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ABSTRACT
Conventional Bounded Software Model Checking tools gen-
erate a symbolic representation of all feasible executions of
a program up to a predetermined bound. An insufficiently
large bound results in missed bugs, and a subsequent in-
crease of the bound necessitates the complete reconstruc-
tion of the instance and a restart of the underlying solver.
Conversely, exceedingly large bounds result in prohibitively
large decision problems, causing the verifier to run out of
resources before it can provide a result.

We present an incremental approach to Bounded Software
Model Checking, which enables increasing the bound with-
out incurring the overhead of a restart. Further, we provide
an LLVM-based open-source implementation which supports
a wide range of incremental SMT solvers. We compare our
implementation to other traditional non-incremental soft-
ware model checkers and show the advantages of performing
incremental verification by analyzing the overhead incurred
on a common suite of benchmarks.

1. INTRODUCTION
Bounded Model Checking (BMC) is arguably one of the
most successful and widely used formal verification tech-
niques, as witnessed by the TACAS most influential paper
award for Biere et al.’s seminal paper [5]. As BMC performs
a symbolic exploration of execution traces up to a bounded
length only, the primary application of the technique is the
detection of bugs. While BMC was initially aimed at hard-
ware designs, it has since become a standard technique for
software verification that is implemented in numerous veri-
fication tools [13].

We illustrate the inner workings of a typical implementation
of BMC for software using the program in Figure 1a. The
program deploys Wegner’s algorithm [22] to assert that more
than 7 bits (or flags) in a bit-vector x are set if x matches
a certain bit-mask. Bounded software model checking tools
such as LLBMC [20] or CBMC [9] unwind the control flow

graph (CFG) of the program into a directed acyclic graph
(DAG) until a certain user-specified bound is reached, and
convert the resulting loop-free code into static single assign-
ment (SSA) form [11]. Figures 1b and 1c illustrate this pro-
cess for the unwinding depths one and two, respectively. To
avoid a blowup of the DAG, the loop exit edges (dashed in
Figure 1) are merged after each loop iteration. Since each
variable is assigned only once along each path in SSA form,
this requires a case split to determine the value of variable
c at node u. (In the SSA representation, this is typically
indicated using a φ function c3 := φ(c1, c2).) For Figure 1b,
we obtain the encoding in Figure 2.

By negating the assertion we achieve that any satisfying
assignment (provided by a satisfiability checker) of this in-
stance corresponds to a program execution that violates the
assertion. The given instance, however, is unsatisfiable, indi-
cating that there is no path that traverses the loop at most
one time and violates the assertion. To detect a bug, we
need to increment the loop bound and reconstruct the for-
mula (since the disjunctive case split cannot be augmented),
or provide a sufficiently large bound in the first place.

For the given program, determining that 3 is the smallest
bound admitting an assertion violation is non-trivial unless
one understands that the assignment y:=y&(y-1) resets the
right-most bit in y that is one. Safe over-estimations (e.g.,
the bit-width of x) lead to unnecessarily hard problem in-
stances for the satisfiability solver, and under-estimations
necessitate expensive restarts.

BMC tools deploy contemporary SAT or SMT solvers and
benefit greatly from the impressive advances in this field [6].
A characteristic of most modern SMT solvers is that they
solve formulas incrementally, reusing the results of previ-
ous calls whenever the formula is augmented with additional
conjuncts. Additionally, incremental solvers make it possi-
ble to add formulas on a tentative basis and later retract
them without requiring a restart.

We exploit this feature to implement a bounded software
model checker that unwinds the program incrementally and
terminates as soon as an assertion violation can be detected—
even if the specified unwinding bound is not reached. Our
method eliminates the necessity for restarts and avoids the
construction of unnecessarily large SMT instances. More-
over, it relieves the user of its responsibility to provide an
adequate bound. While incremental solving necessarily re-
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Figure 1: Incremental unwinding of a control flow graph

(y1 = x) ∧ (c1 = 0) ∧ (c2 = 1) ∧ (y2 = y1&(y1 − 1)) (assignments)
((y1 = 0) ∧ (c3 = c1)) ∨ ((y1 6= 0) ∧ (c3 = c2)) (case split)

((y1 = 0) ∨ (y1 6= 0) ∧ (y2 = 0)) ∧ ((x&42 = 42) ∧ (c3 ≤ 7)) (negated assertion)

Figure 2: Encoding of unwinding in Figure 1b

sults in a computational overhead, the performance penalty
is quickly offset by the avoidance of restarts in situations
where the exact bound is not known. In addition (and un-
like non-incremental tools), our technique is able to provide
partial results for bug-free programs even if the specified
bound is prohibitively large.

We present our incremental BMC method in Section 2 and
provide an experimental evaluation in Section 3. Our imple-
mentation is available under the terms of the GNU public
license version 3 (GPL3) on github (https://github.com/
hguenther/nbis).

2. INCREMENTAL BMC

Programs. A program is a directed graph 〈Locs, Stmts〉 with
nodes Locs (representing the program locations including the
initial location l0 ∈ Locs) and edges Stmts annotated with
guarded assignments 〈[γ], x := e〉, where γ is a predicate
over the program variables, and e is an expression assigned
to variable x. The guard may be omitted if it is true and
the assignment may be omitted if the edge is a conditional
jump. The semantics of guarded assignments is determined
by the predicate transformer

sp(〈[γ], x := e〉, ϕ)
def
= ∃xi . (ϕ ∧ γ)[x/xi] ∧ (x = e[x/xi]) ,

where i is a fresh index and ϕ[x/xi] denotes the formula ϕ
with all free occurrences of x replaced by xi.

An unwinding of a program 〈Locs, Stmts〉 is a connected
DAG 〈V,E〉 with nodes V and edges E such that there ex-
ists a mapping ` : V → Locs and for every 〈v1, v2〉 ∈ E
we have 〈`(v1), `(v2)〉 ∈ Stmts, and each edge 〈v1, v2〉 ∈ E
is annotates with a guarded assignment stmt(v1, v2) accord-
ingly. Moreover, there is a unique root node v0 ∈ V with

`(v0) = l0. Figures 1b and 1c show unwindings for the pro-
gram in Figure 1a. Given an unwinding 〈V,E〉, the formulas
ψv representing reachable states for each node v ∈ V are de-
fined inductively:

ψv
def
=

{
true if v = v0∨

〈u,v〉∈E sp(stmt(u, v), ψu) otherwise
(1)

This symbolic representation can be derived from the SSA
form of an unwinding in a straight forward manner. An
assertion assert(α) at node v ∈ V can be violated if ψv∧¬α
is satisfiable, which can be easily checked using an SMT
solver.

Merge nodes. The iterative expansion of a given unwind-
ing 〈V,E〉 results in new loop exit edges incident to the node
succeeding the loop (node u in Figure 1, for instance). These
nodes, which we call merge nodes, are chosen in a manner
such that the resulting expanded unwinding remains cycle-
free. Expanding the unwinding increases the in-degree of
merge nodes v ∈ V and necessitates a modification of the
corresponding predicates ψv defined above (1).

While contemporary SMT solvers allow for adding addi-
tional conjuncts to the formulas ψv (1), an expansion of the
disjunctions for merge nodes v is not possible, thus requiring
a reconstruction ψv and a restart of the solver.

Incremental representation. To avoid the problem descri-
bed above, we use a symbolic representation of unwindings
〈V,E〉 that can be extended on demand. An SSA represen-
tation of 〈V,E〉 guarantees that exactly one version of each
program variable is associated with each node v (e.g., c2 and



y2 at v1 and c3 at u in Figure 1b). We use xv to denote the
SSA version of x in scope at node v.

For each node v, we introduce a propositional activation
variable av which indicates whether the unwinding contains
a feasible execution path reaching v. Given an unwinding
〈V,E〉 in SSA form, av is constructed as follows:

av
def
=


true if v = v0
pv ∨

∨
〈u,v〉∈E(au ∧ γ)

(where stmt(u, v) = 〈[γ], 〉) otherwise

For node u in Figure 1b, for instance, we obtain

au = pu ∨ (av0 ∧ (y1 = 0)) ∨ (av1 ∧ (y2 = 0)) . (2)

The disjunct pv is an optional proxy variable which is only
introduced at merge nodes. Proxy variables enable us to
retroactively introduce additional incoming edges in the en-
coding. The expansion of the unwinding in Figure 1b to
the unwinding in Figure 1c results in the constraint pu =
(av2 ∧ (y3 = 0) ∨ pw), where pw is a fresh proxy variable.
Whenever we call the SMT solver,“dangling”proxy variables
are constrained by adding a retractable formula ¬pw.

Unlike in Formula 1, assignments are modeled as separate
constraints:∧

{xv = e | 〈u, v〉 ∈ E ∧ stmt(u, v) = 〈 , xv := e〉}

Nodes for which the variable versions of the incoming edges
disagree are annotated with φ functions in SSA (e.g., c3 =
φ(c1, c2) for node u in Figure 1b). A φ function for x at
node v is encoded as∧
〈u,v〉∈E

((au ∧ γ)⇒ (xv = xu)) (where stmt(u, v) = 〈[γ], 〉)

(3)
(assuming that stmt(u, v) does not update xu). Formula 3
can be augmented upon expansion of the unwinding. The
encoding of c3 = φ(c1, c2) at node u in Figure 1b is (av0 ∧
(y1 = 0) ⇒ (c3 = c1)) ∧ (av1 ∧ (y2 = 0) ⇒ (c3 = c2)), to
which av2 ∧ (y3 = 0) ⇒ (c3 = c4) is added upon further
unwinding (Figure 1c).

Assertions are represented using propositional variables bv
which are constrained with the negated assertion condition
and the activation variable of the respective node. The as-
sertion in Figure 1 yields the constraint

bu = au ∧ ((x&42 = 42) ∧ (c3 ≤ 7)) .

To check for assertion violations, we assert a disjunction over
all assertion variables.

Pointers and Memory. Dynamic memory accesses are im-
plemented by maintaining a set of memory states Mem and
a set of pointers Ptrs. Each memory state represents the
state of the memory at a certain point of program execution
and contains a set of all the allocated memory objects. Each
memory object is represented by a bitvector SMT-variable
and has a unique identifier. For a memory-state m ∈ Mem,

we write m(i) for the memory object identified by i. Every
pointer p ∈ Ptrs has two attributes:

• A set of object identifiers points-to(p) which keeps track
of all the objects the pointer p can potentially point
to. This is required to limit the amount of case splits
over this pointer to the objects the pointer can actually
point to which limits the strain on the SMT solver.

• The SMT representation of the actual object identifier
the pointer points to, repr(p) which can be a any SMT
expression of type bitvector such that∨

i∈points-to(p)

repr(p) = i

always holds.

In the following, we introduce a set of memory instructions
which we use to encode constraints over Mem, Ptrs, and the
program variables. As the program is unwound incremen-
tally, the program statements are converted into memory
instructions, which are then applied to successively add the
corresponding constraints to the encoding.

• connect cm1m2 enforces the conditional equivalence
of the memory states m1 and m2. This is achieved by
generating constraints such that

c⇒ (∀i .m1(i) = m2(i))

holds. Note that the quantifier can be expanded, since
the number of objects i is finite.

• connect ptr c p1 p2 connects the pointers p1 and p2 if
the condition c holds. The memory model must gen-
erate constraints to make c⇒ repr(p1) = repr(p2) and
∀i ∈ points-to(p1).i ∈ points-to(p2) true.

• allocm1 p sm2 allocates a new object of size s and
creates a new state m2, which contains the new ob-
ject and all previous objects of m1. The pointer p is
initialized to point to the new object. Accordingly,
for the fresh object identifier i and the SMT bitvector
variable v representing the new object, the instruction
yields the following:

∀i′ 6= i .m2(i) = m1(i),m2(i) = v,

repr(p) = i, and

points-to(p) = {i} .

• null p constrains the pointer p to point to the null
object. The representation of the null object is 0 and
the points-to set is empty:

(repr(p) = 0) ∧ (points-to(p) = ∅)

• loadmpr assigns the content of pointer p in state m
into the SMT variable r. The encoding guarantees that∧

i∈points-to(p)

(repr(p) = i)⇒ (r = m(i)) .
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Figure 3: Incremental memory instructions

• storem1 v pm2 stores the value v into the object that
the pointer p is pointing to at state m1, thus creating
a new memory state. The constraint

m2(i) =

{
v if i ∈ points-to(p) ∧ repr(p) = i
m1(i) otherwise

is maintained for all objects i.

• compare p1 p2 r compares the pointer p1 and p2 for
equality and stores the result in the SMT variable r,
such that r = (repr(p1) = repr(p2)) holds.

Since the points-to sets of pointers can change due to new
connect-instructions, load and store instructions from or to
these changed pointers have to be augmented to take the
newly reachable objects into account. Consider the example
given in Figure 3. Every node v in the CFG has an memory
state mv associated with it. Since the assignment p:=q does
not manipulate the dynamically allocated memory, we have
ma = mb. The pointer p is assigned along each path incident
to node g. Accordingly, the SSA form maintains different
versions of the variable p for the incoming edges of node g.
At the 〈a, b〉 edge, the address of q gets assigned to p, so we
use q instead of introducing a fresh SSA variable. For the
assignments associated with the edges 〈c, d〉 and 〈e, f〉 we
introduce the variables p0 and p1, respectively.

To realize the edge 〈b, g〉, we must first connect the pointer
q to the pointer p (associated with node g). This means
that we have to initialize the points-to set for p with the
one of q. Suppose that q can point to two object iden-
tifiers i0 and i1, which are represented in mb by the ob-
jects mb(i0) and mb(i1). We obtain points-to(p) = {i0, i1}.
We also get the following constraint for the SMT instance:
cb ⇒ repr(p) = repr(q). Then we have to connect the mem-
ory state mb to mg, which yields cb ⇒ mg(i0) = mb(i0)
and cb ⇒ mg(i1) = mb(i1). Suppose that p0 can only point
to the object identified by i0. Storing 15 to this pointer
created a memory state md in which md(i0) = 15. Con-
necting p0 to p doesn’t change the points-to set of p since
i0 is already contained in it. However, we get the new SMT
constraint cd ⇒ repr(p) = repr(p0). By connecting md to
mg, we only get one constraint, namely cd ⇒ mg(i0) =
md(i0), since md does not contain i1. Loading from pointer
p at edge 〈g, h〉 entails adding a constraint for each object
identifier in points-to(p): repr(p) = i0 ⇒ r = mg(i0) and
repr(p) = i1 ⇒ r = mg(i1). Now the third incoming edge

is added in step 2; suppose that me is empty, so the al-
location creates a fresh variable v of 4 bytes and a fresh
identifier i2 such that mf (i2) = v. The pointer p1 is cre-
ated with the singleton points-to set points-to(p) = {i2} and
the representation repr(p1) = i2. Connecting the pointers
p1 and p now adds the new object identifier i2 into the
points-to set of p, so we have to augment the SMT formu-
las generated by the load instruction from p by the follow-
ing formula: repr(p) = i2 ⇒ r = mg(i2). The constraints
cf ⇒ repr(p) = repr(p2) and cf ⇒ mg(i2) = mf (i2) are
added as before. After adding these constraints r now rep-
resents every possible loading result of the three incoming
edges.

Catching Memory Bugs. To detect invalid memory ac-
cesses (either loads from or stores to null-pointers), we must
generate an assertion repr(p) 6= 0 for every memory instruc-
tion loadmpr or storem1 v pm2. However, oftentimes
we can actually statically infer that p can never be a null
pointer. We can accomplish this by introducing a special ob-
ject identifier inull which identifies no allocated object but in-
stead its presence in a points-to set signifies that the pointer
can potentially be null. With this in place, we only have to
generate the assertions for pointer with inull ∈ points-to(p).

Extending the Memory Model. The memory model de-
scribed above is very limited and only able to handle very
simple programs without arrays, pointer indirections, casts
or structs. We informally describe the various extensions im-
plemented in Nbis to handle more complex programs here:

• Pointer stores and loads. To enable the memory model
to store and load pointers to/from other pointers we
need to extend each memory object with a points-to
set. Whenever a pointer is loaded from a memory
object, it inherits its points-to information from the
memory object. Similarily, storing a pointer transfers
its points-to information to the memory-object.

• Structures. Instead of representing each memory model
with one single SMT variable, we can allow a mem-
ory object to be composed of multiple SMT variables,
where each variable represents a field in structure data
type.



• Arrays. While arrays of a constant size can be handled
by creating an SMT variable for each array element, ar-
rays with a variable size require more thought. We can
represent arrays of dynamic size using the SMT theory
of arrays which McCarthy’s select and update func-
tions to manipulate arrays. Each array is represented
by an SMT array variable representing the content of
the array and a bitvector variable storing the size of
the array for error checking (if the array index is larger
than the size variable, we detect a memory access vio-
lation).

To represent indexed accesses into arrays, we have to
split the representation of pointers into two parts: The
first part of the pointer represents the object identifier,
as before, while the second half of the pointer repre-
sentation can be used to represent a potential offset
into the object. To avoid having to check for all pos-
sible offsets into a given object, we can also augment
the points-to set of pointers with a set of offsets that
the pointer can potentially represent.

• Global variables. Since global variables are implemented
in LLVM as pointers to pre-allocated objects, a global
variable v can be represented by an object identifier iv
which is present in every memory state and a pointer
pv which only points to the object identified by iv. We
generate a memory instruction allocm0 pv smstart at
the beginning of the unrollment where s is the size of
the global variable, so that mstart is the initial memory
state for the program.

• Pointer casts. Since the C-language allows almost ev-
ery possible conversion between pointers, care has to
be taken to incorporate pointer casts into the memory
model. For example, if the program casts a pointer
to a 64-bit integer into a byte-array and accesses the
pointer using a dynamic offset, the loading instruction
has to generate a case split over all the byte compo-
nents of the integer.

Optimizations. Since increasing the bound may add new
incoming edges to merge nodes, it is not possible to safely
infer information about the values of variables from a given
unwinding. Accordingly, optimizations such as constant-
propagation, elimination of overflow-checks, etc. can only
be applied by performing an up-front static analysis of the
program. We perform an approximate static analysis to in-
fer the following information: (a) lower and upper bounds
of variables to remove redundant array-bounds checks, (b)
access and alignment information for data structures to sim-
plify load and store instructions, (c) alias information to
remove redundant checks for null-pointer accesses.

3. EVALUATION
To evaluate our approach, we implemented it in a tool called
Nbis, written in Haskell. Nbis uses the intermediate repre-
sentation of the LLVM compiler framework [18], which sim-
plifies the handling of the complex semantics of the C pro-
gramming language. Our implementation supports a range
of SMT solvers such as Z3 [12], MathSAT [8], STP [16],
CVC4 [2], Yices [14], and others supporting the SMT-LIB
standard [3]. The implementation is available under the

terms of the GNU public license version 3 (GPL3) on github
(https://github.com/hguenther/nbis).

To demonstrate the feasibility of incremental verification, we
evaluated Nbis on the programs in the bitvector category
of the SV-Comp 2013.1 First, we compared Nbis in non-
incremental mode to the state-of-the-art tools CBMC [9],
ESBMC [10], and LLBMC [20]. Since CBMC relies on bit-
blasting and a SAT -solver, we compare it to Nbis running
with the STP [16] backend. We also compare Nbis in this
configuration against LLBMC, since it also uses STP as
its backend. ESBMC, on the other hand, uses Z3 [12] as
a solver, so we use the same solver as the backend in our
comparison. Figure 4 shows the running times of these tools
plotted against a logarithmic time-scale. The performance
of Nbis running with STP is comparable (and often even
better) than CBMC and only slightly worse than LLBMC.
Comparing Nbis with ESBMC, we can see that Nbis fares
better on every benchmark.

To measure the performance overhead incremental BMC, we
ran Nbis on every benchmark with different SMT-backends
and compared the performance to the running time in non-
incremental mode. A fair comparison between incremental
and non-incremental BMC is difficult, because the run-time
is influenced by the following parameters:

1. Unwinding depth. In the presence of a bug, the non-
incremental approach is at a disadvantage if the un-
winding depth significantly exceeds the depth at which
the bug manifests itself.

2. Step width. By default, Nbis checks for bugs after
each unwinding, resulting in a significant overhead if
each unwinding step only adds a small number of con-
straints to the instance. By setting the step width
to the unwinding depth, we can enforce that only one
SAT query is made, which is equal to the non-incre-
mental algorithm.

Since it is always possible to tweak these parameters in favor
of either incremental or non-incremental BMC, we measure
the worst case for incremental verification:

• The bound for the non-incremental is set to the mini-
mal depth where the bug appears. If no bug is present
and a completeness threshold can be computed, it is
used as the bound. Otherwise a bound of 10 is selected.
• The incremental algorithm checks for bugs after each

unrolling step.

Table 1 shows the overhead of running the incremental al-
gorithm on the problem instances, where an overhead of n
means that the incremental version took n times as long to
complete. Missing entries indicate a time-out, which was set
to 30 seconds. The smallest overhead is highlighted.

We make the following observations:

1. The performance of incremental verification is contin-

1We used the following versions of solvers: Z3 4.3.1,
STP 1d89673988c7d86fc3bca1d0ab9a7497366bab04, Math-
SAT 5.2.10, CVC4 1.4-prerelease and Yices 2.1.0
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gent on the solver: There are many examples—such
as “gcd 3”—where some solvers perform significantly
better than the rest.

2. Many examples from the bitvector benchmark suite
show a less-than twofold increase in execution time,
even under the worst possible circumstances. This is
very encouraging, as it suggests that the approach is
indeed viable for a wide range of examples.

3. Large overheads (such as the 12-fold increase of run-
ning time in the “modulus safe” benchmark) are owed
to the fact that incremental BMC prevents constant
propagation in the unwinding. This problem can be

mitigated by performing an up-front static analysis to
detect constants. We will add this feature in a future
version of Nbis.

Figure 5 illustrates the runtime variation resulting from the
different performance characteristics of the SMT solvers: We
ran Z3 and STP on the “s3 clnt 2 safe”-benchmark and com-
pared the running times for each unwinding depth. While
STP has a linear increase in running time both in incre-
mental and non-incremental mode, Z3 shows a much steeper
curve in incremental mode. As of yet, the reasons for these
differences between solvers are unknown to the authors.
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num conv. 2 1.2 1.0 1.1 1.1 1.1 1.0
parity – 14.9 – 14.4 – –
s3 clnt 1 s 5.2 6.7 10.5 2.6 – 2.5
s3 clnt 1 u 1.7 2.3 2.3 1.4 – 1.8
s3 clnt 2 s 1.8 1.1 2.0 2.0 8.5 1.2
s3 clnt 2 u 2.7 4.7 6.9 1.9 – 2.2
s3 clnt 3 s 5.7 7.68 13.5 2.2 – 2.0
s3 clnt 3 u 1.3 2.3 1.6 1.4 – 1.6
s3 srvr 1 1.7 1.3 1.6 1.9 6.5 1.5
s3 srvr 2 3.1 4.3 1.6 1.9 – 1.9
s3 srvr 3 3.5 1.8 4.6 1.1 – 1.3
soft float 1 – – – – – –
soft float 2 1.0 1.0 1.0 1.0 1.0 1.0
soft float 3 1.0 1.0 1.0 1.0 1.23 1.0
soft float 4 – – – – – –
soft float 5 1.0 1.1 1.1 1.1 1.1 1.1

Table 1: Incremental verification time overhead

Figure 5 also illustrates that the additional cost of incremen-
tal verification amortizes quickly once the non-incremental
solver is restarted for the first time: For the given exam-
ple (Figure 5), the overhead of the incremental algorithm is
never larger than the cost of restarting the non-incremental
algorithm.

4. RELATED WORK
A number of verification tools, such as CBMC [9], ES-
BMC [10], and LLBMC [20], F-Soft [17], SMT-BMC [1]
are based on non-incremental BMC. CBMC performs bit-
blasting and uses the SAT solver MiniSAT [15] to solve the
resulting propositional problem. SMT-BMC as well as ES-
BMC deploy an SMT solver, and ESBMC relies on the a
front-end with CBMC. F-Soft stands out as it performs
several static analyses on the program in order to simplify
the resulting unwinding instance. LLBMC bears the closes
similarity with Nbis, since it also uses the LLVM internal
representation. Neither of these tools allow the bound to be
increased incrementally.

Symbolic execution tools like KLEE [7] or KLOVER [19],
on the other hand, incrementally unwind the paths of a pro-
gram. As these tools are typically aimed at test case gen-
eration, the tools aim at satisfying coverage criteria. Our
approach avoids the explicit enumeration of paths by per-
forming a block-wise unwinding that encodes all program

paths in a single SMT instance by aggressively merging sim-
ilar states. LAV [21], a recent LLVM-based addition to the
BMC family, performs a block-wise unwinding of loops, but
does not merge the branches of the unwinding. As an ad-
ditional feature, LAV is able to over-approximate loops (at
the cost of potential false alarms). Aggressive merging of
(loop-free) paths has also proved beneficial in the context of
abstraction and unbounded model checking [4].

5. CONCLUSION AND FUTURE WORK
We introduced an BMC approach which takes advantage of
incremental SMT solvers in order to perform a gradual un-
winding of the program. Incremental BMC is favorable if the
specified unwinding depth significantly exceeds the depth of
the bug and relieves the user of the burden to determine
an adequate bound. In addition, an incremental BMC can
report partial results for bug-free programs even if the spec-
ified unwinding depth is not reached.

As the presented benchmarks show, the performance of in-
cremental bounded model checking is encouraging on many
examples. We are confident that the overhead for the re-
maining examples can be addressed with additional opti-
mizations (such as an up-front static analysis enabling con-
stant propagation) in future versions of Nbis.

In addition, incremental BMC enables additional optimiza-
tions typically used in symbolic simulation: the ability to
perform a query at any point during the unwinding process
enables the verification tool to prune infeasible traces. This
optimization will be incorporated into a future version of
Nbis.
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