
CTL+FO Verification as Constraint Solving

Tewodros A. Beyene
Technische Universität

München

Marc Brockschmidt
Microsoft Research

Cambridge

Andrey Rybalchenko
Microsoft Research

Cambridge

ABSTRACT

Expressing program correctness often requires relating pro-
gram data throughout (different branches of) an execution.
Such properties can be represented using CTL+FO, a logic
that allows mixing temporal and first-order quantification.
Verifying that a program satisfies a CTL+FO property is a
challenging problem that requires both temporal and data
reasoning. Temporal quantifiers require discovery of invari-
ants and ranking functions, while first-order quantifiers de-
mand instantiation techniques. In this paper, we present
a constraint-based method for proving CTL+FO proper-
ties automatically. Our method makes the interplay be-
tween the temporal and first-order quantification explicit in
a constraint encoding that combines recursion and existen-
tial quantification. By integrating this constraint encoding
with an off-the-shelf solver we obtain an automatic verifier
for CTL+FO.

1. Introduction
In specifying the correct behaviour of systems, relating

data at various stages of a computation is often crucial. Ex-
amples include program termination [6] (where the value of
a rank function should be decreasing over time), correctness
of reactive systems [12] (where each incoming request should
be handled in a certain timeframe), and information flow [10]
(where for all possible secret input values, the output should
be the same). The logic CTL+FO offers a natural specifi-
cation mechanism for such properties, allowing to freely mix
temporal and first-order quantification. First-order quantifi-
cation makes it possible to specify variables dependent on
the current system state, and temporal quantifiers allow to
relate this data to system states reached at a later point.

While CTL+FO and similar logics have been identified as
a specification language before, no fully automatic method
to check CTL+FO properties on infinite-state systems was
developed. Hence, the current state of the art is to either
produce verification tools specific to small subclasses of prop-
erties, or using error-prone program modifications that ex-
plicitly introduce and initialize ghost variables, which are
then used in (standard) CTL specifications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

In this paper, we present a fully automatic procedure to
transform a CTL+FO verification problem into a system
of existentially quantified recursive Horn clauses. Such sys-
tems can be solved by leveraging recent advances in con-
straint solving [2], allowing to blend first-order and tempo-
ral reasoning. Our method benefits from the simplicity of
the proposed proof rule and the ability to leverage on-going
advances in Horn constraint solving.

Related Work.
Verification of CTL+FO and its decidability and com-

plexity have been studied (under various names) in the past.
Bohn et al. [4] presented the first model-checking algorithm.
Predicates partitioning a possibly infinite state space are
deduced syntactically from the checked property, and rep-
resented symbolically by propositional variables. This al-
lows to leverage the efficiency of standard BDD-based model
checking techniques, but the algorithm fails when the needed
partition of the state space is not syntactically derivable from
the property.

Working on finite-state systems, Hallé et al. [9], Patthak
et al. [14] and Rensink [15] discuss a number of different
techniques for quantified CTL formulas. In these works, the
finiteness of the data domain is exploited to instantiate quan-
tified variables, thus reducing the model checking problem
for quantified CTL to standard CTL model checking.

Hodkinson et al. [12] study the decidability of CTL+FO
and some fragments on infinite state systems. They show the
general undecidability of the problem, but also identify cer-
tain decidable fragments. Most notably, they show that by
restricting first order quantifiers to state formulas and only
applying temporal quantifiers to formulas with at most one
free variable, a decidable fragment can be obtained. Finally,
Da Costa et al. [7] study the complexity of checking prop-
erties over propositional Kripke structures, also providing
an overview of related decidability and complexity results.
In temporal epistemic logic, Belardinelli et al. [1] show that
checking FO-CTLK on a certain subclass of infinite systems
can be reduced to finite systems. In contrast, our method
directly deals with quantification over infinite domains.

2. Preliminaries

Programs.
We model programs as transition systems. A program P

consists of a tuple of program variables v, an initial condition
init(v), and a transition relation next(v, v′). A state is a val-
uation of v. A computation π is a maximal sequence of states
s1, s2, . . . such that init(s1) and for each pair of consecutive
states (s, s′) we have next(s, s′). The set of computations of

P starting in s is denoted by ΠP (s).

CTL+FO syntax and semantics.
The following definitions are standard, see e.g. [4, 13].
Let T be some first order theory and |=T denote its sat-

isfaction relation that we use to describe sets and relations
over program states. Let c range over assertions in T and x
range over variables. A CTL+FO formula ϕ is defined by
the following grammar using an auxiliary notion of a path
formula φ.

ϕ ::= ∀x : ϕ | ∃x : ϕ | c | ϕ ∧ ϕ | ϕ ∨ ϕ | Aφ | E φ
φ ::= Xϕ | Gϕ | ϕUϕ

As usual, we define Fϕ = (trueUϕ). The satisfaction rela-
tion P |= ϕ holds if and only if for each s such that init(s)
we have P, s |= ϕ. We define P, s |= ϕ as follows using an
auxiliary satisfaction relation P, π |= φ. Note that d ranges
over values from the corresponding domain.

P, s |= ∀x : ϕ iff for all d holds P, s |= ϕ[d/x]

P, s |= ∃x : ϕ iff exists d such that P, s |= ϕ[d/x]

P, s |= c iff s |=T c
P, s |= ϕ1 ∧ ϕ2 iff P, s |= ϕ1 and P, s |= ϕ2

P, s |= ϕ1 ∨ ϕ2 iff P, s |= ϕ1 or P, s |= ϕ2

P, s |= Aφ iff for all π ∈ ΠP (s) holds P, π |= φ

P, s |= E φ iff exists π ∈ ΠP (s) such that P, π |= φ

P, π |= Xϕ iff π = s1, s2, . . . and P, s2 |= ϕ

P, π |= Gϕ iff π = s1, s2, . . . for all i ≥ 1 holds P, si |= ϕ

P, π |= ϕ1Uϕ2 iff π = s1, s2, . . . and exists j ≥ 1 such that

P, sj |= ϕ2 and P, si |= ϕ1 for 1 ≤ i ≤ j

Quantified Horn constraints.
Our method uses the Ehsf [2] solver for forall-exists Horn

constraints and well-foundedness. We omit the syntax and
semantics of constraints solved by Ehsf, see [2] for details.
Instead, we consider an example:

x ≥ 0→ ∃y : x ≥ y ∧ rank(x, y), wf (rank).

These constraints are an assertion over the interpretation
of the “query symbol” rank (the predicate wf is not a query
symbol, but requires well-foundedness). A solution maps the
query symbol into a constraint. Specifically, the example
above has a solution that maps rank(x, y) to the constraint
(x ≥ 0 ∧ y ≤ x− 1).
Ehsf resolves clauses like the above using a CEGAR

scheme to discover witnesses for existentially quantified vari-
ables. The refinement loop collects a global constraint that
declaratively determines which witnesses can be chosen. The
chosen witnesses are used to replace existential quantifica-
tion, and then the resulting universally quantified clauses are
passed to a solver over decidable theories, e.g., HSF [8] or
µZ [11]. Such a solver either finds a solution, i.e., a model for
uninterpreted relations constrained by the clauses, or returns
a counterexample, which is a resolution tree (or DAG) repre-
senting a contradiction. Ehsf turns the counterexample into
an additional constraint on the set of witness candidates, and
continues with the next iteration of the refinement loop.

For the existential clause above, Ehsf introduces a wit-
ness/Skolem relation sk over variables x and y, i.e., x ≥
0∧ sk(x, y)→ x ≥ y ∧ rank(x, y). In addition, since for each
x such that x ≥ 0 holds we need a value y, we require that

Gen(ϕ0, v0, init(v0),next(v0, v
′
0)) =

match ϕ0 with

| ∀x : ϕ1 ⇒
let v1 = (v0, x) in

Gen(ϕ1, v1, init(v0),next(v0, v
′
0) ∧ x′ = x)

| ∃x : ϕ1 ⇒
let v1 = (v0, x) in

let aux = fresh symbol of arity |v1| in

init(v0)→ ∃x : aux (v1),

Gen(ϕ1, v1, aux (v1),next(v0, v
′
0) ∧ x′ = x)

| c ⇒
init(v0)→ c

| EFϕ1 ⇒
let inv , aux = fresh symbols of arity |v0| in

let rank = fresh symbol of arity |v0|+ |v0| in

init(v0)→ inv(v0),

inv(v0) ∧ ¬aux (v0) → ∃v′0 : next(v0, v
′
0) ∧ inv(v′0) ∧

rank(v0, v
′
0),

wf (rank),

Gen(ϕ1, v0, aux (v0),next(v0, v
′
0))

Figure 1: Constraint generation rules for first-order quantifi-
cation, assertions, and existential/eventually temporal quan-
tification.

such x is in the domain of the Skolem relation using an ad-
ditional clause x ≥ 0→ ∃y : sk(x, y). In the Ehsf approach,
the search space of a Skolem relation sk(x, y) is restricted by
a template function Templ(sk)(x, y). To conclude this ex-
ample, we note that one possible solution returned by Ehsf
is the Skolem relation sk(x, y) = (y ≤ x− 1).

3. Constraint generation
In this section we present our algorithm Gen for gen-

erating constraints that characterize the satisfaction of a
CTL+FO formula. We also consider its complexity and cor-
rectness and present an example.

See Figure 1. Gen performs a top-down, recursive de-
scent through the syntax tree of the given CTL+FO for-
mula. It introduces auxiliary predicates and generates a se-
quence of implication and well-foundedness constraints over
these predicates. We use “,” to represent the concatenation
operator on sequences of constraints. At each level of recur-
sion, Gen takes as input a CTL+FO formula ϕ0, a tuple
of variables v0 that are considered to be in scope and define
a state, assertions init(v0) and next(v0, v

′
0) that describe a

set of states and a transition relation, respectively. We as-
sume that variables bound by first-order quantifiers in ϕ0

do not shadow other variables. To generate constraints for
checking if P = (v, init(v),next(v, v′)) satisfies ϕ we exe-
cute Gen(ϕ, v, init(v),next(v, v′)).

Handling first-order quantification.
When ϕ0 is obtained from some ϕ1 by universally quan-

tifying over x, we directly descend into ϕ1 after adding
x to the scope. Hence, the recursive call to Gen uses
v1 = (v0, x). Since init(v0) defines a set of states over
v1 in which x ranges over arbitrary values, the application
Gen(ϕ1, v1, init(v0), . . .) implicitly requires that ϕ1 holds for

arbitrary x. Since the value of x is arbitrary but fixed within
ϕ1, we require that the transition relation considered by the
recursive calls does not modify x and thus extend next to
next(v0, v

′
0) ∧ x′ = x in the last argument.

When ϕ0 is obtained from some ϕ1 by existentially quanti-
fying over x, we use an auxiliary predicate aux that implicitly
serves as witness for x. A first constraint connects the set
of states init(v0) on which ϕ0 needs to hold with aux (v1),
which describes the states on which ϕ1 needs to hold. We
require that for every state s allowed by init(v0), a choice
of x exists such that the extension of s with x is allowed by
aux (v1). Then, the recursive call Gen(ϕ1, v1, aux (v1), . . .)
generates constraints that keep track of satisfaction of ϕ1 on
arbitrary x allowed by aux (v1). Thus, aux (v1) serves as a
restriction of the choices allowed for x. Again, we enforce
rigidness of x by adding x′ = x to the next relation.

Handling temporal quantification.
We use a deductive proof system for CTL [13] and consider

its proof rules from the perspective of constraint generation.
When ϕ0 is a background theory assertion, i.e., does not

use path quantification, Gen produces a constraint that re-
quires ϕ0 to hold on every initial state.

When ϕ0 requires that there is a path on which ϕ1 even-
tually holds, then Gen uses an auxiliary predicate aux (v0)
to describe those states in which ϕ1 holds. Gen applies
a combination of inductive reasoning together with well-
foundedness to show that aux (v0) is eventually reached from
the initial states. The induction hypothesis is represented
as inv(v0) and is required to hold for every initial state
and whenever aux (v0) is not reached yet. Then, the well-
foundedness condition wf , which requires that it is not pos-
sible to come back into the induction hypothesis forever, en-
sures that eventually we reach a“base case” in which aux (v0)
holds. Hence, eventually ϕ1 holds on some computations.

Note that the induction hypothesis inv(v0), the well-
founded relation rank(v0, v

′
0), and the predicate aux (v0) are

left for the solver to be discovered.
See Appendix A for the remaining rules that describe the

full set of CTL temporal quantifiers.

Complexity and correctness.
Gen performs a single top-down descent through the syn-

tax tree of the given CTL+FO formula ϕ. The running time
and the size of the generated sequence of constraints is lin-
ear in the size of ϕ. Finding a solution for the generated
constraints is undecidable in general. In practice however,
the used solver often succeeds in finding a solution (cf. Sect.
4). We formalize the correctness of Gen in the following
theorem.

Theorem 1. For a given program P with init(v) and
next(v, v′) over v and a CTL+FO formula ϕ the applica-
tion Gen(ϕ, v, init(v),next(v, v′)) computes a constraint that
is satisfiable if and only if P |= ϕ.

Proof. (sketch) We omit the full proof here for space rea-
sons. It proceeds by structural induction over the formula,
analogous to the constraint generation of the algorithm Gen.
Intuitively, first-order quantifiers are handled by performing
a program modification that allows to keep track of the value
of quantified variables explicitly, exploiting their rigidness.
The recursive descent into ϕ allows to collect the variables
in scope, embedding them into the quantification used in the
constraint system.

Formally, we prove that the constraints generated by

Gen(ϕ0, v0, init(v0),next(v0, v
′
0)) have a solution if and only

if the program P = (v0, init(v0),next(v0, v
′
0)) satisfies ϕ0.

The base case, i.e., ϕ0 is an assertion c from our background
theory T , is trivial.

As example for an induction step, we consider the case
ϕ0 = ∃x : ϕ1. To prove soundness, we consider the case
that the generated constraints have a solution. For the
predicate aux , this solution takes the form of a relation
Saux that satisfies all constraints generated for aux . For
each s with init(s), we choose xs such that (s, xs) ∈ Saux .
As we require init(v0) → ∃x : aux (v0, x), this element is
well-defined. We now apply the induction hypothesis for
P ′ = ((v0, x), aux (v0, x),next(v0, v

′
0)∧x′ = x) and ϕ1. Then

for all s with init(s), we have P ′, (s, xs) |= ϕ1, and as P ′ is
not changing x by construction, also P ′, (s, xs) |= ϕ1[xs/x].
From this, P, s |= ϕ0 directly follows.

For completeness, we can proceed analogously. If P,ϕ0 |=
holds, then a suitable instantiation xs of x can be chosen for
each s with init(s), and thus we can construct a solution for
aux (v0, x) from init(v0).

Example.
We illustrate Gen (see Figure 1) on a simple example. We

consider a property that the value stored in a register v can
grow without bound on some computation.

∀x : v = x→ EF (v > x)

This property can be useful for providing evidence that a
program is actually vulnerable to a denial of service attack.
Let init(v) and next(v, v′) describe a program over a single
variable v.

We apply Gen on the property and the program descrip-
tion and obtain the following application trace (here, we
treat → as expected, exploiting that its left-hand side is a
background theory atom).

Gen(∀x :v=x→ EF (v>x),v, init(v), next(v, v′))

Gen(v=x→ EF (v>x), (v, x),init(v), next(v, v′) ∧ x′=x)
Gen(v=x→ aux(v, x), (v, x),init(v), next(v, v′) ∧ x′=x)
Gen(EF (v>x), (v, x),aux(v, x),next(v, v′) ∧ x′=x)

This trace yields the following constraints.

init(v)→ (v = x→ aux (v))

aux (v)→ inv(v, x)

inv(v, x) ∧ ¬(v>x)→ ∃v′, x′ :next(v, x, v′, x′) ∧ x′ = x

∧ inv(v′, x′) ∧ rank(v, x, v′, x′)

wf (rank)

Note that there exists an interpretation of aux , inv , and rank
that satisfies these constraints if and only if the program
satisfies the property.

4. Evaluation
In this section we present CTLFO, a CTL+FO verifica-

tion engine. CTLFO implements the procedure Gen and
applies Ehsf [2] to solve resulting clauses.

We run CTLFO on the examples OS frag.1, . . . , OS
frag.4 from industrial code from [5, Figure 7]. Each exam-
ple consists of a program and a CTL property that we are
interested in proving about the program. We have modified
the given properties to lift the CTL formula to CTL+FO.
As example, consider the property AG(a = 1→ AF (r = 1)).
To lift it to CTL+FO, we apply the existential introduction

Property φ |=CTL+FO φ |=CTL+FO ¬φ
Res. Time Res. Time

P1 ∃x : AG(a = x→ AF (r = 1)) X 1.0 × 0.1
AG(∃x : a = x→ AF (r = 1)) X 0.9 × 0.1

P2 ∃x : EF (a = x ∧ EG(r 6= 5)) X 0.9 × 0.2
EF (∃x : a = x ∧ EG(r 6= 5)) X 0.6 × 0.2

P3 ∃x : AG(a = x→ EF (r = 1)) X 1.1 × 0.1
AG(∃x : a = x→ EF (r = 1)) X 1.0 × 0.1

P4 ∃x : EF (a = x ∧AG(r 6= 1)) X 1.8 × 0.4
EF (∃x : a = x ∧AG(r 6= 1)) X 0.9 × 0.4

P5 ∃x : AG(s = x→ AF (u = x)) X 7.0 × 0.1
AG(∃x : s = x→ AF (u = x)) X 7.2 × 0.1

P6 ∃x : EF (s = x ∧ EG(u 6= x)) X 1.8 × 2.2
EF (∃x : s = x ∧ EG(u 6= x)) X 1.1 × 2.1

P7 ∃x : AG(s = x→ EF (u = x)) X 3.1 × 0.2
AG(∃x : s = x→ EF (u = x)) X 6.5 × 0.1

P8 ∃x : EF (s = x ∧AG(u 6= x)) X 14.3 × 1.8
EF (∃x : s = x ∧AG(u 6= x)) X 13.9 × 1.8

P9 ∃x : AG(a = x→ AF (r = 1)) X 118.7 × 17.3
AG(∃x : a = x→ AF (r = 1)) X 82.3 × 1.4

P10 ∀x : EF (a = x ∧ EG(r 6= 1)) T/O - × 3.5
EF (∀x : a = x ∧ EG(r 6= 1)) T/O - × 3.5

P11 ∃x : AG(a = x→ EF (r = 1)) X 126.8 × 3.6
AG(∃x : a = x→ EF (r = 1)) X 140.3 × 0.2

P12 ∀x : EF (a = x ∧AG(r 6= 1)) X 146.7 × 3.2
EF (∀x : a = x ∧AG(r 6= 1)) X 161.7 × 0.2

P13 ∃x : AF (io = x) ∨AF (ret = x) X 576.8 × 0.3
P14 ∃x : EG(io 6= x) ∧ EG(ret 6= x) X 15.1 × 48.1
P15 ∃x : EF (io = x) ∧ EF (ret = x) X 166.4 × 1.9
P16 ∃x : AG(io 6= x) ∨AG(ret 6= x) X 3.4 T/O -

Table 1: Evaluation of CTLFO on industrial benchmarks
from [5].

rule, one of the natural deduction rules for first-order logic.
One modified property to check could be ∃x : AG(a = x →
AF (r = 1)), and another one is AG(∃x : (a = x → AF (r =
1))). By doing similar satisfiability-preserving transforma-
tions of the properties for all the example programs, we get
a set programs whose properties are specified in CTL+FO
as shown in Table 1. For programs P1 to P12, we have con-
sidered two CTL+FO properties per program where as for
programs P13 to P16 we have considered only one. For each
pair of a program and CTL+FO property φ, we generated
two verification tasks: proving φ and proving ¬φ. While the
existence of a proof for a property φ implies that ¬φ is vio-
lated by the same program, we consider both properties to
show the correctness of our tool.

We report the results in Table 1. X (resp. ×) marks the
cases where CTLFO was able to prove (resp. disprove) a
CTL+FO property. T/O marks the cases where CTLFO
was not able to find either a solution or a counter-example
in 600 seconds.
CTLFO is able to find proofs for all the correct programs

except for P10 and counter-examples for all incorrect pro-
grams except for P16. Currently, CTLFO models the control
flow symbolically using a program counter variable, which
we believe is the most likely reason for the solving proce-
dure to time out. Efficient treatment of control flow along
the lines of explicit analysis as performed in the CPAchecker
framework could lead to significant improvements for deal-
ing with programs with large control-flow graphs [3]. An
executable of CTLFO together with the examples can be
found at https://www7.in.tum.de/~beyene/ctlfo.zip.

For cases where the property contains nested path quan-
tifiers and the outer temporal quantifier is F or U , our im-
plementation may generate non-Horn clauses following the

proof system from [13]. While a general algorithm for solv-
ing non-Horn clauses is beyond the scope of this paper, we
used a simple heuristic to seed solutions for queries appear-
ing under the negation operator.

5. Conclusion
This paper presented an automated method for proving

program properties written in the temporal logic CTL+FO,
which combines universal and existential quantification over
time and data. Our approach relies on a constraint genera-
tion algorithm that follows the formula structure to produce
constraints in the form of Horn constraints with forall/exists
quantifier alternation. The obtained constraints can be
solved using an off-the-shelf constraint solver, thus result-
ing in an automatic verifier.

6. References
[1] F. Belardinelli, A. Lomuscio, and F. Patrizi. An

abstraction technique for the verification of
artifact-centric systems. In KR, 2012.

[2] T. Beyene, C. Popeea, and A. Rybalchenko. Solving
existentially quantified Horn clauses. In CAV, 2013.

[3] D. Beyer and S. Löwe. Explicit-state software model
checking based on CEGAR and interpolation. In
FASE, 2013.

[4] J. Bohn, W. Damm, O. Grumberg, H. Hungar, and
K. Laster. First-order-CTL model checking. In
FSTTCS, 1998.

[5] B. Cook and E. Koskinen. Reasoning about
nondeterminism in programs. In PLDI, 2013.

[6] B. Cook, A. Podelski, and A. Rybalchenko.
Termination proofs for systems code. In PLDI, 2006.

[7] A. Da Costa, F. Laroussinie, and N. Markey.
Quantified CTL: expressiveness and model checking.
In CONCUR, 2012.

[8] S. Grebenshchikov, N. P. Lopes, C. Popeea, and
A. Rybalchenko. Synthesizing software verifiers from
proof rules. In PLDI, 2012.

[9] S. Hallé, R. Villemaire, O. Cherkaoui, and
B. Ghandour. Model checking data-aware workflow
properties with CTL-FO+. In EDOC, 2007.

[10] J. Heusser and P. Malacaria. Quantifying information
leaks in software. In ASAC, 2010.

[11] K. Hoder, N. Bjørner, and L. M. de Moura. µZ - an
efficient engine for fixed points with constraints. In
CAV, 2011.

[12] I. Hodkinson, F. Wolter, and M. Zakharyaschev.
Decidable and undecidable fragments of first-order
branching temporal logics. In LICS, 2002.

[13] Y. Kesten and A. Pnueli. A compositional approach to
CTL∗ verification. Theor. Comput. Sci.,
331(2-3):397–428, 2005.

[14] A. C. Patthak, I. Bhattacharya, A. Dasgupta,
P. Dasgupta, and P. Chakrabarti. Quantified
computation tree logic. Information processing letters,
82(3):123–129, 2002.

[15] A. Rensink. Model checking quantified computation
tree logic. In CONCUR, 2006.

https://www7.in.tum.de/~beyene/ctlfo.zip

APPENDIX

A. Remaining rules
In this section we present the remaining rules of Gen,

which deal with the complete set of temporal quantifiers.
See Figure 2.

| AXϕ1 ⇒
let aux = fresh symbol of arity |v0| in

init(v0)→ ∃v′0 : next(v0, v
′
0),

init(v0) ∧ next(v0, v
′
0)→ aux (v′0),

Gen(ϕ1, v0, aux (v0),next(v0, v
′
0))

| EXϕ1 ⇒
let aux = fresh symbol of arity |v0| in

init(v0)→ ∃v′0 : next(v0, v
′
0) ∧ aux (v′0),

Gen(ϕ1, v0, aux (v0),next(v0, v
′
0))

| AGϕ1 ⇒
let inv = fresh symbol of arity |v0| in

init(v0)→ inv(v0),

inv(v0) ∧ next(v0, v
′
0)→ inv(v′0),

Gen(ϕ1, v0, inv(v0),next(v0, v
′
0))

| EGϕ1 ⇒
let inv = fresh symbol of arity |v0| in

init(v0)→ inv(v0),

inv(v0) ∧ next(v0, v
′
0)→ ∃v′0 : next(v0, v

′
0) ∧ inv(v′0),

Gen(ϕ1, v0, inv(v0),next(v0, v
′
0))

| A (ϕ1Uϕ2) ⇒
let inv , aux1, aux2 = fresh symbols of arity |v0| in

let rank = fresh symbol of arity |v0|+ |v0| in

init(v0)→ inv(v0),

inv(v0) ∧ ¬aux2(v0)→ aux1(v0) ∧ ∃v′0 : next(v0, v
′
0),

inv(v0) ∧ ¬aux2(v0) ∧ next(v0, v
′
0)→ inv(v′0) ∧ rank(v0, v

′
0),

wf (rank),

Gen(ϕ1, v0, aux1(v0),next(v0, v
′
0)), Gen(ϕ2, v0, aux2(v0),next(v0, v

′
0))

| E (ϕ1Uϕ2) ⇒
let inv , aux1, aux2 = fresh symbols of arity |v0| in

let rank = fresh symbol of arity |v0|+ |v0| in

init(v0)→ inv(v0),

inv(v0) ∧ ¬aux2(v0)→ aux1(v0) ∧ ∃v′0 : next(v0, v
′
0) ∧ inv(v′0) ∧ rank(v0, v

′
0),

wf (rank),

Gen(ϕ1, v0, aux1(v0),next(v0, v
′
0)), Gen(ϕ2, v0, aux2(v0),next(v0, v

′
0))

| (A/E)Fϕ1 ⇒ Gen(v0, init(v0),next(v0, v
′
0), (A/E) (trueUϕ1))

| ϕ1 ∧ / ∨ ϕ2 ⇒
let aux1, aux2 = fresh symbols of arity |v0| in

init(v0)→ aux1(v0) ∧ / ∨ aux2(v0),

Gen(ϕ1, v0, aux1(v0),next(v0, v
′
0)), Gen(ϕ2, v0, aux2(v0),next(v0, v

′
0))

Figure 2: Remaining rules of constraint generation algorithm Gen.

	Introduction
	Preliminaries
	Constraint generation
	Evaluation
	Conclusion
	References
	Remaining rules

