Local State Space Construction for Compositional
Verification of Concurrent Systems

Hao Zheng
University of South Florida
4202 E Fowler Ave., Tampa, FL 33620
zheng@cse.usf.edu

ABSTRACT

Local state space construction is crucial for efficient compo-
sitional verification of local and global properties of con-
current systems. This paper presents such an approach
where local state transition models are built by iteratively
searching the joint state space of communicating processes.
The resulting local models contain less unreachable states,
which would reduce false counter-examples for verifying lo-
cal safety properties. Alternatively, more precise transition
dependence relations can be extracted from these local mod-
els for more effective partial order reduction when the global
state space is searched. The prototype of this approach has
been implemented in an explicit model checker, and exper-
imented on several concurrent examples. The initial results
are encouraging.

Keywords
model checking, compositional reasoning, minimization, ab-
straction

1. INTRODUCTION

Compositional methods are essential to address the state-
explosion problem in verifying asynchronous concurrent sys-
tems. Figure 1 shows a framework of compositional ver-
ification where the approach presented in this paper con-
tributes. Given a system as a composition of communicating
processes, this framework, instead of considering the whole
system, first builds local state transition models for the indi-
vidual processes where available local safety properties can
be verified. If any local properties are not verified or there
are global properties, then these local models are analyzed
to extract transition dependence information for effective
partial order reduction when the global state space for the
whole system is searched for verifying global properties and
the local properties that cannot be verified at the local level.
The effectiveness of this framework is demonstrated in [22].

Local state space construction is critical in this framework.

It is based on the thread-modular model checking approach
as presented in [8] to address the state explosion problem for
verifying local safety properties of multi-thread programs.
Safety property verification can be reduced to the problem
of checking if an error state is reachable from the program’s
initial state. Instead of exploring the whole state space of
the entire program, it verifies individual threads by auto-
matically inferring their environment assumptions. This ap-
proach iteratively computes the guarantee for each thread,
which is a binary relation over global variables indicating
how they are modified by that thread. The environment
assumption of a thread is the disjunction of the guaran-
tees of all the other threads. Each thread is then verified
using the standard algorithm. During the course of veri-
fication, if a thread modifies global variables, its guaran-
tee is updated. Subsequently, all threads whose environ-
ment assumptions changed as a result of the guarantee up-
date are verified again. The iteration continues until the
reachable state space and the guarantee of each thread con-
verge. The thread-modular approach is inherently incom-
plete as the guarantees do not keep track of the sequencing
information on global variable modifications. The derived
environment assumptions are weaker than necessary, and
therefore can cause a large number of unreachable states
to be searched. The unreachable states can easily lead to
false counter-examples of local properties, and cause the
extracted transition dependence relation to be less precise
leading to less effective partial order reduction for global
property verification.

This paper intends to address this problem by proposing a
method that can take such sequencing information into ac-
count when traversing and building local state space models.
The proposed method does not construct guarantees or en-
vironment assumptions explicitly. Instead, the interactions
of a process with other processes are captured by searching
their joint state space. More specifically, if two processes,
M, and M3, in a concurrent system share some state vari-
ables, the proposed method searches their joint state space.
While their joint state space is searched, the local state space
models for M; and M, are constructed such that each of
them captures not only the states and state transitions as
defined in the corresponding process but also those due to
the modification on shared variables by the other process.
This method continues until the state space models for all
processes reach a fixpoint. Similar to the method in [8], the
proposed method is sound but incomplete. On the other
hand, this method is able to capture more sequencing in-

Local state space Local state
construction and

verification

M = ¢ where
M= M,

Gi,...,Gn

transition models ——|

Transition Global state space
Local state space X N
analysis dependence — search and verification
relation using Partial Order Reduction

Figure 1: A Compositional Verification Framework.

formation about the interactions of a process with its envi-
ronment into its state space model as its traverses the joint
state space of processes. This often helps to avoid searching
a large number of unreachable states, which lead to less false
counter-examples and higher overall efficiency of the entire
framework. The downside is higher complexity in some cases
due to more information that needs to be considered.

Related Work The thread-modular approach in [8] is not
implemented. [11] presents an implementation in the con-
current software model checker BLAST augmented with ab-
straction refinement to handle the infinite data space. A
similar approach to asynchronous circuit verification is pre-
sented in [19]. Lately, [16] presents an abstraction refine-
ment extension to make the thread modular approach com-
plete. On the other hand, the completeness of our framework
is achieved by searching the global state space with partial
order reduction helped with the information extracted from
the local state transitions models.

The approaches presented in this paper and [8, 11, 19] fall in
a category, assume-guarantee reasoning, a general composi-
tional verification method. Early work [12, 14, 17] requires
users to provide an environment assumption to model how
global states are updated by all other threads when a thread
is verified in separation. If threads have complex interac-
tions among themselves, it can be difficult to find a simple
and accurate environment assumption for a thread. Some
previous compositional approaches [4, 9, 10, 15, 20, 21] use
a context abstraction or assumption for each process to find
its state space for sound verification. Over-approximations
are required in order to avoid any false positive results. On
the other hand, the context should be sufficiently accurate to
avoid excessive number of false counter-examples for higher
efficiency. These methods assume user-provided contexts,
which can be very difficult to obtain for systems with com-
plex interactions among different processes. In [5], an au-
tomated approach is described to generate the assumptions
for compositional verification based on a counter-example
guided learning algorithm. This approach starts with a set
of the weakest assumptions for a process, and iteratively
refines these assumptions. That is, the initial contexts ab-
straction is made very coarse at the beginning, and it is grad-
ually refined by refuting the encountered counter-examples
until a real counter-example is found or the system is shown
to satisfy its specification. A major potential problem of
this approach is the large number of iterations of counter-
example analysis and context refinement, which could have
a large negative impact on the overall efficiency. Moreover,
the initial coarse context can cause the unreachable state
space to be very large, which may cause memory overflow.
Similar work is also described in [3, 1, 2, 7].

On the other hand, the approaches presented in this paper
and in [8, 11, 19] verify a process starting with an under-
approximate environment assumption, and gradually extend
the local state space model for each process by including
global state updates allowed by other processes.

An approach is described in [6] for verifying global safety
properties using local state space search. It gradually ex-
poses more local information which is used to strengthen
the local state space invariances until global safety proper-
ties are verified or real counter-examples are found. While
both the approach in this paper and [6] rely on local state
space search, the proposed approach alone does not intend
to be complete. Instead, the completeness is achieved by
searching the global state space as indicated at the begin-
ning of this section. Also, the work in [6] is symbolic while
this approach is explicit.

2. BACKGROUND

Let Z be the set of integers, and V = (v1,...,v,) be an
ordered finite set of variables. Each v; € V takes its values
from its finite domain Z; C Z. Let Z = Z; X ... X Z, be the
set of all possible assignments to all variables in V.

A concurrent system is typically described in some high-level
language. Since the exact formalism for describing a con-
current system is not important, this paper simply assumes
that a finite state concurrent system is described with a tu-
ple M = (V,init, A). A state of M, s € Z, is an assignment
to V. init is the initial state which defines the values for
the variables when the system starts. A is a set of actions
defining how the system changes its states when actions in
A are executed. Each action a € A is specified with (g, va)
where

e A guard g : Z — {true,false} is a total function that
map each state to truth value.

e An assignment operation va : Z — Z is a total func-
tion that maps one state to another.

In general, an action a only modifies a subset of variables in
V. Let wr(a) C V be the set of variables modified by action
Q.

An action a = (g, va) is enabled in a state s if g(s) evaluates
to true in s. Let enb(s) denote all actions enabled in s.
An action can be executed once it becomes enabled, and
possibly changes to a new state. The successor state s’ after
executing an enabled action act is denoted by «(s).

In this paper, we often need to check the consistency of the
assignments in two states on a subset of variables. Given a
set of variables C, let val(s, C') return the set of assignments
in s to variables in C'. Two states, s1 and s2, are consistent
on C, denoted as s1 =c¢ sz, iff val(s1,C) = val(sz, C).

A large and complex system usually consists of processes
connected in a network where communications among the
processes can be done through shared variables. Let M; =
(Vi, inits, A;), 1 < i <n, be n processes. The shared vari-
ables C;; between M; and M; is V; N V;. Assume that the
sets of actions of different processes are pairwise disjoint.

A concurrent system as a composition of n processes is de-
fined as M = ngignMi = (V, init,A) where V = Ulgignvi,
init = (inil1, ..., nit,) such that V1 <4,j < n,inil; =c,;
initj, and A = Ui<i<nAi. A state s; of M; is referred to as
a local state of M;, and a state of M is referred to as a global
state, which is a n—tuple of local states, i.e. (s1,...,sn) such
that V1 <i,j <n,s; =c,; 5.

Consider a process M; = (V;, init;, A;) in a concurrent sys-
tem M = |1<i<nM;. The actions in A; are referred to as
local actions to M;. If a M;-action o modifies some vari-
ables of Mj, this action is referred to as external to Mj.
Let ext(M;,a) be a predicate that holds true if o ¢ A; but
wr(a) NV; # 0.

Given a global state § = (s1,. ..
When an action a € enb(3) is executed, one or multiple lo-
cal states may be changed resulting in a new global state

3" = (s1,...,s}), denoted as a(5), such that s; = a(s;),
and

Vi<j<n,i#j
and

EZIJt(Mj,O() = (S; =Cyj 39 AT =V;=V; S;)
—ext(Mj, o) = 55 =5}

where C;; = Vi N V;. Naturally, V1 < ¢,j < n,s; =c,; sj.

Figure 2 shows a simple example of a concurrent system with
three processes. In this example, variable z is shared by all
three processes, and y is shared between My and Ms. All
the other variables are internal to their respective processes.
Actions a; and ag of M are invisible as they only modify
the internal variables of M;, while as and a4 are external
to both My and Ms.

The state transition level semantics of concurrent systems
are represented in state graphs, which are defined below.

DEFINITION 2.1. A state graph for a concurrent system
M s a tuple G = (S,1, R) where

1. S is a finite non-empty set of states,
2. 1 € S is the initial state.

3. RC S x (AUExt) x S is the set of state transitions
where Ext is the set of eternal actions of the environ-
ment to M.]

The above state graph definition is used to represent both
concurrent systems and their processes. If a state graph
(S,2, R) is for a system |[1<i<nM;, then Ext = (, it is re-
ferred to as the global state graph where S and R are the set
of global states and the set of global state transitions of M,
respectively, and ¢ = (init1,...,init,). If a state graph is
defined for a process M; in a system ||1<;<nM;, it is referred
to as the local state graph of M;, and its set of external
actions is

Ezxt; ={a|31 < j <ns.t ac AjAext(M;,al.

1 8n), enb(8) = Ur<i<nenb(s;).

HOOWWNOoOUh WN -

=

=
AN

Algorithm 1: DFS(||1<i<nM;)

Input: A system description of n processes.
Output: A global state graph (S,z, R).

v := B(initq, . .
S:=SUzy
stack.push((z,enb(2)));
while stack is not empty do
(s, E) := stack.pop();
if £ =0 then
‘ continue;
Select o € F to execute, and remove it from F;
stack.push((s, E));
s’ = a(s);
/* Check safety properties here. Terminate if a
violation is found. */ R:= RU{(s,a,s")};
if s ¢ S then
stack.push((s’, enb(s")));
S:=SUs’;

., inity);

As to be shown later, the local state graph of a process
contains not only the state transitions on local actions but
also those on Ext; to take into account updates on shared
variables caused by actions executed in other processes that
are external to M;. Then, in G; = (S;,1, R;) for M;, S; is
the set of local states, R; is the set of state transitions on
local actions in A; of M; or on actions in FEzt; external to
M;, and 1; = init;. The local state graph of M, in a system
captures the behavior as defined in M; as well as updates
on its shared variables by actions of other processes in the
system.

Executions of a concurrent system are represented by paths
in its state graph. Given a state graph G = (5,1, R), a path
of G is a sequence so—2s1—5 . .. such that for every i > 0,
(si, i, 8i41) € R holds for some «;. State g is reachable

from r if there exists a path soﬂmla.% . m) sn such
that » = sp and ¢ = s,. State ¢ is reachable in G if ¢ is
reachable from the initial state through a path. The set of
paths in a state graph G from the initial state is denoted as
Path(Q).

Given a concurrent system M = ||1<i<nM;, its state graph
can be constructed using reachability analysis by execut-
ing exhaustively every enabled action in every state starting
from the initial state. A general depth-first search algorithm
for reachability analysis is shown in Algorithm 1. Checking
safety properties can be easily combined with the given al-
gorithm.

Given a set of variables C, a state transition (s,a,s’) is
invisible relative to C if the assignments in s and s’ are
different only on the variables not in C. Two paths are called
stutter equivalent if they only differ in their corresponding
invisible state transitions.

DEFINITION 2.2. Let C' be a set of variables. Two paths,

p=s0—2 51 2L L. andp':s{)ﬁ—%s’lﬁ)..., are stutter

equivalent relative to C, denoted p ~c p', if there exist two
infinite sequences of positive integers 0 < i1 < iz < ... and
0 < j1 < j2 < ... such that for every k > 0, the following

M: = (Vi,q0,4A1); My = (Va,po, A2); Ms = (V3,50,A3);

Vi = {l,=z 2} Voo = {l2,z,y}; Vs = {ls,z,y};

g = ((1=0,2=0,z=0); po = (l2=0,z=0,y=0); so = (3=0,z=0,y=0);

A1 = {ai,02,a3,04}; Az = {B1, B2} Az = {v.72h

where where where

a;p = (l1:0/\év>07 B = (l2:0/\y:07 Y1 = (13:0/\y—1,
z:=x+1;l1 = 1) z = 25ls 1= 1); z = 3;l3 :=1)

az = (=1, B2 = (la=1Az=0, 2 = (3=1Az=0,
z:=0;11 = 2); y:=1;lp :=0) y:=0;l3 :=0)

as = (li=2Az>0,
z:=zx*x;l1 = 3);

(a7} = (ll = 3,

z:=0;z:=0;1; =0);

Figure 2: An example of a simple concurrent system with three processes communicating over shared variables

z and y.

condition holds.

Siy, =c Siktl =C ... =C Sipp1—2 =C Sip1—1 =C
Sjx =C Sjp+1 =C -+ =C S5 -2 =C S5 —1

The stutter equivalence for two finite paths is defined simi-
larly.]

Two state graphs can be related by the stutter simulation
relation, which is defined below.

DEFINITION 2.3. Let G5, i € {1,2}, be two state graphs,
and C a set of variables. G2 is said to be a stutter simulation
of G1 relative to C, denoted as G1 =<¢ Ga, if for every
p1 € Path(G1), there is p2 € Path(G2) such that p1 ~c pa.
|

3. LOCAL STATE GRAPH CONSTRUCTION

Given a concurrent system under verification, its state graph
can be constructed directly by performing reachability anal-
ysis. The main drawback is state explosion if the system
consists of a large number of concurrent processes. On the
other hand, it is typical that properties to verify are often
defined locally, therefore it is not necessary to construct the
global state graph for verification if those properties can be
verified locally. This section describes an approach to the
construction of local state graphs for the consisting processes
of a given system. The constructed local state graphs are
shown to be stutter simulations of the global state graph.
This indicates that the safety properties specified locally, if
they hold in the local state graphs, also hold in the global
one.

First, the general idea and limitation of the thread-modular
approach in [8] are shown using the example shown in Fig-
ure 2. Next, a new method is proposed to overcome such
limitation. Finally, the soundness of the proposed method
is shown in the last section.

3.1 Thread-Modular Approach: Illustration

and Limitation
Consider the system ||1<i<3M; shown in Figure 2. Initially,
the environment assumptions for all processes are empty.
Only action 81 in M> is enabled. After 8 is executed, state
graph Go for M is extended with a state transition on S
as shown in Figure 3(a). Since this state transition updates
the shared variable x, such update is a guarantee of M, and

it is added to the environment assumptions for M; and M3,
respectively. Since the environment assumptions for M; and
M3 have changed, the state space of M7 and M3 under the
new environment assumptions is traversed, and their state
graphs are extended, as shown in Figure 3(b), with external
state transitions on 31 drawn with dotted arrows. (G is also
extended with new states and state transitions as a result of
the added external state transition.

Now, state graph G1 of M; contains a state transition on
action az that updates the shared variable . The guaran-
tee derived from this state transition is added to the envi-
ronment assumptions of Ms and Ms. Then, G2 and G3 of
Mz and M3, respectively, are extended with new states and
state transitions under their corresponding extended envi-
ronment assumptions. The resulting state graphs are shown
in Figure 3(c).

In a few more steps, the state graphs shown in Figure 3(d)
are obtained. In G3, state transition on action y; of Ms,
(s3,71,54), updates the shared variable x by changing it
from 0 to 3. This update, which is a guarantee of Ms, is
added into the environment assumption of M7, which results
in two external transitions (qo,v1,¢11) and (g3, 71, q4) to be
added into G1. These two external state transitions can be
added into G; as x = 0 in both state ¢1 and g3. However,
according to the system model shown in Figure 2, action 1
can happen only after action §; has fired. This indicates
that the external transition (go,7v1,¢11) and all reachable
states from it in gray are in fact unreachable. This undesir-
able result is due to the fact that the current representation
of process guarantees is not able to capture the sequencing
relations among actions.

3.2 Local State Space Search

This section describes a local state graph construction method
that addresses the problem with the thread-modular ap-
proach as shown in the previous section. Consider a system
|[i<i<nM;. The basic idea is as follows. For every pair of M;
and M, such that i # j and V; N'V; # 0, this apporach tra-
verses their joint state space starting from their joint initial
states (init;,init;). In each joint state (s;,s;), all the en-
abled actions are checked. When a M;-action «, if external
to Mj, is executed, a state transition on « is added to the
state graph G, and an external state transition also on « is
added to the state graph G; as well to represent such change
on the shared variables due to a. Apply the same procedure
for Mj. If any new local states are found, the state space of

G Ga

D
By

& s

G1 G2

o s

|-t
=
oy

@D
1 B

®

(b)

G Gy G3
ho
v A B v A
al 2 @az
®, ®, &
(©)
G1 G2 Gs
®
B1 i B
® &
1 [e5} V Qg V Qg
2 ‘12 ﬁz @:ﬂz
B

©)

ﬂ_l—"l
a
@

(d)

Figure 3: (a)-(d) Snapshots of partial SGs generated
for the example shown in Figure 2 using the thread-
modular approach.

M; or M; is then searched individually starting from these
new local states. This subsequently may result in more local
states and local state transitions added into G; or G;. Once
the individual state space search is done, the local search is
resumed on their joint state space. The above local state
space search algorithm alternates between two steps: joint
and individual state space search. The purpose of the joint
state space search of two processes is to expand the state
graph of a process with states as a result of interactions be-
tween these two processes, while the individual state space
search is to expand the state graph with additional reach-
able states from the states resulting from the interactions of
these two processes.

Algorithm 2 shows the local search algorithm as described
above. First, outgoing(G, s) is defined to be the set of state
transitions of G originating from state s. It takes a pair
of processes, M; and M;, and their corresponding partially
constructed state graphs, G; and G, and expands the state

©C WA WNHF

=
WNHO

14
15
16
17
18
19

20
21
22
23

24
25
26
27
28
29
30
31
32
33

Algorithm 2: localSearch(M;, M;,G;,G;)
Input: Two Processes M; and M; and their SGs G; and
Gj.
Output: G; and G; expanded with new states and state
transitions.
Cij =ViNnVy;
init = (init,, init;);
S = S U init;
stack.push(init);
while stack is not empty do
(si, 85) = stack.top();
if s; s not in G; then
‘ DF‘S(]M},7 Si);
if s; is not in G then
| DFS(Mj, s;);
foreach (s;,q,s;) € outgoing(Gi, s;) do
if o € A; A ext(M;,) = true then
Create a state transition (s;, @, s7) s.t.
s =cy; S5
édd (s/j,o/c,s;-) to Gj;
s = (Sivsj);
if o € A; A ext(M;,) = false then
|5 = (s})
if ext(M;, a) = true A ext(M;, a) = true then
if (sj,q, s}) € outgoing(Gy, s;) A s; =c,; s}
then
| &= (si, 5));
foreach (s;, a, s}) € outgoing(Gy, s;) do
if o € Aj A ext(M;, o) = true then
Create a state transition (s;, a, s}) s.t.
8 =cCi; S};
Add (s;,q, s) to Gy;
5 = (s}, 85);
if o € Aj A ext(M;,a) = false then
| & = (si8});
if ext(M;, a) = true A ext(M;, a) = true then
if (si, @, s7) € outgoing(Gi, si) As; =c;,; sj then
| & = (s, 85);
if 5 ¢ S then
stack.push(3');
S=8SuUs;

ij

graphs by adding states and state transitions to either state
graph as allowed by the other process. The algorithm con-
siders every pair of local states starting from the pair of
initial states. Line 7 — 10 in Algorithm 2 performs the in-
dividual state space search on M; and M, separately if ei-
ther local state does not exist in the corresponding state
graph. Next, for each pair of local states currently on the
stack, (si, s;), its successor pair of local states is determined.
Line 11 — 20 considers M; as the environment to M;. The
outgoing state transitions of state s; in G; are divided into
three groups. State transitions in the first group are due
to the actions local to M; but external to M;. For each
transition (s;,q,s;) in this group, an external state tran-
sition (sj, e, s;) is created and added to G; as shown in
line 12— 15. And the successor pair of local states is (s, s).
The second group contains the state transitions in G; on
actions that are not external to GG;. These state transitions
do not update the shared variables, therefore, the succes-

sor pair of local states is determined as in line 17 where
the local state of Gj remains the same. The third group
considers state transitions due to actions external to both
processes. These actions are local to a third process that
update some common shared variables of M; and M;. If
both local states s; and s; have outgoing state transitions,
(i, s;) and (sj, o, s§), on such external action a such that
the corresponding successor states s; and s; are consistent
relative to the shared variables between M; and M;, then
the successor pair of local states is (s, s;) If such an ex-
ternal state transition exists in M; but not in M}, or both
external state transitions exist in M; and M; on o but their
local successor states are not consistent, this indicates that
these two processes cannot be synchronized in (s;,s;) on
the external action «, therefore their joint successor is not
possible in the global state space, and ignored consequently.
This group of state transitions are handled in line 18 — 20.
Line 21—30 shows the symmetric case where M; is treated as
the environment to M;. Finally, if the joint successor states
are not considered yet, they are pushed onto stack to be con-
sidered later. When the algorithm terminates, all the joint
local state pairs that might exist in the global state space are
considered, and legal external state transitions representing
the interactions between these two processes are added to
their corresponding local state graphs. These two processes
and their respective state graphs are said to be synchronized
when the algorithm terminates. This algorithm can be nat-
urally extended to consider multiple processes at once.

Given a concurrent system consisting of only two processes,
this algorithm does not have any advantage as its perfor-
mance is close to that of the traditional state space search
on the whole system. From now on, it is assumed that con-
current systems considered in this paper consist of at least
three or more processes. Let M = |1<;<nM; with n > 3.
After applying Algorithm 2 to M; and Mj, it is possible that
G; or G now are expanded with new state transitions that
may represent new interactions on the interface with other
processes. Therefore, if G; or G is expanded with new state
transitions, Algorithm 2 is applied again to these processes
and other ones if they share common variables. It is iter-
atively applied until all local state graphs reach a fixpoint.
The top level algorithm is shown in Algorithm 3.

In Algorithm 3, each process is associated with a variable
new; to indicate if there are new state transitions added to
state graph G; after the local search. This variable is used to
decide whether Algorithm 2 is applied. If the state graph of
neither process is extended with new state transitions from
the previous local search, it is not necessary to consider these
two processes, as shown in line 8. The algorithm terminates
when all new; are false. Additionally, the local search only
applies to processes that share common variables.

As an example, consider constructing the local state graphs
for processes as shown in Figure 2. Initially, all three state
graphs are empty. First, apply the local state space search to
M; and M>, and the resulting local state graphs are shown
in Figure 4(a). Notice that the local state transitions on as
and B1 in M; and Ma, respectively, are added to G2 and
(1 as external state transitions. Since M is expanded with
new state transitions, and it shares common variables x and
y with Mj3, the local state space search is applied to M,

W00k WNHF-

e
AW NHO

Algorithm 3: search(M, ..., M,)

Input: M; (1 <1i < n): consisting processes of a
concurrent system.
Output: G; (1 <i<mn): local state graph for M;.

foreach M; do
Create an empty state graph G;;
new; := true;
new, := false;
while Vi<;<nnew; do
foreach i,7:1<14,57 <n do
if i 25 AV;NV; £ 0A (new; V new;) then
localSearch(M;, M;,G;,G;);
if New transitions added into G; then
| new; := true;
if New transitions added into G; then
| newj := true;
foreach 1 <7 <n do
‘ new; := new;;

and M3 next. The resulting partial local state graphs are
shown in Figure 4(b). M; and Mj are considered next as G3
is expanded with a new state transition, and the resulting
state graphs are shown in Figure 4(c). After a few more
step, the final local state graphs are shown in Figure 4(d).
Note that the unreachable states in the state graphs shown
in Figure 3(d) are not generated during the local state space
search.

3.3 Soundness

The following theorem shows that G; (1 < ¢ < n) con-
structed with Algorithm 3 for M; in M = |l1<i<nM; is a
stutter simulation of the state graph G for the whole system
M. This result shows that any next-free LTL safety proper-
ties, if hold on G;, also hold on G, therefore the soundness
of this approach.

THEOREM 3.1. Let M = ||i<i<nM; be a concurrent sys-
tem model, and G its state graph. Also, let G; be local the
state graph constructed for M; for 1 < i < n with Algo-
rithm 8. The following statement is true.

V1<i<n,G=<Gi.

Proof: We need to show that every path in G has a cor-
responding stutter-equivalent path in G;. Suppose p =
(S0,t0, 81,t1,...) be apath in G where 5o = (init1, ..., init,)
and 3x = (Sk1,...,8kn). For any k > 0, sk =c,; Skj,
1<i,j<mandi#j.

First, apply Algorithm 2 to every pair of local states (init;, init;)

such that 1 <i,5 <mn, i # j AV;NV; # (0. Consider every
ap € enb(init;) U enb(init;) in three cases.

e Case 1: «ap is local to M;. Obviously state transition
(4miti, o, s14) is included in G5, and an external state
transition (init;, o, s1;) is added to G; as shown in
Algorithm 2.

e Case 2: «p is local to M; but external to M;. Then, a
state transition (init;, c, s15) is added to G;, and an

Gs

®

N>

O+6-0-F »
o1

S
£

Q
©

e
N

040~

—|
=3
N

8

Gs

o
-

|t
Q
N

|t -
Q
N}

050
®©

—~
o
~

£

Gzﬁ/

e
~

-
=2

Q
S

|-

a 9

Figure 4: Partial state graphs for the example shown
in Figure 2 during the course of apply Algorithm 3.

external state transition (init;,ao,s1;) is added into

Gi.

e Case 3: «p is neither local nor external to M;, i.e.
invisible. Then s1; = nit;.

Therefore, according to Definition 2.2, for p, there exists a
path in GG; such that they are stutter-equivalent for one step.

According to the construction by Algorithm 2, V1 < i, j < n,i #

J A s1: =c; s1; holds.

Next, Algorithm 2 is applied again to every pair (s1i,s15)
such that V;NV; # 0, and now consider every a; € enb(s1;)U
enb(s1;). Similarly, we can show that there exists a path in
G such that it is stutter-equivalent to p for two steps. By
applying the above reasoning repeatedly, we can show that
there exists a path in G; that is stutter-equivalent to p for
arbitrary length.]

4. EXPERIMENTAL RESULTS

The method and the algorithms described in this paper are
implemented in a package, and integrated into a concurrent
system verification tool Platu, an explicit model checker im-
plemented in Java. A number of examples are selected for
experiments. These examples include communication pro-
tocols and mutual exclusion algorithms for parallel systems
from [18]. The thread-modular approach described in [8] is
also implemented for comparison. All experiments are per-
formed on a iMac desktop with a Intel quad-core processor,
however, only a single thread is used for all experiments. An
upper bound of 300 seconds on time and an upper bound of
2 GB on memory use are enforced.

The first set of experiments consider small examples of low
complexity. The state space of these examples can be searched
by the traditional reachability analysis algorithm without
difficulty, therefore the local state graphs for the processes
of these examples can be constructed when the traditional
reachability analysis is performed on the whole system. This
approach is referred to as Mono in the results tables. Sim-
ilarly, the thread modular approach in [8] is referred to as
TMMC, and the method presented in this paper is referred
to as LS3. The purpose of this experiment is to compare
the results from using TMMC and LS3 against the results
obtained with Mono which are used the baseline. From Ta-
ble 1, it can be seen that method LS3 always produces lo-
cal state graphs with less unreachable states compared to
those obtained with method TMMC. In two cases shown in
Table 1 and several other small examples whose results are
not included, LS3 produces local state graphs with the same
number of states as what can be obtained with method Mono
for all local state graphs. These results show that includ-
ing the sequencing information among the external actions
when building local state graphs can really help to avoid a
lot of unreachable states.

The second set of experiments consider some large examples
of higher complexity, which cannot be finished by SPIN [13]
even when the partial-order reduction is turned on. In addi-
tion to showing the comparison among the local state graphs
generated with the method TMMC and LS3, their runtime
and memory use are also compared. Additionally, local
safety properties are defined for processes of these examples
whenever appropriate. All these local properties hold true
if the global state space is searched. In this experiment, we
compare the efficiencies of TMMC and LS3 as well as their
effectiveness in reducing unreachable states and thus false
counter-examples for local safety properties. As shown in
Figure 1, the local state graphs need to be fully constructed
so that transition dependence information can be extracted
to assist partial order reduction in global state space search
for verifying global properties or local properties that can-
not proved locally, TMMC or LS3 does not terminate even
when a local property is shown violated until none of the
local state graphs can be expanded.

From Table 2, it can be seen that method 1S3 still produces
local state graphs with less unreachable states for all ex-
amples. For almost all examples, L.S3 can prove the local
safety properties where TMMC fails. In the particular case
for peterson.4, TMMC times out as it keeps generating more
states for the local state graphs while L.S3 proves all local

Table 1: Comparison of the results from using the traditional reachability analsysis (Mono), the method
described in [8] (TMMC), and the method described in this paper (LS3). Time is in seconds, and memory is
in MBs. For each example, the number of states in its local state graphs are shown.

phil peterson.3 syzmanski.4
Mono (9,9,9,9) (2627, 2421, 2745) | (4311, 4415, 4383, 4352)
TMMC || (16,16,16,16) | (2997, 2952, 2952) | (5875, 6125, 6250, 6375)
LS3 (9,9,9,9) (2627, 2421, 2745) | (5201, 5453, 5598, 5755)

Table 2: Comparison of the results from using the the method described in [8] (TMMC), and the method
described in this paper (LS3) on some more complex examples. TO indicates timeout.

Method | Time | Mem State count in local state graphs
bp TMMC | 2.7 | 174 (56007, 22267, 351694", 205", 84, 30)
LS3 98 | 214 (1368, 1496, 25001, 77, 35, 14)
iprotocol | IMMC | 88 | 408 | (19, 1256, 53, I8104", 110627, 283444")
ILS3 | 101 | 68 (19, 230, 29, 2647, 3656, 23747)
lamport | LMMC | 15:9 | 106 (93447, 93447, 93447, 9344", 9344")
[S3 | 248 | 143 (8300, 8800, 8800, 8800, 8800)
o TMMC | 1.3 | 15 | (250, 250, 250, 250, 566,560,561, 412)
LS3 I3 | 33 (250,248,248,248,566,554,555,408)
TMMC | TO | — (1245357, 1049227, 104088", 1033197
peterson-d I —rer—— 551 885 (13573, 12993, 12869, 12301)
syzmanski.5 |- LMMC | 59.4 | 198 | (350007362507, 36875, 375007, 381257)
LS3 | 59.1 | 211 | (306847,319347, 326597, 33444, 34265")

1. In the table, numbers labeled with * indicate that the local propertied defined for the corresponding processes are

violated caused by the unreachable states.

2. Numbers without being labeled with * indicate either the local properties hold in the local SGs for the corresponding

processes or no local properties are defined.

properties. For syzmanski.5, even though LS3 cannot prove
the local properties, it constructs the local state graphs with
significantly reduced unreachable states. This reduction can
lead to better partial order reduction in global state space
search in the later stage.

In general, the runtime required by LS3 is higher, except for
example peterson.4. This is due to the repeated search of
joint local state space of processes when LS3 runs. Memory
requirements by these two methods do not fall into any pat-
tern. In some cases, TMMC uses more memory as a large
number of unreachable states are generated into the local
state graphs, while in some other cases LLS3 uses more mem-
ory for searching the joint local state spaces when the local
state graphs contain large numbers of local states.

Next, a better analysis of the possible inefficiency of LS3
is provided. Whenever a local state graph is expanded, it
must be considered again with any other local state graphs
if they share common variables where their joint state space
is searched. In the current implementation, the joint state
space of local state graphs are not kept in memory, and it is
constructed on demand. Every time the joint state space of
two local state graphs is searched, it is actually built from
scratch. This implementation intends to keep memory use
low, however, it may cause a lot of waste of work as large
part of the same joint state space is built and searched over
and over again. Another reason for high runtime overhead

it that LS3 sometimes may expand local state graphs slowly.
This problem becomes very serious when the algorithm ap-
proaches the end where all local state graphs are close to
their fixpoints. For all examples, in the first number of main
iterations as shown in Algorithm 3, the state counts of the
local state graphs are already very close to the correspond-
ing numbers as shown in Table 2. Afterwards, only a small
number of states or state transitions are added to the local
state graphs in each iteration. This slow expansion results
in a large number of the main iterations. Coupled with
the high computational cost associated with the joint local
state space search used frequently in each iteration, LS3 of-
ten spends a very large portion of the total runtime to finish
the last few iterations.

From the experiments, it is clear that both TMMC and
LS3 perform much better for the loosely coupled systems.
By loosely coupled we mean that such a system does not
have many states and state changes on the shared variables
among its consisting processes. In the same benchmark,
there are a number of examples that are tightly-coupled.
Since states on the shared variables are replicated in the lo-
cal state graphs where these variables are shared, this can
result in high degree of redundant duplications in the local
state graphs, thus higher memory use. On the other hand,
loosely coupled examples could pose another challenge to
LS3. When LS3 is applied to two local state graphs, their
joint state space is actually constructed. If these two local

state graphs have sparse interactions, but a lot of internal
state transitions, then the interleavings of their internal state
transitions can lead to a very large joint state space, hence
higher runtime and memory use. This explains why TMMC
sometimes is more efficient as no joint state state space is
built and searched.

Based on the above discussion, the LS3 algorithm needs to
be improved by reducing redundant work that are often car-
ried out by the current implementation. Additionally, the
joint state space of some abstract forms of two local state
graphs should be searched, instead of considering the local
state graphs themselves. These abstract forms of the local
state graphs should keep the state space on shared variables
intact but hide internal state transitions as much as possi-
ble. Finally, a parallel implementation of the L.S3 algorithm
can reduce the runtime, although more memory is probably
needed to keep multiple joint state space in memory at the
same time.

5. CONCLUSION

This paper presents an approach to the construction of local
state graphs of concurrent systems for local safety verifica-
tion. The method and algorithms behind this approach over-
come a drawback in the previous approach and can produce
local state graphs with less unreachable states, which leads
to less false counter-examples for safety properties. Exper-
imental results are promising, but also shows several issues
with this new approach. In the future, we plan to improve
this approach by addressing these issues and run more ex-
periments.

6. REFERENCES

[1] R. Alur, P. Madhusudan, and W. Nam. Symbolic
compositional verification by learning assumptions. In
Proc. Int. Conf. on Computer Aided Verification,
volume 3576 of LNCS, pages 548 — 562.
Springer-Verlag, 2005.

[2] M. Bobaru, C.S.Pasareanu, and D. Giannakopoulou.
Automated assume-guarantee reasoning by abstraction
refinement. In Proc. Int. Conf. on Computer Aided
Verification, LNCS. Springer-Verlag, 2008.

[3] S. Chaki, E. Clarke, N. Sinha, and P. Thati.
Automated assume-guarantee reasoning for simulation
conformance. In Proc. Int. Conf. on Computer Aided
Verification, LNCS, pages 534 — 547. Springer-Verlag,
2005.

[4] S. Cheung and J. Kramer. Context constraints for
compositional reachability analysis. ACM Transations
on Software Engineering and Methodology,
5(4):334-377, 1996.

[5] J. Cobleigh, D. Giannakopoulou, and C. Pasareanu.
Learning assumptions for compositional verification.
In Proc. Int. Conf. on Tools and Algorithms for
Construction and Analysis of Systems (TACAS),
volume 2619 of LNCS, pages 331-346.
Springer-Verlag, 2003.

[6] A. Cohen and K. Namjoshi. Local proofs for global
safety properties. In Proc. Int. Conf. on Computer
Aided Verification, volume 4590 of LNCS.
Springer-Verlag, 2007.

[7] C.S.Pasareanu, D. Giannakopoulou, and M. Bobaru.

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

Learning to divide and conquer: applying [* algorithm
to automate assume-guarantee reasoning. Formal
Methods in System Design, (3), 2008.

C. Flanagan and S. Qadeer. Thread-modular model
checking. In Proceedings of the 10th International
Conference on Model Checking Software, SPIN’03,
pages 213-224. Springer-Verlag, 2003.

D. Giannakopoulou, C. Pasareanu, and H. Barringer.
Assumption generation for software component
verification. In Proceedings of ASE’02, pages 3—12.
IEEE Computer Society, 2002.

S. Graf and B. Steffen. Compositional minimization of
finite state systems. In Proc. Int. Conf. on Computer
Aided Verification, pages 186-196, 1990.

T. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer.
Thread-modular abstraction refinement. In Proc. Int.
Conf. on Computer Aided Verification, volume 2725 of
LNCS, pages 262-274. Springer-Verlag, 2003.

T. Henzinger, S. Qadeer, and S. Rajamani. You
assume, we guarantee: methodology and case studies.
In Proc. Int. Conf. on Computer Aided Verification,
pages 440-451. Springer, 1998.

G. J. Holzmann. The model checker SPIN. Software
Engineering, 23(5):279-295, 1997.

C. Jones. Tentative steps toward a development for
interfering programs. ACM TOPLAS, 5(4):596-619,
1983.

J. Krimm and L. Mounier. Compositional state space
generation from lotos programs. In Proc. Int. Conf. on
Tools and Algorithms for Construction and Analysis of
Systems (TACAS), pages 239-258, London, UK, 1997.
Springer-Verlag.

A. Malkis, A. Podelski, and A. Rybalchenko.
Thread-modular counterexample-guided abstraction
refinement. In Proceedings of the 17th International
Conference on Static Analysis, SAS’10, pages 356—372.
Springer-Verlag, 2010.

K. L. Mcmillan. A methodology for hardware
verification using compositional model checking.
Technical report, Cadence Berkeley Labs, 1999.

R. Peldnek. Beem: Benchmarks for explicit model
checkers. In Proc. of SPIN Workshop, volume 4595 of
LNCS, pages 263-267. Springer, 2007.

H. Zheng. Compositional reachability analysis for
efficient modular verification of asynchronous designs.
IEEE Transactions on COMPUTER-AIDED DESIGN
of Integrated Circuits and Systems, 29(3), March 2010.
H. Zheng, E. Mercer, and C. Myers. Modular
verification of timed circuits using automatic
abstraction. IEEE Transactions on Computer-Aided
Design, 22(9):1138-1153, 2003.

H. Zheng, C. Myers, D. Walter, S. Little, and

T. Yoneda. Verification of timed circuits with failure
directed abstractions. IEEE Transactions on
Computer-Aided Design, 25(3):403—-412, 2006.

H. Zheng and Y. Zhang. Local state space analysis
leads to better partial order reduction. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2014. accepted for publication.

