintain that v = L if and only if
w = &EL we refer to t as the root task ¢ = L. A task pool
is a set m C Tasks in which no two tasks have the same
identifier. A configuration ¢ = (g,m) € Configs is a valuation
g : Vars — Vals to the global program variables, along with
a task pool m.

To reduce clutter in our definition of program semantics, we
define a notion of contexts. A statement context S is a term
derived from the grammar S ::= ¢|S;s, where s € Stmts.
We write S[s] for the statement obtained by substituting a
statement s for the unique occurrence of ¢ in S. Intuitively,
a context filled with s, e.g., S[s], indicates that s is the
next statement to execute in the statement sequence S[s].
Similarly, a task context T' = (I, S) - w is a frame sequence in
which the first frame’s statement is replaced with a statement
context, and we write T[s] to denote the frame sequence

(1, S[s]) - w.

Figure [2| defines an operational program semantics via a set
of transition rules on program configurations; Appendix [A]
lists the remaining transition rules for the usual sequential
program statements. The CALL rule invokes a procedure by
adding a new procedure frame on top of the procedure frame
stack. The ASYNC rule adds a newly-crated task to execute
an asynchronously called procedure to the task pool, and
stores its task task identifier (in a procedure-local variable).
The CONTINUE rule progresses past a wait statement when
the waited task is already completed, assigning its return
value into the result variable. The COMPLETE rule completes
a task which returns from its bottommost procedure frame,
while the RETURN assigns the return value of a non-bottom
procedure frame to the caller’s result variable.

The initial configuration co = (go,mo) of a program P is
the valuation go mapping each global variable of P to L,
along with a task pool mo containing a single root task
(L, (€o, Smain), L) such that £y maps each variable of the main
procedure to L. A final configuration (g, m) is a valuation g
along with a task pool m in which all tasks are completed:
for all {_,_,v) € m, v# L. An execution of a program P to
¢; is a configuration sequence £ = coc: ... ¢; starting from
the initial configuration cg such that ¢; — ¢;41 for 0 <7 < 7;
¢ is called finalized when c¢; is final. We define R(P) as the
set of global valuations reached in finalized executions of P,
ie, R(P)={g:co— ... — (g,-) is finalized }.

Our definition of the reachable valuations R(P) is purposely
restricted to final configurations due to our inclusion of non-
deterministic expressions and the assume statement, which
are needed by our sequentializations in the following sections.
This definition of R(P) does not lose any generality since any
program can be transformed into one in which any config-
uration can reach a completed configuration with the same
global valuation, e.g., by adding a exit flag to simulate the
control flow of an uncaught program exception [2].

3We denote the empty sequence with e.



CALL

Lee(g, M)

f={, SP)
(

(g,mU{(i,T[call z :=p e],v)}) = (g,m U{{, f - T[x:= L],v)})

AsyNC
€ e(g, M)

f= <£7 SP>

7 is fresh

<gva {<i7T[aSynC T i=p e]7U>}> — <g7mU {(’L,T[.T = j]7U>7 <], f:J->}>

CONTINUE

COMPLETE

j=e(g,T) (J,—v) €m v# L f = (¢, S[return e]) v € e(g,¥)
(9;mU{(i,T[z := wait e], L)}) = (g,m U{({i, T[z := v], L)}) (9:mU{(i, f,9}) = (g,mU{({i e, 0)})
RETURN
f = (¢, S[return e]) v € e(g,f)
(g:mU{(i, f-Tlz:=], 1)}) = (g;mU{{i, T[z :=v], 1)})

Figure 2: Transition rules over program configurations.

3. THE DFW SCHEDULER

The asynchronous program semantics of the previous sec-
tion are defined with respect to an implicit task scheduler,
which enables any non-completed task to execute at any time.
Computing the reachable global valuations R(P) of arbitrary
programs P is costly. One compelling approach for lowering
the cost of program exploration is by considering specialized
“delay bounded” schedulers with limited nondeterminism |[1].
In this section, we provide a formal operational characteriza-
tion of Emmi et al.’s K-delay bounded depth-first scheduler
DF(K) |1], as well as our novel “synchronization-aware” vari-
ation DFW (K).

A scheduler ¥ = (Q, qo, 0, ) is a set Q of states with initial
state go € @, a transition function § : Q@ x ((IDs x Configs?) U
{e}) — @, and a task-selection predicate @ : Q@ — IDs.
Intuitively, a scheduler state ¢ € @ determines the task
m(q) € IDs which is enabled to make a transition. The
non-deterministic scheduling choices made by schedulers are
represented using a e transition in which the states of tasks
do not change, but the scheduler state may. We say the
scheduler is deterministic when 6(q,e) = ¢ for all ¢ € Q.
An W-ezecution is an execution coci ...c; such that there
exists a sequence qog . ..q;» € @* and a monotonic injection
f :j — 7' such that for each transition ¢; — ¢;41 of task wu;,
for 0 < i < 7, we have u; € w(qy(s)), and 6(qre), wi, Ci, Cig1) =
qf(i)+1; additionally, giy1 = 6(gs,€) for 0 <@ < j where i ¢
range(f). We define R(P, V) as the set of global valuations
reached in finalized W-executions of P.

We define both the DF(K) and DFW(K) schedulers over
states which represent the ordered tree of tasks of an exe-
cution, in which the children of each node i are the tasks
which task ¢ called, in the order in which they are called.
Formally, the Depth-First Scheduler [1] is the scheduler
DF(K) = (Q, qo, d, 7) such that

Q@ is the set of vertex-labeled trees (V, E, A\, d) with with
vertices V' C IDs, edges E, and labeling function A :
V — ({R,C} x N), assigning each vertex A\(z) = (b, k)
a Ready or Completed status b and a round number
k € N, along with a delay counter d € N.

qo is the tree ({L},0,{L — (R,0)},0).

Figure 3: (a) A tree of the DF(K) scheduler enabling
task ¢, showing i’ ancestors (A), descendants (D),
and the left (L) and right (R) descendants of i’s an-
cestors. As i is enabled, each node in AU L is either
completed or has round > k, and each ndoe in DUR
is either completed or has round > k. (b) When task
i posts j, DF(K) adds (j — R, k) as the rightmost child
of 1.

m(q) is the singleton set containing the least, in depth-first
order, minimal-round ready vertex as in Figure a),
or () when g does not contain such a vertex.

e 0(g,e) is obtained from ¢ by incrementing the delay
counter d, and updating the label of vertex m(g) from
(R, k) to (R,k+ 1), so long as d < K; if d > K, then
3(g,e) = q.

e 6(q,1,c1,c2) is obtained from ¢ by adding a rightmost
child (j — (R, k)) to vertex i, as in Figure [3(b), when
c1 — ¢z is an ASYNC transition creating task identifier
j, and A(7) = (R, k).

e 0(q,4,c1,c2) is obtained from ¢ by updating the label
of vertex i from (R,k) to (C,k) when ¢; — c2 is a
COMPLETE transition.

e d(q,i,c1,c2) = q for any other transition ¢1 — ca.

Note that at each step of §, the label of at most one task can
change. Furthermore, DF(0) is deterministic.

Intuitively, DF(K) keeps track of a notion of execution rounds
from 0. .. K over which tasks execute, and executes lowest-



var i: int;

proc p()
return i

proc main()
var x: task
var y: int

i = 0;

while x do
async x := pQ);
y := wait x;
i=1i+1

return

Figure 4: A program whose valuations are all reach-
able in DFW(0), yet are not all reachable in DF(K),
for any K € N.

round tasks in depth-first order according to the task tree.
For instance, DF(0) allows only a single round of execution,
and executes each task in depth-first order until either all
tasks are completed, or the task currently enabled by DF(0)
blocks. DF(1) executes tasks according to the same order,
except that the execution of one single task can increment
the delay counter, and be postponed to the second round,
resuming if and after which all other tasks complete in the
first round. Note that when the currently enabled task in
DF(K) is blocked, execution can only progress by advancing
the blocked task to a subsequent round, and incrementing
the delay counter. As the delay bound K € N is increased,
the cost of exploration can greatly increase, as DF(K) can
allow exponentially more schedules.

To avoid increasing the delay bound K € N, which expo-
nentially increases the number of alternate schedules ex-
plored, and ultimately increases the cost of exploration,
we define a scheduler which does not enable tasks which
are blocked waiting for others to complete. We define the
Synchronization- Aware Depth-First Scheduler DEW(K) =
(@, qo0, 9, 7) by extending DF(K) with an additional waiting
status label W, and defining 6(q, i, c1,c2) by applying the
following post-processing function f : (Q x Configs) — Q
to dpr: 9(g,4,c1,c2) = f(opr(q, i, c1,c2), c2), where f(g,c) is
obtained from ¢ by

e updating the label of each (R, k)-labeled vertex 4, such
that 7 is Waitinﬂ for a (R/W,_)-labeled task j in ¢, to
(W, k).

e updating the label of each (W, Q—labelecﬂ vertex 4, such
that ¢ is waiting for a (C, k)-labeled task j in ¢, to (R, k).

Note that at each step of §, the label of at most one task
can change due to dpr, and the label of at most one task
can change status to W due to f, though multiple labels
can change status from W to R. Furthermore, DFW(0) is
deterministic.

“We say 4 is waiting for j in (g,m) when
(i, T[x := wait €],_) € m and e(g,T) = j.

5We additionally suppose that dpr is extended to treat W-
labeled nodes as completed.

As the following result demonstrates, the DEW (K) scheduler
is strictly more expressive than DF(K), in the sense that
every global variable valuation which can be reached with
DF(K) can also be reached with DFW(K), for all K € N,
and that for every Ko € N, there are programs whose set
of valuations reached under DFW(Kj) cannot be reached
by DF(K) for any finite value K € N; Figure [ illustrates
such a program, whose set of reachable valuations under
DFW(0) is {i — n:n € N}, while DF(K) is restricted to
{i—n:n < K}, for any K € N. While this example may
appear artificial at first, web programs that chain asyn-
chronous calls are, in fact, quite common. If the loop in
Figure 4] were replaced with one that repeats M times, with
M < K, under the DF(K) scheduler, it would not be possible
to complete program execution at all, since it would not be
possible to move past the K-th iteration.

THEOREM 1. R(P,DF(K)) C R(P,DFW(K)) for all pro-
grams P and K € N; for each Ko € N there are programs P
for which | J, R(P,DF(K)) € R(P,DFW(KQy)).

4. COMPOSITIONAL SEMANTICS

Toward simulating the executions under our DFW (K) sched-
uler as the executions of a sequential program, we follow
Bouajjani et al.’s intuition of compositional executions [3|
with bounded task interfaces. Intuitively, a task interface is
a summary of the effect on global storage of one task and all
of its subtasks; literally, an interface is a sequence of global
valuation pairs, with each pair summarizing a sequence of
execution steps of a task and its subtasks. Compositional
executions with bounded-size interfaces generalizes various
bounding strategies for limiting concurrent behaviors to facili-
tate efficient program analysis, including context bounding [4}
5] and delay bounding |1]. In what follows we specialize Boua-
jjani et al.’s notion of compositional execution in order to fix
a tight correspondence with the executions permitted by our
DFW(K) scheduler.

A (K1) round interface isamap I : (K+1) — (Vars — Vals)?
from natural numbers k € N : k < K to pairs I(k) = (g, g’) of
global variable valuations; we write I(k).in to denote g, and
I(k).out to denote g’, and we say I is fresh when I(k).in =
I(k).out, for 0 < k < K. To compose interfaces, we define
a partial composition operator & such that I @ J is defined
when |I| = |J| and I(k).out = J(k).in for all 0 < k < |I|, in
which case |I & J| = |I| and (I & J)(k) = (I(k).in, J(k).out)
for all 0 < k < |I @ J|. Furthermore, we say an interface I
is complete when I(k).out = I(k+1).in for 0 <k < |I| — 1.

A compositional configuration ¢ = (g, w,k,d,I,J) is a global
valuation g : Vars — Vals, along with a frame sequence
w € Frames™, a round index k € N, delay counter d €
N, and interfaces I and J. Figure [5| defines a transition
relation — on compositional configurations, and ultimately
an interface generation relation ~-: the relation (p, v1, k1) ~
(I,d,vs2, ko) indicates that procedure p called with argument
v1 in round ki, can return the value v2. Furthermore, the
effect of executing p and all of its subtasks, which executed
up until round k2 having spent d delays, is summarized by
the interface 1.

Intuitively, rather than adding a task to the pool, like the



CAsyNC
v € 6(g,T)

<p7 Ul7k1> ~ <J2,d27'l)2,]€2>

di+ds < K

(g,T[async r:=p e],kl,dl,[, J1> — (g,T[.T = <v2,k2>],k1,d1 +do, I, J1 & J2>

CWAIT
(v, k2) = e(g1,T) g1 = I[ki].out
I[k].in = I[k].out for k1 < k < K

g2 = Jlkz].out
Jo is a fresh interface

CDELAY
d< K g1 = I[k].out g2 = Ik + 1].out

(91, T[x := wait €|, k1,d, I, J1) = (g2, T[z :=v], ka,d, I ® J1, J2)

SUMMARY
vz € e(g,£)

(g1, w,k,d, I, J) = (g2, w,k+1,d+1,1,J)

I; and J; are fresh interfaces

(I1[k1].out, (v1, Sp), k1,0, 11, J1) — ... = (I2]kz].out, (¢, S[return e]), k2,d, I2, J2)

<p7 U1, ]f1> ~ <12 ® Jo,d, U2,k2>

Figure 5: The compositional program semantics; though we omit them, the rules for the standard sequential
statements are straightforwardly derived, according to those in Section [2] and Appendix [A]

ASYNG transition of Section [2} the CASYNC rule simply com-
bines the interface J2 of the asynchronously-called task with
the accumulated interfaces Ji of previously-called tasks. The
CWAIT rule then, by sequencing the accumulated interface J1
of previously-called tasks before the current task’s interface
I, effectively fast-forwards the current task’s execution to
a point after the execution of the previously-called tasks,
and resumes in the round ks in which the waited task fin-
ished. The CDELAY rule simply advances the current task
to its next round, spending a single delay. Finally, the SuM-
MARY rule defines the interface generation relation ~~ as
the composition of the task’s internal interface I» with the
accumulated interfaces Jz of its subtasks.

We then define R(P, K) as the set of global valuations labeling
the output of completed interfaces of the main procedure:

<main7€0,0> ~ <I777 ) k>7
|I| = K+1, and I is complete

R(P,K) = {I[k].out :

This definition allows us to relate the global valuations reach-
able by executions of DFW(K) with those reached in our
compositional semantics with (K +1)-round interfaces.

LEMMA 1. R(P,DFW(K)) = R(P,K).

5. SEQUENTIALIZATION

The compositional semantics of the previous section lead
to an alternate way to execute asynchronous programs ac-
cording the DFW(K) using nondeterministic choice (in the
instantiation of fresh task interfaces): rather than adding
asynchronously-called tasks to a task pool, we can simply
guess the global states that a task will encounter at the
beginning of each of its (up to K+1) rounds, and obtain one
possible (K +1)-length interface before continuing execution
of the calling task. In essence, querying a task for its interface
at the point where it is called mimics the same control flow as
a procedure call. In this section, we exploit this fact to gen-
erate a sequential program (P, K) which simulates a given
asynchronous program P under the DEFW(K) scheduler; to
obtain the interface of an asynchronously-called task, ¥(P, K)
calls the task synchronously, with the nondeterministically-
guessed global states constituting the input values of the
task’s interface. Figure [f] lists the statement-by-statement
translation (P, K) of a program P; for simplicity, the listed

translation assumes that there is one single global variable g;
the extension to multiple global variables is straightforward,
by multiplying the G, Guess, Next, and Save variables.

Our sequentialization (P, K) essentially encodes the inter-
faces of the previous section using the global G, Guess, and
Next variables, along with the Save procedure-local variables,
and the Init constant of the main procedure. Initially, the
root task, defined by the main procedure, guesses the global
values it will encounter at the first point at which it either
returns, or waits for a task to complete; this value is stored in
both Next and Guess, and corresponds to the output values
of interface I in the compositional semantics of Figure [5) the
input values of I are stored in Init. If the root procedure
encounters a walt statement, then it validates its Guess, ad-
vances its state to Next, where its previously-called subtasks
have left off, and guesses the next global values at which
it will either return or encounter a wait statement; this
process corresponds to composing the I and J; interfaces
in the CWAIT rule of the compositional semantics, effec-
tively sequencing the effects of previously-called tasks before
resuming from the wait statement.

The other key interesting aspect of X(P, K) is the translation
of the async statement. Similar to the sequentialization of
the DF(K) scheduler [1], the procedure of an asynchronous
task is called synchronously, using the values Next of the
global variables effected by previously-called asynchronous
procedures; furthermore, the global values guessed to be left
behind by the called task are stored into Next, from which
subsequently-called tasks will resume.

While the global values reachable in the K-delay sequential-
ization X (P, K) of a program P are not directly comparable
to those of P, since the global variables of X(P, K) are
(K+1)-length vectors of values, we can compare values using
a projection function ¢ mapping (P, K)’s configurations
to values of P. In particular, we define p(c) as Next[K](c),
i.e., the valuation of the Next vector’s last element in c¢; then
we define R,(P) = {p(c) : co — ... — c is finalized}. Given
this projection, we can show that the set of projected reach-
able global values in the K-delay sequentialization X (P, K)
of an asynchronous program P is precisely equal to the set
of values reachable in P in the K-bounded compositional
semantics.



// translation of var g: T
var G[K+1], Guess[K+1], Next[K+1]: T

// new global declarations
var delays: int

// translation of proc p(l: T) s

proc p(l: T, k: K+1)
var Save: ([K+1]: T) * ([K+1]: T);
S

// translation of proc main() s
proc main()
const Init[K+1]: T := G;

var k: int := 0;
delays := 0;
Next := Guess := *;

S5
assume G = Guess;
assume Init[1l..K+1] = Next[0..K]

// translation of access to g
G[k]

// translation of call x :=p e
call (x,k) := p(e,k)

// translation of return e
return (e,k)

// translation of async t := p e
Save := (G, Guess);

G := Next;

Next := Guess := x;

call t := p(e,k);

assume G = Guess;

G, Guess := Save

// translation of x := wait t
assume G = Guess;

G := Next;

Next := Guess :
x, k7 = t; k :

*;
max (k,k’)

// at each possible preemption
if (x && delays < K)
delays := delays+l; k := k+l1

Figure 6: The K-delay sequentialization (P, K).

LEMMA 2. R,(X(P,K)) = R(P,K).

Combining Lemmas (1| and [2| we have our equivalence be-
tween the valuations reachable in executions of P under the
DFW (K) scheduler with those reachable in executions of the
sequential program 3(P, K).

THEOREM 2. R(P,DFW(K)) = R(X(P, K)).

6. COMPLEXITY

While Section |3| establishes that DFW (K) generally reaches
more program variable valuations than DF(K) does, an ob-
vious concern would be the cost at which it does so. In this
section we demonstrate that despite the increased power of
DFW(K) with respect to reachability, the essential cost of
exploration is roughly equivalent, in that the reachability
problem falls into the same NP-complete class as that of
DF(K). As is standard in the literature, we focus on the
effects on complexity arising from concurrency, factoring out
effects arising from data; we thus measure the asymptotic
complexity of the global-variable value reachability problem

assuming program variables have finite domains, and that
the number of program variables is fixed. Otherwise, general
infinite data domains would lead to undecidability, and the
exponential number of valuations of a non-fixed number of
program variables would interfere with our complexity mea-
surement. Formally, the DEFW (K) value reachability problem
asks whether a given global program variable valuation g of
a given program P is included in R(P,DFW(K)), for a given
K € N, written in unary.

NP-hardness follows directly from the NP-hardness of DF(K)’s
reachability problem [1], since R(P,DF(K)) = R(P,DFW(K))
for programs P without wait statements.

LEMMA 3. The DFW(K) wvalue reachability problem is
NP-hard.

Our proof of NP-membership reduces the problem to value
reachability in sequential programs with a fixed number of
variables in K. While this amounts to a sort of sequentializa-
tion, our sequentialization of Section [ is inadequate, since
3(P,K) has a linear number of program variables in K,
evaluating to an exponential number of valuations in K. The
crux of our proof is thus to design a sequentialization which
uses only a constant number of additional program variables,
independently of K.

LEMMA 4. The DFW(K) value reachability problem is in
NP.

Combining proofs, we have a tight complexity result.

THEOREM 3. The DFW(K) wvalue reachability problem is
NP-complete.

7. EMPIRICAL EVALUATION

We evaluate our DFW(K) scheduler empirically by compar-
ing its sequentialization with an analogously implemented se-
quentialization of Emmi et al.’s DF(K) scheduler |1]; we have
implemented both sequentializations in the c2s tooﬂ As
the DF(K) scheduler does not interpret wait statements, we
pre-process each program given to the DF(K)-based sequen-
tialization with the translation of Figure Iﬂ which outputs
an equivalent program without wait statements. Essentially,
this program keeps track of whether each task has finished
using the global result variable; the translation of each
wait statement for a task cannot proceed until its task has
completed.

All of our experiments are carried out by applying a sequen-
tialization (either DF(K)’s or DFW(K')’s) on a Boogie code
representatiorﬂ of the input asynchronous program, which
is fed to the Corral verification engine 2] to detect whether
an assertion violation can be reached within a given delay
bound K.

6https://github.com/michael—os:mmi/ch
"Boogie is an intermediate verification language [6].


https://github.com/michael-emmi/c2s

// new global declarations
var result[int]: T;
var uniquelId: int

// translation of proc p(l: T) s
proc p(l: T, self: int) s

// translation of proc main() s
proc main()

result := [L1L, L1, ..1;
uniqueId := 0;

S

// translation of call x :=p e
call x := p (e,0)

// translation of return e

result[self] := e;

return e

// translation of async t := p e
t := ++uniqueld;

async p(e,t)

// translation of x := wait t
X := result[t];
assume x != 1

Figure 7: A preprocessing step for the DF(K) se-
quentialization to remove wait statements.

Our first set of experiments measures the delay bound and to-
tal time necessary to discover assertion violations correspond-
ing to errors reported in a set of C# code fragments found
on StackOverflow and MSDN — each around 25-50 LOC.
Though we have manually translated the original C# code to
Boogie, we have done so in a mechanical way which we believe
due to our experience developing mechanical translation
would be roughly equivalent to an automatic translation; the
C# and Boogie sources of the examples, along with a script
to replicate our experiments, is on Githulrﬂ

Figure[§]shows Corral’s execution time to reach each assertion
violation in the DF(K) and DFW(K) sequentializations. In
each run, we begin with the delay bound K = 0 and increase
K until the assertion violation is reachable in the sequential-
ized program. Our results demonstrate that the DEW (K)
scheduler requires consistently fewer delays to reach the as-
sertion violations, which amounts to less exploration time
in Corral. The biggest differences appear in the first and
third examples, in which the assertion violation is preceded
by chains of sequenced asynchronous calls — i.e., where each
asynchronous call in the chain is only made after the previous
one is waited for; intuitively, each link in this chain forces
DF(K) to spend another delay just to progress its execution,
whereas DFW (K)’s natural scheduling order proceeds past
each link without spending a delay. These examples illustrate
that such call chains are commonplace; even the small bit of
code in the third example contains a chain of 5 calls.

In order to validate the efficacy of our delay-bounded sequen-
tialization approach, we have also implemented a “depth-
bounded” exploration by translating (by hand) the first
CollectionLoad example into a sequential program which

8https://github.com/smackers/smack.
%https://github.com/michael - emmi/
Sync-aware-experiments

30

DF
time for iterations 0..(K-1) K=5

20 . time for iteration K

DF
10 K=3
DFW prw DF DFW
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CollectionLoad  SendData Bitmap

Figure 8: Time to bug detection (in seconds for
three examples using the DFW and DF sequential-
izations. Each bar represents the aggregate time
over increasing delay bounds, starting from =zero,
whereas the dark part indicates time spent for the
smallest successful delay bound (K).

100 = O timeout
= (100s)
Opr
10 = KEN
0
0
DFW
L K=0
0
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Figure 9: Time to bug detection (in seconds) for
the parameterized example with N (on the X-axis)
chained asynchronous calls. While the DFW sequen-
tialization consistently discovers the bug without de-
lays, DF requires K = N delays, and times out at
100s for N = 10.

simulates every asynchronous program execution up to a
given number of program steps — we consider that each
program statement constitutes one program step. This pro-
gram’s top-level procedure contains a loop in which each
iteration executes a single step of a nondeterministically-
chosen task; K iterations of this top-level loop thus simulates
all possible asynchronous program executions with up to K
steps. Exploration of this program with Corral is intractable:
the same bug discovered with DFW(1) requires K = 9 pro-
gram steps, yet Corral is only able to explore up to K = 4,
in 90 seconds, before timing out at 100 seconds for any depth
K > 5. Note that while DFW(K) is practically limited by
the degree K of deviation from DFW(0), of which small val-
ues seem to suffice in exposing concurrency errors, DFW (K)
is not inherently limited by execution depth.

Our second set of experiments attempts to measure the
effect of the aforementioned asynchronous call chains on the
DF(K) and DFW(K) sequentializations using a very simple
parameterized program P(N): for each N € N, P(N) makes
N asynchronous calls (to a procedure which simply returns)
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https://github.com/michael-emmi/sync-aware-experiments

waiting for each before calling the next, ultimately followed
by an assertion violation — i.e., assert false. As Figure[d]
illustrates, the DFW(K) scheduler never requires a delay to
reach the assertion, and its sequentialization scales well, with
Corral completing in under 5 seconds even for chains of 50
calls. The DF(K) scheduler, however, requires N delays for
each chain of N calls, and times out at 100 seconds without
completing for chains of 10 calls. The utter simplicity of the
program P(N) suggests that the DF(K) sequentialization is
limited to very small chains, and ultimately small fragments
of synchronization-heavy programs.

8. RELATED WORK

Our work follows the line of research on compositional re-
ductions from concurrent to sequential programs. The initial
so-called “sequentialization” [7] explored multi-threaded pro-
grams up to one context-switch between threads, and was
later expanded to handle a parameterized amount of context-
switches between a statically-determined set of threads exe-
cuting in round-robin order [4} [5]. La Torre et al. [§] later
extended the approach to handle programs parameterized
by an unbounded number of statically-determined threads,
and shortly after, Emmi et al. [1] further extended these re-
sults to handle an unbounded amount of dynamically-created
tasks, which besides applying to multi-threaded programs,
naturally handles asynchronous event-driven programs [9].
Bouajjani et al. [3] pushed these results even further to a se-
quentialization which attempts to explore as many behaviors
as possible within a given analysis budget. While others have
continued to propose sequentializations for other bounded
concurrent exploration criteria or program models [10} |11}
12, [13| |14} |15], as far as we are aware, none of these se-
quentializations is based on a parameterized scheduler which
can reduce exploration cost by taking into account program
synchronization.
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APPENDIX

A. PROGRAM TRANSITIONS FOR SEQUEN-

TIAL STATEMENTS

Transition rules for the standard sequential program state-
ments in an asynchronous program are listed in Figure

The SKIP rule just proceeds to the next statement. The
ASSUME rule proceeds only if the expression e evaluates to
true. The THEN rule proceed to the then branch if the
current valuation of the given expression e evaluates to true,
ELSE rule proceeds to the else branch if e evaluates to false.
The LoOOP rule iterates the loop if the given expression e
evaluates to true, and BREAK skips the loop if e evaluates
to false. The GLOBAL/LOCAL statements set the value of
a global/local variable to the value that given expression
evaluates to.

B. PROOFS TO SELECTED RESULTS
R(P,DFW(K)) = R(P, K)

The asynchronous semantics under DFW(K) and the com-
positional semantic are equivalent. Figure shows the
construction of the interface I that summarizes exactly exe-
cution produced by DFW(1) scheduler (given in in Figure
a)), Consider Task A, that consequently creates tasks B
and C, waits for B (at the end of segment 1) and waits for
C (at the end of segment 4). C is a delaying task (delays
after segment 3) and completes after segment 5.

Basically, A updates the current state it executes in (following
the standard sequential semantics). Each time it creates a
task, it collects and sequences together the interfaces of these
created tasks into J (see the sequencing of the interfaces
of B and C in Figure [TI|b)). When it waits for a task, it
sequences the accumulated tasks in J into I (as in Figure
[[Ic). Then, it continues with its internal execution. When
A waits for the delaying task C, J does not keep new posted
tasks to be joined into I, hence I is not updated. But A
continues sequencing the rest of its execution (segment 6) in
a later round in which C' completes. When A completes, it
ends up with the interface I that summarizes the execution
in Figure a).

We can show the equivalence between the DFW (K') execu-
tion and the compositional semantics inductively. Consider
building the execution of a program P. Initially, P starts
in round 0 with an initial state go, having I[0].in = go. At
each statement of P, the compositional semantics builds the
interface I of P iteratively.

g ASSUME
KIP true € e(C)

C[skip; s] — C[s] Classume e] — C[skip]

THEN
true € ¢(C)

C[if e then s; else s3] — C[s1]

ELSE
false € e(C)

CJif e then s else s3] — C[s2]

Loopr
true € e(C)

C|while e do s] — C[s; while e do s]

BREAK
false € e(C)

C[while e do s] — C[skip]

GLOBAL
x is a global variable v €Ee(g, M)

(9, Mz := e]) — (g(z = v), M[skip])

LocaL
x is a local variable

v € e(g,f) by =l (z —v)

(g;m U {ti, (01, S[z = el) - w, v}}) — (g,m U {ti, (£, S[skip]) - w, v}})

Figure 10:
ments.

Transition rules for sequential state-

e At each execution of a sequential statement, it updates
its current state ¢ — ¢ yielding (g, w,k,d,I,J) —
(9", w,k,d, I,J).

e At each task creation, it creates a new task interface
summarizing its child task and joins this new child task’s
interface to the collected tasks. The join operation
ensures that this new task starts its execution where
the last posted task has left off. Hence, it simulates
the execution of this task in the ordering that DFW(K)
provides. As a result of the join operation, out of J now
keeps the effects of this last posted task. Sequencing an
interface of another task to J will simulate that task to
start from where the last task in J ends in.

e When a task waits, the cumulated tasks in J update I
by appending to it, enabling the next statements of the
program to operate on the state reached by executing
the tasks in J. The transition also moves the current
task to the round and the state where the waited task
has completed. This simulates the execution under
DFW(K) that schedules the waiting task in the round
that the waited task completes, after the execution of
all its children tasks. Notice that the input and the
output intermediate states of I are equal, since the task
waits and does not involve in the execution until the
waited task completes.

e When a task is delayed, CDELAY assigns the current

state to the out state of the interface, and moving the
next state in a later round.
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the equality of the in and in states of these intermediate
rounds.

e CDELAY rule is encoded in the translation of preemption

J

that increases the current round. Since the program

(0)

b[ S ]d reads the value of the g as g[i] in a given round i,

¢ | it already operates on the state corresponding to its

current round.

The DFW (K) value reachability problem is in NP.
We/prove membership in NP by constructing a polynomial

Figure 11: Simulating an asynchronous program us-
ing compositional semantics.

At the end of the execution, I[k].out keeps the state reached
in at most k£ delays.

Here, we prove that for an asynchronous program P, our
translation precisely produces the compositional semantics
and the set of reachable global values in the K-delay se-
quentialization (P, K) of an asynchronous program P is
precisely equal to the set of values reachable in P in the K
bounded compositional semantics.

Our sequentialization actually encodes the interfaces in the
compositional semantics using G, Guess, Next and Save vari-
ables. Essentially, Next keeps J.out and gets updated each
time J is joined with a newly posted task. To be able to
append the posted tasks after the internal task that creates
them, initially Next is set to the state it pauses (in either a
wait or return statement) or delays. Since do not know
that state initially, we guess the ending states of each round
and keep in Guess. When we reach to that pause/delay point,
we validate the guess.

e The CAsyYNC rule is encoded by the translation of the
async statement. The translation sets the current
state g to the next state where the last posted task has
finished with (corresponding to the J.out). It updates
the next variable with the new task’s ending state which
is guessed before its execution and it is verified to be
the current state after the execution of the posted task.
This precisely captures the generation of a new interface
for the new task and joining it with the accumulated
task interface J.

e CWAIT rule is encoded by the translation of wait
statement. The translation verifies the guess that keeps
the pause state of the current task to be the current
state and sets the state to next that keeps the ending
state of the last posted task. This has the same behavior
with the CWAIT rule as it joins the current interface
with J (ensuring that the out state of the I is equal to
the in state of J). Since the translation does not touch
the states g[i] in the intermediate rounds, it satisfies

time algorithm that verifies a guessed polynomial-sized ex-
ecution witness in polynomial time. The verifier program
reaches its final state if the provided witness is valid, hence
reduces our NP-membership problem to the reachability in
this verifier program.

A witness represents a K-delaying execution is a list of
delaying task interfaces in an asynchronous program P given
in the depth-first traversal order of the task creation tree.
Here, we extend a task interface to include the procedure
that the task executes together with its parameter, the round
it starts its execution in, total number of tasks it posts and
the indices of this children in the witness in order.

The construction of the verifier program uses a similar sym-
bolic encoding with our sequentialization and given in Figure
2

The program uses the witness delaying tasks and the total
number of delays as the global variables and calls the verifier
(the translated procedure) of each task separately. Each
procedure checks whether: (i) the execution of this task
yields the g.in and g.out states of its interface and (ii) it
posts all its children tasks in the given order.

Similar to the encoding of sequentialization, translated pro-
cedure keeps save, guess and next states in addition to the
current round it executes in and the number of tasks it has
posted. If non-delaying task is created, we just update the
next state applying its effect. If it is a delaying task, we
first check whether the posted procedure is the procedure of
the next task to be executed and current round is the start
round of this task. Also, the interface of this task is checked
whether g.in state match g.out state of the last executed task
(if this is the first posted task, it should match the end state
of the creator task).

When a task delays, the current round is incremented and the
state is set to the initial state of that round. Moreover, the
next state is updated by applying the effects of numPosted
tasks (a new task will begin after the execution of the creator
task and the numPosted number of tasks posted in earlier
rounds).

When a task returns, we verify whether it has posted all its
children tasks. The out state of that round is calculated by
appending the children tasks’ effects to the current state and
checked whether it is equal to the g.out of this task. If the
task returns in a round earlier then k, the rest of the task
interface is filled in with the children tasks’ interfaces and
g.in and g.out states of children are validated whether they
correspond to each other. The interface of the execution is
valid if these interfaces match and the task has created the



numPosted number of tasks.

C. A STUDY OF ASYNCHRONOUS PRO-
GRAMMING ERRORS

In this section we study classes of common asynchronous
programming errors, as found in blog posts, online discussion
forums such as StackOverflow, and MSDN’s online documen-
tation. The presented examples are written in C#5.0, having
two new asynchronous programming constructs async and
await. An asynchronous procedure in C# is a non-blocking
procedure that begins its execution synchronously and may
continue asynchronously when it meets an await statement.
If an await statement waits for a task which is not com-
pleted, it registers the rest of the execution as a callback of
the waited task and returns control of execution to its caller.
The semantics of the asynchronous procedure in C# (whose
part of statements execute concurrently to its caller) is dif-
ferent then a task creation that posts a task to be executed
completely in parallel to its caller. Though, our method can
still be used to detect possible bugs in these programs (with
a possibility of false positives) as we provide in Iﬂ (Note that
C## also provides constructs for task creation and blocking
wait.)

C.1 Bugs due to Unmanaged Side Effects

A await statement makes sure that the rest of the code after
this statement does not execute until the waited task com-
pletes. However, it does not provide any guarantees to the
caller of this method. While writing asynchronous programs,
programmer may neglect the fact that an asynchronous task
(executed by a non-blocking call) may not be completed when
the control of execution returns to the caller. The program-
mer should be aware of the side effects of non-blocking calls
methods when some data are expected to be returned or set.
A convenient way to prevent these bugs is to make sure that
the task whose effect is required has finished (i.e. checking
whether it has completed or waiting for it) before the rest of
the statements. To be able to wait or await for a task, that
non-blocking method should return a Task handle instead
of void. There are many discussions related to this category
of bugs and real buggy code samples on the web blogs and
programming forums.

Example 1. A Windows store app example on MSDN

string m_GetResponse;
async void Buttonl_Click(object Sender, EventArgs e)
{

try{

In the Buttonl_Click method, non-blocking SendData method
is called and it is waited for two seconds (since the print-
ing statement executes after the delaying task completes
after two seconds). The printing statement uses a variable
that will be set in SendData. SendData method, creates a
request and awaits for a non-blocking method that will re-
turn a response. Notice that, if the response is not ready,
SendData method returns to its caller when it awaits Ge-
tResponseAsync. After getting the response, the rest of the
body executes as a callback and sets m_GetResponse. In case
it takes longer than two seconds to complete SendData, the
contents of m_GetResponse will not be ready.

The code can be corrected by awaiting for SendData method
before using m_GetResponse in its caller method. Since
SendData is “async void” and does not return a task, it
cannot be awaited. So, SendData should be modified so
that it returns a task and is awaited instead of awaiting
Task.Delay. Another problem of the code is since it does not
return a task, it is not possible to catch the exceptions.

Example 2. from a post on MSDN Forums

public App(Q)
{
this.InitializeComponent();
this.VM = new ViewModel ();
}

protected async override void OnLaunched(LaunchActivatedEventArgs args.

{
Frame appFrame = new Frame();
SuspensionManager.RegisterFrame (appFrame, "AppFrame");
appFrame.Navigate (typeof(CategoriesPage), this.VM);

Window.Current.Content = appFrame;
Window.Current.Activate();

}
public ViewModel ()
{
this.InitializeData();
}
private async void InitializeData()
{
this.InvFileName = "NVIN_Home.xml";
await this.DeserializeDataSetAsync();
}

private async Task DeserializeDataSetAsync()

{

StorageFolder storageFolder = ApplicationData.Current.LocalFolder;

var dcs = new DataContractSerializer (typeof(ObservableCollection<Cate

using (var streaml = await storageFolder.OpenStreamForReadAsync(this.
this.Categories = (ObservableCollection<Category>)dcs.ReadObject (s1

}

SendData("https://secure. flickr.com/services/oauth/request_token");

await Task.Delay(2000);
DebugPrint ("Received._Data:.
}
catch (Exception ex) {
rootPage.NotifyUser ("Error_posting.data.to.server."
}
}

+ m_GetResponse);

async void SendData(string url)
{
var request = WebRequest.Create(url);
using (var response = await request.GetResponseAsync())

//Categoriespage code
//When we arrive here, this.VM.Categories may be null

protected override async void LoadState(Object navigationParameter,

Dictionary<String, Object> pageState)

+ ex.Meésagg);

this.VM = navigationParameter as ViewModel;
this.itemsViewSource.Source = this.VM.Categories;

}

The programmer calls ViewModel constructor in the App

using (var stream = new StreamReader(response.GetResponseStream()d) viewModel calls a non-blocking method InitializeData
m_GetResponse = stream.ReadToEnd();

} which awaits DeserializeDataAsync. Upon waiting, this
method returns the control of execution to its caller. In some



executions of the program, it is probable that the execution of
DeserializeDataAsync (which also calls another nonblock-
ing method OpenStreamForReadAsync has not finished when
its caller resumes execution. In such a case, the categories
collection is not loaded when it is used.

C.2 Bugs due to Unexpected Asynchronous Ac-
tivity

In the first category of bugs, the programmer knows that
there are some concurrent parts in his program. In some
cases (e.g. when the programmer uses some library methods)
he may not be aware of the asynchronous activity that his
program exhibits. An application programmer can know
whether a library method is blocking or non-blocking by
looking at the method signature. However, a method not
declared as async may involve some asynchronous activity,
i.e. return to its caller asynchronously without completing
its job. Consider a library method that calls an async void
non-blocking method inside. The caller does not await for
this method since it does not return a task. Since the method
does not contain an await statement, it will not be declared
as async (C# requires methods having await (in C#, await)
statement to be declared as async). From the programmer’s
point of view, this library method is synchronous (i.e. block-
ing) and he can use it by assuming that all of the work in
this method has completed when the control returns to his
program. Note that, a method having some asynchronous
activity can be declared as synchronous when (i) it does not
await for the asynchronous method (possibly an async void
method that does not cause a warning when does not await)
or (ii) it has a blocking wait method that blocks the execu-
tion of this method until the waited task is finished. While
the first case may result in bugs caused by the hidden con-
currency, the latter case may cause deadlocks depending on
the thread it blocks.

Example 3. from a post on StackOverflow

// MySubClass
BitmapImage m_bmp;

protected override async void OnNavigatedTo(NavigationEventArgs

{
base.OnNavigatedTo(e);
await PlayIntroSoundAsync();
imagel.Source = m_bmp;
Canvas.SetLeft (imagel,
}

protected override async void LoadState(Object nav, Dictionary<

{
m_bmp = new BitmapImage();

var file = await StorageFile.GetFileFromApplicationUriAsync("

using (var stream = await file.OpenReadAsync())
await m_bmp.SetSourceAsync(stream);
}
// base class
class LayoutAwarePage : Page
{

protected override void OnNavigatedTo(NavigationEventArgs e)

{

this.LoadState(e.Parameter, null);

}
}

OnNavigatedTo and LoadState are overriden methods and
made non-blocking. In OnNavigatedTo, the programmer calls

the base method and awaits for a non-blocking PlayIntroSound
method. Then, he uses the image which is set in OnNavigatedTo
method. The problem here is that, the base OnNavigatedTo
method has a non-blocking call to the overriden LoadState
method which may return before completing its job. In turn,
the base OnNavigatedTo also returns before completion. In
such a case, the image will not be set and length and width
of the image will be zero.

C.3 Bugs due to Task-Buffer Nondeterminism
Each programming language gives different semantics to task
buffer in which the posted tasks are collected. Consider the
following cases for a single serial and/or FIFO task buffer:

e Tasks in the buffer execute serially (one after the other)
in FIFO order: The execution is equivalent to a se-
quential execution of the tasks in the order they are
posted.

e Tasks in the buffer execute serially but not guaranteed
to be taken in FIFO order: In this case, tasks can be
considered to execute atomically, but their dispatch-
ing order is nondeterministic. The execution may be
problematic if the tasks involve non-commutative work,
since the result of the whole execution depends on the
dispatching order of tasks.

e Tasks on a FIFO task buffer do not execute serially:
Although the tasks are dispatched in the order they are
posted, their execution is concurrent since the tasks can
interleave. The execution of tasks can interfere with
shared memory accesses and bugs can arise from data
races.

C+# thread pool maintains a global task queue (for top level
tasks) in FIFO order and a local task queue (for nested tasks
that are created in the context of other tasks) in LIFO order.
When a thread is available, it takes a task from a task queue
(first checks the local queue and then the global one) and
executes it. By implication, the posted tasks can be executed
in parallel by different threads. The execution of C# tasks
can be considered in the third case, having an ordered buffer
apgl allowing concurrent execution of tasks.

C.4 Bugs due to Complicated Control Flow

Control flow bugs are caused when undesired flow of execu-

Window.Current.Bounds.Width - m_bmp.Pitielikidtl)allowed by the program’s control flow. It is harder

tStrf{)ngOW nedC Leason al % out in asynchronous programs that
create 'tas do non- focﬁ{mg method calls, wait for their
result and post callbacks.
ms-appx:///pic.png");
The following example, the programmer refactors his code by
dividing a method into two methods. Although it seems to
be a minor modification, the control flow of the new program
changes and allows for some buggy executions. This example
demonstrates the fact that it is harder to follow the control
flow in asynchronous programs. If a programmer is not aware
of the new way of thinking and analysis for asynchronous
programs, he can unintentionally introduce bugs into his
programs.

Example 4. from the blog of Nordic Software Com-
pany



async void AcquireFromCameral(object sender, RoutedEventArgs e)

{
try{
var imageStream = await _cameraCapture.Shoot();
var dto = new Dto(){ImageStream = imageStream};
dto.Id = Guid.NewGuid().ToString();
var file = await _fileHndlr.CreateFileAsync(dto.Id);
dto.ImageFilePath = file.Path;
_fileOperator.StoreStream(dto.ImageStream, file);
SaveNewDataItem(dto);
var dataltem = dataSource.GetItem(dto.Id);
StoreData(dataltem);
Frame.Navigate (typeof(EditDataPage), dto.Id);
} catch (Exception ex)
{
new MessageDialog(ex.Message).ShowAsync();
}
}

async void AcquireFromCamera2(object sender, RoutedEventArgs e)

{
try{
var imageStream = await _cameraCapture.Shoot();
var dto = new Dto(){ImageStream = imageStream};
_handler.ImageCaptured(dto);
Frame.Navigate (typeof(EditDataPage), dto.Id);
}
catch (Exception ex)
{
new MessageDialog(ex.Message).ShowAsync();
}
}

async void ImageCaptured(Dto dto)

dto.Id = Guid.NewGuid().ToString();

var file = await _fileHndlr.CreateFileAsync(dto.Id);
dto.ImageFilePath = file.Path;
_fileOperator.StoreStream(dto.ImageStream, file);
SaveNewDataItem(dto);

var dataltem = dataSource.GetItem(dto.Id);
StoreData(dataltem);

AcquireFromCamera and ImageCaptured methods separate
the concerns of storing and saving files and meta data for
the image performed together in the original method. But
this refactoring introduces a bug. In this version, while the
asynchronous procedure CreateFileAsync is executing, the
control of execution returns to its caller AcquireFromCamera.
Hence, it is possible that Frame.Navigate executes before
the completion of ImageCaptured. The caller of the non-
blocking method is changed in a way that it allows for some
undesired executions.

Task{
startRound: int
proc: Proc x E
gin, gout: GAk
numChildren: int
children: intAnumChildren

}

// Globals:
var tasks: Task?k;
var k: int;
Top(witness: Task?k)
tasks := witness;
for i=0 to k-1
call (tasks[i].proc)’;

// proc (e)

proc (e, curr)
var save, guess, next: G
var numPosted, R: int;

numPosted := 0;
R := tasks[curr].startRound;
s’;

// post p e

if * && <p,e> =
tasks[curr].children[numPosted].proc &&
R = tasks[numPosted].startRound then
assume next = tasks[numPosted].gin[R];
next := tasks[numPosted].gout[R];
numPosted ++;
else
save := ¢g; ¢ := next;
guess := next := *;

call p e;
assume guess = g; g := save;
// delay:
assume guess = ¢;
next := guess := *;
R++;

if numPosted > 0 then
for i=0 to numPosted -1
assume next = tasks[children[i]].gin[R];
next := tasks[children[i]].gout[R];
g = current gin[R];

// return
assume guess = g;
assume numPosted = numChildren;

if numChildren > 0 then
for i=0 to numChildren-1
assume next = tasks[children[i]].gin[R];
next := tasks[children[i]].gout[R];
assume tasks[curr].gout[R] = next;

while R< k-1
R++;
assume tasks[curr].gin[R] =
tasks[children[0]].gin[R];
for i=0 to numChildren-1
assume tasks[children[i]].gout[R] =
tasks[children[i+1]].gin[R];

assume tasks[numChildren-1].gout[R]

= current.gout[R];

Figure 12: Translation to construct the verifier pro-
gram
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