ABSTRACT
Expressing program correctness often requires relating program data throughout (different branches of) an execution. Such properties can be represented using CTL+FO, a logic that allows mixing temporal and first-order quantification. Verifying that a program satisfies a CTL+FO property is a challenging problem that requires both temporal and data reasoning. Temporal quantifiers require discovery of invariants and ranking functions, while first-order quantifiers demand instantiation techniques. In this paper, we present a constraint-based method for proving CTL+FO properties automatically. Our method makes the interplay between the temporal and first-order quantification explicit in a constraint encoding that combines recursion and existential quantification. By integrating this constraint encoding with an off-the-shelf solver we obtain an automatic verifier for CTL+FO.

1. Introduction
In specifying the correct behaviour of systems, relating data at various stages of a computation is often crucial. Examples include program termination [6] (where the value of a rank function should be decreasing over time), correctness of reactive systems [12] (where each incoming request should be handled in a certain timeframe), and information flow [10] (where for all possible secret input values, the output should be the same). The logic CTL+FO offers a natural specification mechanism for such properties, allowing to freely mix temporal and first-order quantification. First-order quantification makes it possible to specify variables dependent on the current system state, and temporal quantifiers allow to relate this data to system states reached at a later point. While CTL+FO and similar logics have been identified as a specification language before, no fully automatic method to check CTL+FO properties on infinite-state systems was developed. Hence, the current state of the art is to either produce verification tools specific to small subclasses of properties, or using error-prone program modifications that explicitly introduce and initialize ghost variables, which are then used in (standard) CTL specifications.

In this paper, we present a fully automatic procedure to transform a CTL+FO verification problem into a system of existentially quantified recursive Horn clauses. Such systems can be solved by leveraging recent advances in constraint solving [2], allowing to blend first-order and temporal reasoning. Our method benefits from the simplicity of the proposed proof rule and the ability to leverage on-going advances in Horn constraint solving.

Related Work.
Verification of CTL+FO and its decidability and complexity have been studied (under various names) in the past. Bohn et al. [4] presented the first model-checking algorithm. Predicates partitioning a possibly infinite state space are deduced syntactically from the checked property, and represented symbolically by propositional variables. This allows to leverage the efficiency of standard BDD-based model checking techniques, but the algorithm fails when the needed partition of the state space is not syntactically derivable from the property.

Working on finite-state systems, Hallé et al. [9], Patthak et al. [14] and Rensink [15] discuss a number of different techniques for quantified CTL formulas. In these works, the finiteness of the data domain is exploited to instantiate quantified variables, thus reducing the model checking problem for quantified CTL to standard CTL model checking.

Hodkinson et al. [12] study the decidability of CTL+FO and some fragments on infinite state systems. They show the general undecidability of the problem, but also identify certain decidable fragments. Most notably, they show that by restricting first order quantifiers to state formulas and only applying temporal quantifiers to formulas with at most one free variable, a decidable fragment can be obtained. Finally, Da Costa et al. [7] study the complexity of checking properties over propositional Kripke structures, also providing an overview of related decidability and complexity results. In temporal epistemic logic, Belardinelli et al. [3] show that checking FO-CTLK on a certain subclass of infinite systems can be reduced to finite systems. In contrast, our method directly deals with quantification over infinite domains.

2. Preliminaries

Programs.
We model programs as transition systems. A program P consists of a tuple of program variables v, an initial condition $init(v)$, and a transition relation $next(v, v')$. A state is a valuation of v. A computation π is a maximal sequence of states s_1, s_2, \ldots such that $init(s_1)$ and for each pair of consecutive states (s, s') we have $next(s, s')$. The set of computations of
\(P \) starting in \(s \) is denoted by \(\Pi_P(s) \).

CTL+FO syntax and semantics.

The following definitions are standard, see e.g. [4, 13].

Let \(T \) be some first order theory and \(\models \) denote its satisfaction relation that we use to describe sets and relations over program states. Let \(c \) range over assertions in \(T \) and \(x \) range over variables. A CTL+FO formula \(\varphi \) is defined by the following grammar using an auxiliary notion of a path formula \(\phi \).

\[
\varphi ::= \forall x : \varphi \mid \exists x : \varphi \mid c \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \implies \varphi \mid G\phi \mid E\phi \\
\phi ::= X\varphi \mid F\phi \mid \exists U\varphi
\]

As usual, we define \(F\varphi = (true \land \varphi) \). The satisfaction relation \(P \models \varphi \) holds if and only if for each \(s \) such that \(init(s) \) we have \(P, s \models \varphi \). We define \(P, s \models \varphi \) as follows using an auxiliary satisfaction relation \(P, \pi \models \phi \). Note that \(\pi \) ranges over values from the corresponding domain.

\[
P, s \models \forall x : \varphi \iff \text{for all } d \text{ holds } P, s \models \varphi[d/x] \\
P, s \models \exists x : \varphi \iff \text{exists } d \text{ such that } P, s \models \varphi[d/x] \\
P, s \models c \iff s \models c \\
P, s \models \varphi_1 \land \varphi_2 \iff P, s \models \varphi_1 \text{ and } P, s \models \varphi_2 \\
P, s \models \varphi_1 \lor \varphi_2 \iff P, s \models \varphi_1 \text{ or } P, s \models \varphi_2 \\
P, s \models A\phi \iff \text{for all } \pi \in \Pi_P(s) \text{ holds } P, \pi \models \phi \\
P, s \models E\phi \iff \text{exists } \pi \in \Pi_P(s) \text{ such that } P, \pi \models \phi \\
P, \pi \models X\varphi \iff \pi = s_1, s_2, \ldots \text{ and } P, s_2 \models \varphi \\
P, \pi \models G\varphi \iff \pi = s_1, s_2, \ldots \text{ for all } i \geq 1 \text{ holds } P, s_i \models \varphi \\
P, \pi \models \varphi_1 U\varphi_2 \iff \pi = s_1, s_2, \ldots \text{ and exists } j \geq 1 \text{ such that } P, s_j \models \varphi_2 \text{ and } P, s_i \models \varphi_1 \text{ for } 1 \leq i < j
\]

Quantified Horn constraints.

Our method uses the Ehfsolver [2] solver for for-exists Horn constraints and well-foundedness. We omit the syntax and semantics of constraints solved by Ehfsolver, see [2] for details. Instead, we consider an example:

\[
x \geq 0 \implies \exists y : x \geq y \land \text{rank}(x, y) \land \text{wf}(\text{rank}).
\]

These constraints are an assertion over the interpretation of the “query symbol” rank (the predicate \(\text{wf} \) is not a query symbol, but requires well-foundedness). A solution maps the query symbol into a constraint. Specifically, the example above has a solution that maps \(\text{rank}(x, y) \) to the constraint \((x \geq 0 \land y \leq x - 1)\).

Ehfsolver resolves clauses like the above using a CEGAR scheme to discover witnesses for existentially quantified variables. The refinement loop collects a global constraint that declaratively determines which witnesses can be chosen. The chosen witnesses are used to replace existential quantification, and then the resulting universally quantified clauses are passed to a solver over decidable theories, e.g., HSF [8] or \(\mu Z \) [11]. Such a solver either finds a solution, i.e., a model for uninterpreted relations constrained by the clauses, or returns a counterexample, which is a resolution tree (or DAG) representing a contradiction. Ehfsolver turns the counterexample into an additional constraint on the set of witness candidates, and continues with the next iteration of the refinement loop.

For the existential clause above, Ehfsolver introduces a witness/Skolem relation \(sk \) over variables \(x \) and \(y \), i.e., \(x \geq 0 \land sk(x, y) \implies x \geq y \land \text{rank}(x, y) \). In addition, since for each \(x \) such that \(x \geq 0 \) holds we need a value \(y \), we require that

\[
\text{GEN}(\varphi_0, v_0, init(v_0), next(v_0, v')) = \text{match } \varphi_0 \text{ with } \\
| \forall x : \varphi_1 \Rightarrow \\
| \text{let } v_1 = (v_0, x) \text{ in } \\
\text{GEN}(\varphi_1, v_1, init(v_0), next(v_0, v')) \land x' = x \\
| \exists x : \varphi_1 \Rightarrow \\
| \text{let } v_1 = (v_0, x) \text{ in } \\
\text{let } aux = \text{fresh symbol of arity } |v_1| \text{ in } \\
init(v_0) \rightarrow \exists x : aux(v_1), \\
\text{GEN}(\varphi_1, v_1, aux(v_1), next(v_0, v_0') \land x' = x) \\
| c \Rightarrow \\
init(v_0) \rightarrow c \\
| EF\varphi_1 \Rightarrow \\
\text{let inv, aux = fresh symbols of arity } |v_0| \text{ in } \\
\text{let rank = fresh symbol of arity } |v_0| + |v_0| \text{ in } \\
init(v_0) \rightarrow \text{inv}(v_0), \\
\text{inv}(v_0) \land \neg aux(v_0) \rightarrow \exists v_0' : \text{next}(v_0, v_0') \land \text{inv}(v_0') \land \text{rank}(v_0, v_0'), \\
\text{wf}(\text{rank}), \\
\text{GEN}(\varphi_1, v_0, aux(v_0), \text{next}(v_0, v_0'))
\]

\(\text{Figure 1: Constraint generation rules for first-order quantifi-}
\]

3. Constraint generation

In this section we present our algorithm \(\text{GEN} \) for generating constraints that characterize the satisfaction of a CTL+FO formula. We also consider its complexity and correctness and present an example.

See Figure [2]. \(\text{GEN} \) performs a top-down, recursive descent through the syntax tree of the given CTL+FO formula. It introduces auxiliary predicates and generates a sequence of implication and well-foundedness constraints over these predicates. We use \(\text{v} \), \(\text{v}'' \), \(\text{sk} \) to represent the concatenation operator on sequences of constraints. At each level of recursion, \(\text{GEN} \) takes as input a CTL+FO formula \(\varphi_0 \), a tuple of variables \(v_0 \) that are considered to be in scope and define a state, assertions \(\text{init}(v_0) \) and \(\text{next}(v_0, v_0') \) that describe a set of states and a transition relation, respectively. We assume that variables bound by first-order quantifiers in \(\varphi_0 \) do not shadow other variables. To generate constraints for checking if \(P = (v, \text{init}(v), \text{next}(v, v')) \) satisfies \(\varphi \) we execute \(\text{GEN}(\varphi, v, \text{init}(v), \text{next}(v, v')) \).

Handling first-order quantification.

When \(\varphi_0 \) is obtained from some \(\varphi_1 \) by universally quantifying over \(x \), we directly descend into \(\varphi_1 \) after adding \(x \) to the scope. Hence, the recursive call to \(\text{GEN} \) uses \(v_1 = (v_0, x) \). Since \(\text{init}(v_0) \) defines a set of states over \(v_1 \) in which \(x \) ranges over arbitrary values, the application \(\text{GEN}(\varphi_1, v_1, \text{init}(v_0), \ldots) \) implicitly requires that \(\varphi_1 \) holds for
arbitrary x. Since the value of x is arbitrary but fixed within φ_1, we require that the transition relation considered by the recursive calls does not modify x and thus extend next to $\text{next}(v_0, v'_0) \land x' = x$ in the last argument.

When φ_0 is obtained from some φ_1 by existentially quantifying over x, we use an auxiliary predicate aux that implicitly serves as witness for x. A first constraint connects the set of states $\text{init}(v_0)$ on which φ_0 needs to hold with $aux(v_1)$, which describes the states on which φ_1 needs to hold. We require that for every state s allowed by $\text{init}(v_0)$, a choice of x exists such that the extension of s with x is allowed by $aux(v_1)$. Then, the recursive call $\text{Gen}(\varphi_1, v_1, aux(v_1), \ldots)$ generates constraints that keep track of satisfaction of φ_1 on arbitrary x allowed by $aux(v_1)$. Thus, $aux(v_1)$ serves as a restriction of the choices allowed for x. Again, we enforce rigidity of x by adding $x' = x$ to the next relation.

Handling temporal quantification.

We use a deductive proof system for CTL [13] and consider its proof rules from the perspective of constraint generation.

When φ_0 is a background theory assertion, i.e., does not use path quantification, Gen produces a constraint that requires φ_0 to hold on every initial state.

When φ_0 requires that there is a path on which φ_1 eventually holds, then Gen uses an auxiliary predicate $aux(v_0)$ to describe those states in which φ_1 holds. Gen applies a combination of inductive reasoning together with well-foundedness to show that $aux(v_0)$ is eventually reached from the initial states. The induction hypothesis is represented as $\text{inv}(v_0)$ and is required to hold for every initial state and whenever $aux(v_0)$ is not reached yet. Then, the well-foundedness condition uf, which requires that it is not possible to come back into the induction hypothesis forever, ensures that eventually we reach a “base case” in which $aux(v_0)$ holds. Hence, eventually φ_1 holds on some computations.

Note that the induction hypothesis $\text{inv}(v_0)$, the well-founded relation $\text{rank}(v_0, v'_0)$, and the predicate $aux(v_0)$ are left for the solver to be discovered.

See Appendix [A] for the remaining rules that describe the full set of CTL temporal quantifiers.

Complexity and correctness.

Gen performs a single top-down descent through the syntax tree of the given CTL+FO formula φ. The running time and the size of the generated sequence of constraints is linear in the size of φ. Finding a solution for the generated constraints is undecidable in general. In practice however, the used solver often succeeds in finding a solution (cf. Sect. 4). We formalize the correctness of Gen in the following theorem.

Theorem 1. For a given program P with $\text{init}(v)$ and $\text{next}(v, v')$ over v and a CTL+FO formula φ the application $\text{Gen}(\varphi, v, \text{init}(v), \text{next}(v, v'))$ computes a constraint that is satisfiable if and only if $P \models \varphi$.

Proof. (sketch) We omit the full proof here for space reasons. It proceeds by structural induction over the formula, analogous to the constraint generation of the algorithm Gen. Intuitively, first-order quantifiers are handled by performing a program modification that allows to keep track of the value of quantified variables explicitly, exploiting their rigidity. The recursive descent into φ allows to collect the variables in scope, embedding them into the quantification used in the constraint system.

Formally, we prove that the constraints generated by $Gen(\varphi_0, 0, \text{init}(v_0), \text{next}(v_0, v'_0))$ have a solution if and only if the program $P = (v_0, \text{init}(v_0), \text{next}(v_0, v'_0))$ satisfies φ_0. The base case, i.e., φ_0 is an assertion c from our background theory T, is trivial.

As example for an induction step, we consider the case $\varphi_0 = \exists x : \varphi_1$. To prove soundness, we consider the case that the generated constraints have a solution. For the predicate aux, this solution takes the form of a relation S_{aux} that satisfies all constraints generated for aux. For each s with $\text{init}(s)$, we choose τ_s such that $(s, \tau_s) \in S_{aux}$. As we require $\text{init}(v_0) \rightarrow \exists x : aux(v_0, x)$, this element is well-defined. We now apply the induction hypothesis for $P' = ((v_0, x), aux(v_0, x), \text{next}(v_0, v'_0) \land x' = x)$ and φ_1. Then for all s with $\text{init}(s)$, we have $P'(s, \tau_s) \models \varphi_1$, and as P' is not changing x by construction, also $P'(s, \tau_s) \models \varphi_1[\tau_s/x]$. From this, $P, s \models \varphi_0$ directly follows.

For completeness, we can proceed analogously. If $P, \varphi_0 \models \varphi_1$, then a suitable instantiation τ_s of x can be chosen for each s with $\text{init}(s)$, and thus we can construct a solution for $aux(v_0, x)$ from $\text{init}(v_0)$.

Example.

We illustrate Gen (see Figure 1) on a simple example. We consider a property that the value stored in a register v can grow without bound on some computation.

$$\forall x : v = x \rightarrow \text{EF}(v > x)$$

This property can be useful for providing evidence that a program is actually vulnerable to a denial of service attack. Let $\text{init}(v)$ and $\text{next}(v, v')$ describe a program over a single variable v.

We apply Gen on the property and the program description and obtain the following application trace (here, we treat \rightarrow as expected, exploiting that its left-hand side is a background theory atom).

$Gen((v \colon v = x \rightarrow \text{EF}(v > x), v, \text{init}(v), \text{next}(v, v')))$

$Gen(v = x \rightarrow \text{EF}(v > x), (v, x, \text{init}(v), \text{next}(v, v') \land x' = x)$

$Gen(v = x \rightarrow aux(v, x), (v, x, aux(v, x), \text{init}(v), \text{next}(v, v') \land x' = x)$

$Gen(\text{EF}(v > x), (v, x, aux(v, x), \text{next}(v, v') \land x' = x)$

This trace yields the following constraints.

$\text{init}(v) \rightarrow (v = x \rightarrow aux(v))$

$aux(v) \rightarrow inv(v, x)$

$inv(v, x) \land \neg(v > x) \rightarrow \exists v', x' : \text{next}(v, x, v', x') \land x' = x$

$\land inv(v, x') \land \text{rank}(v, x, v', x')$

Note that there exists an interpretation of aux, inv, and rank that satisfies these constraints if and only if the program satisfies the property.

4. Evaluation

In this section, we present CTLFO, a CTL+FO verification engine. CTLFO implements the procedure Gen and applies EHSF [2] to resolve resulting clauses.

We run CTLFO on the examples OS frag.1, ..., OS frag.4 from industrial code from [5, Figure 7]. Each example consists of a program and a CTL property that we are interested in proving about the program. We have modified the given properties to lift the CTL formula to CTL+FO. As example, consider the property $AG(a = 1 \rightarrow AF(r = 1))$. To lift it to CTL+FO, we apply the existential introduction
<table>
<thead>
<tr>
<th>Property ϕ</th>
<th>$\forall \text{T/O FO} \phi$</th>
<th>$\exists \text{T/O FO} \neg \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists x : \text{AG}(a = x \rightarrow AF(r = 1))$</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>$\forall x : \text{EF}(a = x \rightarrow AF(r = 1))$</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>$\exists x : \text{AG}(a = x \rightarrow EF(r = 1))$</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>$\forall x : \text{EF}(a = x \rightarrow AF(r = 1))$</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>$\forall x : \text{EF}(a = x \rightarrow AG(r \neq 1))$</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>$\exists x : \text{AG}(a = x \rightarrow AF(r = 1))$</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>$\forall x : \text{EF}(a = x \rightarrow AG(r \neq 1))$</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Table 1: Evaluation of CTLFO on industrial benchmarks from [9].

rule, one of the natural deduction rules for first-order logic. One modified property to check could be $\exists x : \text{AG}(a = x \rightarrow AF(r = 1))$, and another one is $\text{AG}(\exists x : (a = x \rightarrow AF(r = 1)))$. By doing similar satisfiability-preserving transformations of the properties for all the example programs, we get a set programs whose properties are specified in CTL+FO as shown in Table 1. For programs P1 to P12, we have considered two CTL+FO properties per program where as for programs P13 to P16 we have considered only one. For each pair of a program and CTL+FO property ϕ, we generated two verification tasks: proving ϕ and proving $\neg \phi$. While the existence of a proof for a property ϕ implies that $\neg \phi$ is violated by the same program, we consider both properties to show the correctness of our tool.

We report the results in Table 1. ✓ (resp. ×) marks the cases where CTLFO was able to prove (resp. disprove) a CTL+FO property. T/O marks the cases where CTLFO was not able to find either a solution or a counter-example in 600 seconds.

CTLFO is able to find proofs for all the correct programs except for P10 and counter-examples for all incorrect programs except for P16. Currently, CTLFO models the control flow symbolically using a program counter variable, which we believe is the most likely reason for the solving procedure to time out. Efficient treatment of control flow along the lines of explicit analysis as performed in the CPachecker framework could lead to significant improvements for dealing with programs with large control-flow graphs. An executable of CTLFO together with the examples can be found at https://www7.in.tum.de/~beyene/ctlfo.zip.

For cases where the property contains nested path quantifiers and the outer temporal quantifier is F or U, our implementation may generate non-Horn clauses following the proof system from [13]. While a general algorithm for solving non-Horn clauses is beyond the scope of this paper, we used a simple heuristic to seed solutions for queries appearing under the negation operator.

5. Conclusion

This paper presented an automated method for proving program properties written in the temporal logic CTL+FO, which combines universal and existential quantification over time and data. Our approach relies on a constraint generation algorithm that follows the formula structure to produce constraints in the form of Horn constraints with forall/exists quantifier alternation. The obtained constraints can be solved using an off-the-shelf constraint solver, thus resulting in an automatic verifier.

6. References

APPENDIX

A. Remaining rules

In this section we present the remaining rules of GEN, which deal with the complete set of temporal quantifiers. See Figure 2.

\[
\begin{align*}
| AX \varphi_1 &\Rightarrow \\
&\text{let } aux = \text{fresh symbol of arity } |v_0| \text{ in} \\
&\text{init}(v_0) \rightarrow \exists v'_0 : \text{next}(v_0, v'_0), \\
&\text{init}(v_0) \land \text{next}(v_0, v'_0) \rightarrow aux(v'_0), \\
&\text{GEN}(\varphi_1, v_0, aux(v_0), \text{next}(v_0, v'_0)) \\
| EX \varphi_1 &\Rightarrow \\
&\text{let } aux = \text{fresh symbol of arity } |v_0| \text{ in} \\
&\text{init}(v_0) \rightarrow \exists v'_0 : \text{next}(v_0, v'_0) \land aux(v'_0), \\
&\text{GEN}(\varphi_1, v_0, aux(v_0), \text{next}(v_0, v'_0)) \\
| AG \varphi_1 &\Rightarrow \\
&\text{let } inv = \text{fresh symbol of arity } |v_0| \text{ in} \\
&\text{init}(v_0) \rightarrow inv(v_0), \\
&\text{inv}(v_0) \land \text{next}(v_0, v'_0) \rightarrow inv(v'_0), \\
&\text{GEN}(\varphi_1, v_0, inv(v_0), \text{next}(v_0, v'_0)) \\
| EG \varphi_1 &\Rightarrow \\
&\text{let } inv = \text{fresh symbol of arity } |v_0| \text{ in} \\
&\text{init}(v_0) \rightarrow inv(v_0), \\
&\text{inv}(v_0) \land \text{next}(v_0, v'_0) \rightarrow \exists v'_0 : \text{next}(v_0, v'_0) \land inv(v'_0), \\
&\text{GEN}(\varphi_1, v_0, inv(v_0), \text{next}(v_0, v'_0)) \\
| A(\varphi_1 \cup \varphi_2) &\Rightarrow \\
&\text{let } inv, aux_1, aux_2 = \text{fresh symbols of arity } |v_0| \text{ in} \\
&\text{let } rank = \text{fresh symbol of arity } |v_0| + |v_0| \text{ in} \\
&\text{init}(v_0) \rightarrow inv(v_0), \\
&\text{inv}(v_0) \land \neg aux_2(v_0) \rightarrow aux_1(v_0) \land \exists v'_0 : \text{next}(v_0, v'_0), \\
&\text{inv}(v_0) \land \neg aux_2(v_0) \land \text{next}(v_0, v'_0) \rightarrow inv(v'_0) \land rank(v_0, v'_0), \\
&\text{wf(rank),} \\
&\text{GEN}(\varphi_1, v_0, aux_1(v_0), \text{next}(v_0, v'_0)), \text{GEN}(\varphi_2, v_0, aux_2(v_0), \text{next}(v_0, v'_0)) \\
| E(\varphi_1 \cup \varphi_2) &\Rightarrow \\
&\text{let } inv, aux_1, aux_2 = \text{fresh symbols of arity } |v_0| \text{ in} \\
&\text{let } rank = \text{fresh symbol of arity } |v_0| + |v_0| \text{ in} \\
&\text{init}(v_0) \rightarrow inv(v_0), \\
&\text{inv}(v_0) \land \neg aux_2(v_0) \rightarrow aux_1(v_0) \land \exists v'_0 : \text{next}(v_0, v'_0) \land inv(v'_0) \land rank(v_0, v'_0), \\
&\text{wf(rank),} \\
&\text{GEN}(\varphi_1, v_0, aux_1(v_0), \text{next}(v_0, v'_0)), \text{GEN}(\varphi_2, v_0, aux_2(v_0), \text{next}(v_0, v'_0)) \\
| (A/E) F \varphi_1 &\Rightarrow \text{GEN}(v_0, \text{init}(v_0), \text{next}(v_0, v'_0), (A/E)(\text{true} \cup \varphi_1)) \\
| \varphi_1 \land / \lor \varphi_2 &\Rightarrow \\
&\text{let } aux_1, aux_2 = \text{fresh symbols of arity } |v_0| \text{ in} \\
&\text{init}(v_0) \rightarrow aux_1(v_0) \land / \lor aux_2(v_0), \\
&\text{GEN}(\varphi_1, v_0, aux_1(v_0), \text{next}(v_0, v'_0)), \text{GEN}(\varphi_2, v_0, aux_2(v_0), \text{next}(v_0, v'_0))
\end{align*}
\]

Figure 2: Remaining rules of constraint generation algorithm GEN.