
Towards a GPGPU-Parallel SPIN Model Checker∗

Ezio Bartocci
Vienna University of

Technology

Richard DeFrancisco
Stony Brook University

Scott A. Smolka
Stony Brook University

ABSTRACT
As General-Purpose Graphics Processing Units (GPGPUs)
become more powerful, they are being used increasingly
often in high-performance computing applications. State
space exploration, as employed in model-checking and other
verification techniques, is a large, complex problem that has
successfully been ported to a variety of parallel architec-
tures. Use of the GPU for this purpose, however, has only
recently begun to be studied. We show how the 2012 multi-
core CPU-parallel state-space exploration algorithm of the
SPIN model checker can be re-engineered to take advantage
of the unique parallel-processing capabilities of the GPGPU
architecture, and demonstrate how to overcome the non-
trivial design obstacles presented by this task. Our prelim-
inary results demonstrate significant performance improve-
ments over the traditional sequential model checker for state
spaces of appreciable size (>∼10 million unique states).

Keywords
Model Checking, SPIN, State Space Exploration, GPGPU,
CUDA

1. INTRODUCTION
GPGPUs (General-Purpose Computing on Graphics Pro-
cessing Units) are increasingly being used in HPC (High-
Performance Computing) applications. Their highly par-
allel structure, improved energy-consumption/performance
ratio, and low cost make them more effective than general-
purpose CPUs for algorithms that process large blocks of
data in parallel. The number of cores available per card is
growing at a rate dramatically faster than that for CPUs
and, consequently, so are the FLOPs (FLoating Point Oper-
ations per Second (FLOPS) that can be executed. Presently,
the maximum number of cores in a high-performance CPU
is 16 (AMD Opteron), while a desktop GPGPU (NVIDIA

∗Research supported in part by grants NSF CCF-092619,
AFOSR FA0550-09-1-0481, and a NASA NSTRF fellowship
(grant #NNX12AN15H).

GeForce GTX TITAN) may feature up to 2,688 cores. Also,
the amount of memory available per GPU, a bottleneck for
many applications, has grown considerably over the past sev-
eral years (i.e., the NVIDIA Tesla K40 now features 12GB
of RAM). Furthermore, high-level GPU-based programming
languages, such as the Open Computing Language (OpenCL)
and the Compute Unified Device Architecture (CUDA), offer
programming interfaces to transform this hardware, origi-
nally designed for graphics rendering and fast image pro-
cessing, into a powerful computing device.

All of the above considerations suggest that this technology
can play a substantial role in speeding up state-exploration
algorithms. These computation- and memory-intensive tech-
niques are heavily employed in model-checking software to
verify that all possible system behaviors meet a particular
mission- or safety-critical requirement.

In this paper, we show how Holzmann’s parallel BFS algo-
rithm [11], developed for the multicore CPU-based version
of SPIN in 2012, can be re-engineered to take significant ad-
vantage of the powerful processing capabilities of a GPGPU-
based computing platform. To this end, we present a prelim-
inary CUDA-based version of this algorithm for GPUs, and
extensively compare its performance against the standard
SPIN distribution as well as the 2012 multicore version. We
also show how the significant differences between the CPU
and GPU architectures lead to correspondingly significant
differences in the CUDA-based version. In particular, we
tackle the following three problems.

• The BFS algorithm of [11] requires all threads involved
in the parallel state-space exploration to synchronize
after having generating a new frontier of states on-
the-fly. In CUDA, threads are partitioned into blocks
and each block is processed independently by a set of
cores grouped into one of the GPU stream multiproces-
sors. CUDA provides a synchronization primitive, but
it only works on threads within the same block. Con-
sequently, a GPU inter-block synchronization mecha-
nism is required to use more threads than the max
block-size limit.

• The execution of a Promela model in SPIN requires
if-else or switch statements, as well as occasional non-
deterministic choice of execution paths. Branch diver-
gence among threads running concurrently does not
affect the speed of multicore CPU-based programs,

since each core has its own independent control unit.
This is not the case, however, for their execution on
GPUs. Since many cores share a common control unit,
any form of branch divergence can have serious perfor-
mance implications. We show that this can be solved
by using proper predication techniques, where condi-
tional statements are replaced by simple multiplica-
tions with the predicates.

• The third challenge is the lack of a suitable hash ta-
ble in which to store and access visited states in a
highly parallel fashion. When we started this project,
dynamic memory allocation (standard in CPU-based
implementations) on the GPU device was not yet sup-
ported in CUDA. As such, in this preliminary version,
our implementation relies on Cuckoo hashing, as de-
scribed in [1, 2] and available in the CUDA Parallel
Primitives library.

Our preliminary results are very promising, with speedups of
up to 7.26x unique-states-per-second visited over traditional
SPIN, and 1.26x that of multicore SPIN. While small prob-
lem sizes (state spaces in the low millions or less) can impose
significant overhead penalties on our system, our implemen-
tation exhibits very good performance for larger problem
sizes in the 10-100 million states range. Although there are
ultimately limits on the problem sizes we can handle due
to limits in GPU memory, this ceiling continues to rapidly
increase as available GPU memory continues to double.

The rest of the paper develops along the following lines.
Section 2 considers related work. Section 3 provides an
overview of the GPU architecture and the CUDA program-
ming model. Section 4 focuses on the design and imple-
mentation of our GPU-based approach to state-space ex-
ploration. Section 5 presents and compares our experimen-
tal results with those for current CPU-based and multicore-
based SPIN implementations. Section 6 offers our conclud-
ing remarks and directions for future work.

2. RELATED WORK
Parallel state-space exploration and model checking have
been active areas of research for over a decade. While much
progress has been made, efforts to utilize the low-cost mas-
sive parallelism of the GPU to solve these problems remain
in their infancy.

In 2005, the SPIN model checker was extended to support
dual-core processors, using a nested depth-first search algo-
rithm to check both safety and liveness properties [12]. This
approach essentially consists of two searches, where the first
expands the state space forward and the second checks back-
wards edges from previously visited states. A core is dedi-
cated to each search. Scaling support of up to n cores for
safety properties was included, but this version required a
fair degree of tuning and load balancing that would be elim-
inated in the 2012 multicore implementation. Although a
distributed model checker had previously been developed [6],
the dual-core version of SPIN was the first widely adopted
parallel model checker.

Brim’s research group sought to avoid the naturally sequen-
tial depth-first postorder found in dual-core SPIN’s nested

DFS algorithm by leveraging the parallelism in breadth-first
reachability analysis on both distributed [18] and multicore
systems [4]. They primarily accomplished this via two al-
gorithms: One Way Catch Them Young (OWCTY) and
Maximal Accepting Predecessors (MAP). OWCTY works
by removing vertices from the graph if they have either no
successors or if they cannot reach an accepting vertex. This
process is repeated until either no vertices remain, or the
remaining vertices all fall on an accepting cycle.

The MAP algorithm is based on the idea that any accepting
vertex on an accepting cycle must be its own predecessor.
Instead of checking every accepting vertex, representatives
are chosen based upon the linear ordering of the vertices
and these representatives are checked to see if they lie on an
accepting cycle. If all of the representatives fall outside of a
cycle, they are removed and the process is repeated until ei-
ther there are no vertices remaining or a representative falls
on an accepting cycle. As both algorithms are constructed
by repeatedly performing parallel reachability analysis, any
improvements made on parallelizing BFS would consequently
improve the performance of these liveness-checking algo-
rithms. While we have yet to implement such liveness checks
with our new BFS implementation, this remains a strong
possibility for our future work.

The 2012 multicore version of SPIN takes off where the
2005 version left off by increasing the performance of paral-
lel breadth-first search, while decreasing the complexity of
the algorithm [11]. Holzmann’s parallel BFS algorithm (see
Algorithm 1) requires two lists and a set of visited states S,
which is initially empty. The two lists hold the vertices in
the frontier and their successors, respectively. On each it-
eration of the algorithm, the vertices in the frontier list are
expanded and removed from the list and their successors are
checked against S to see if they have been visited before. If
they are not in S, they are added to S and to the successor
list; this is where, in the model checker-specific version of the
algorithm, safety properties are checked for violation. Once
every member of the vertex list has been expanded and the
list is empty, a global synchronization occurs and the succes-
sor list and frontier list switch roles. This synchronization is
a necessary step to guarantee a global breadth-first behav-
ior. The former successor list is now a full frontier and the
process can be repeated until exploration is complete.

In addition to being simple to implement, Holzmann’s algo-
rithm is inherently parallel and features good load-balancing
behavior. Race conditions are avoided by having the lists im-
plemented as source-destination grids and S as a lock-free
hash table [15, 16, 17]. Processor core w reads frontier ver-
tices from row w of the frontier list and writes to column w
of the successor list. The rows that successors are written
to are randomized, and this randomization is what results
in naturally good load-balancing. Since each core reads and
writes to locations that only that core may access, no locks
are required for these lists. Our system takes these various
features of the 2012 multicore SPIN algorithm and applies
them to the GPU architecture.

As for GPU-based state space exploration, until recently,
most efforts focused on a priori graph exploration, as op-
posed to generating new states on-the-fly [3, 8, 10, 13, 14].

Algorithm 1 Parallel BFS Algorithm [11]

1: global done = false
2: global t = 0
3: global S = {} . statespace set.
4: global Q[0][1 · · ·N][1 · · ·N] = {} . successor set.
5: global Q[1][1 · · ·N][1 · · ·N] = {} . successor set.
6: global idle[1 · · ·N] = false . all elements.
7: safety property f
8:
9: add s0 to Q[0][1][1] and to S . initial state.

10:
11: search(w: 1 · · ·N) . N workers.
12: local ot = t
13: do
14: for each q ∈ {1 · · ·N}
15: for each s ∈ Q[t][w][s]
16: delete s from Q[t][w][s]
17: for each successor s′ of s
18: if s′ 6∈ S
19: add s′ to S
20: if s′ violates f
21: report error
22: else
23: w’ = choose random 1 · · ·N
24: add s′ to Q[1− t][w′][w]
25: end if
26: end if
27: end for each
28: end for each
29: end for each
30: idle[w] = true . one element
31: if (w == i)
32: wait until all idle[1 · · ·N] == true
33: if (all Q[1− t][1 · · ·N][1 · · ·N]empty)
34: done = true
35: else
36: idle[1 · · ·N] = false . all elements
37: t = 1− t
38: end if
39: end wait
40: else
41: wait until t 6= ot or done
42: ot = t
43: end wait
44: end if
45: while ! done
46: end search

While these approaches provide significant insights into graph
programming on the GPU, including uncovering techniques
for inter-block synchronization we would use in our own ap-
plication [21], generally speaking, this is the easiest part of
the searching problem. In the case of reachability analysis,
for example, knowing the graph a priori means the analysis
is essentially complete to begin with.

More recently, there has been work on on-the-fly GPU searches
like our own. The first such implementation was a GPU-
based bit-state hashing algorithm, which used the GPU to
generate new states with enabled transitions, and the CPU
for duplicate detection [9]. Our system both generates new

states and checks for past visitation without relinquishing
control from the GPU. We also use full explicit states with
visitation guarantees instead of bit-states, which hold no
such claim. The space-saving benefits, however, of bit-state
hashing is significant. The larger problem scales enabled by
turning away from explicit states in favor of bit-state hash-
ing are very attractive. As such, we will likely include a
bit-state option for our system in the future.

Perhaps the most apt comparison to our system would be
to the recent work of Wijs and Bos̆nac̆ki [20]. While we
both have full state descriptions and are working on the
same problem, our methodology is very different. Wijs and
Bos̆nac̆ki encode states as an n-ary vector of process LTSs,
along with a vector of synchronization rules. Each entry in
the rule vector is composed of a vector of relevant processes
and the result of the rule. We instead use global state vec-
tors like in SPIN, with global variables at the head of the
vector followed by access-isolated local-state information for
each process. Their transition labels are strings encoded as
integers, and use extra bits for items such as “rule applica-
bility” in order to fill out 32-bits. Also, the way they fetch
and push states, based upon their hashing structure, does
not guarantee strict BFS behavior. Our state generation in-
volves computing all transitions for each global state vector,
including those not currently enabled. The result is applied
as a minimum sequence of bit masks to the original vec-
tor, with disabled transitions automatically computing as
the identity mask. This technique removes branching while
maintaining the integrity of the new states.

While they initially planned on using the same cuckoo hash-
ing as us [1, 2], their state representation exceeding 64-bits
broke the atomicity guarantees of checking and adding to
the hash table. Since our global state vectors are 64-bit, we
do not have this problem and were able to use the existing
tables. Wijs and Bos̆nac̆ki instead created a hashing scheme
combining double-hashing with buckets and linear probing,
and used the hash table as a vehicle for load balancing. Our
load balancing is achieved using the same above-mentioned
techniques deployed in the 2012 multicore SPIN implemen-
tation. So while we solve the same problem, our two systems
are intrinsically different techniques.

3. CUDA PROGRAMMING MODEL
CUDA is a general-purpose parallel-computing architecture
and programming model leveraging the parallel compute en-
gine in NVIDIA GPUs. As illustrated in Fig. 1, the GPU
architecture is built around a scalable array of N multi-
threaded Streaming Multiprocessors (SMs), made up of M
Stream Processor (SP) cores (M = 192 in the current Ke-
pler NVIDIA cards). Each core is equipped with a fully
pipelined integer arithmetic logic unit (ALU) and a floating
point unit (FPU) that executes one integer or floating point
instruction per clock cycle. The CUDA parallel computing
model uses tens of thousands of lightweight threads assem-
bled into one- to three-dimensional thread blocks. A thread
executes a function called the kernel that contains the com-
putations to be run in parallel; each thread uses different
parameters. Threads located in the same thread block can
work together in several ways. They can insert a synchro-
nization point into the kernel, which requires all threads in
the block to reach that point before execution can continue.

Shared
Memory

Registers

Streaming
Multiprocessor

…

SPM-2 SPM-1

…

SP0 SP1

SP2 SP3 …

Global Memory

Texture Cache

Constant Cache

GPU

SP Stream Processor (core)

Host Memory (RAM)

Shared
Memory

Registers

Streaming
Multiprocessor

…

SPM-2 SPM-1

…

SP0 SP1

SP2 SP3

SM0 SMN-1

Figure 1: GPU Architecture.

They can also share data during execution. In contrast,
threads located in different thread blocks cannot commu-
nicate in such ways and essentially operate independently.
Although a small number of threads or blocks can be used
to execute a kernel, this arrangement would not fully exploit
the computing potential of the GPU.

Different types of memory are available for use in CUDA,
and their judicious use is key to performance. The most gen-
eral is global memory, to which all threads have read/write
access. The generality of global memory makes its perfor-
mance less optimized overall, so it is important that access
to it be coalesced into a single memory transaction of 32,
64, or 128 bytes. Constant memory is a cached, read-only
memory intended for storing constant values that are not
updated during execution. All instances of a kernel may
access these values regardless of location. Texture mem-
ory is another cached, read-only memory that is designed to
improve access to data with spatial locality in up to three
dimensions. Additional, significantly faster levels of memory
are available within an SM, including 16-64KB of registers
partitioned among all threads. As such, using a large num-
ber of registers within a CUDA kernel will limit the number
of threads that can run concurrently. Finally, local mem-
ory is invoked when a thread runs out of available registers.
CUDA library functions in the host code run on the CPU
and administer such tasks as kernel execution and memory

management. In addition, each SM has a shared memory
region (16-48KB). This level of memory, which can be ac-
cessed nearly as quickly as the registers, facilitates commu-
nication between threads and can be used as a programmer-
controllable memory cache.

4. SYSTEM DESIGN
While fundamentally our work can be seen as a GPU trans-
lation of the multicore SPIN algorithm, the particulars of the
architecture, as mentioned previously, have had great influ-
ence on our overall design. Key considerations have been
made to minimize memory footprint, eliminate branching
where possible, be conscious of the type of memory used for
each structure, and to remove the communication bottleneck
with the CPU.

4.1 Non-blocking State Space Exploration on
the GPU

Perhaps ”nonblocking” is a misnomer, since, by its nature,
Breadth-First Search waits to visit every node at a particu-
lar depth before continuing to the next depth. That aside,
concurrent systems frequently require locks to any shared
data structure to avoid unexpected behavior. Additionally,
in the case of the GPU, inter-block communication and syn-
chronization is often achieved through a return over the BUS
to the CPU. While we maintain global BFS behavior, the
new frontier is divided among threads in a lock-free man-
ner, and our multiple thread blocks are synchronized on the
GPU device without the costly return to the host CPU.

As briefly discussed in Section 2, the 2012 multicore version
of SPIN [11] uses a source-destination grid in order to have
each core assign successors to other cores. Since our goal was
originally to replicate multicore SPIN on the GPU, we have
adopted this method. The reserved space for each thread
allows for work assignment without the need for locking;
each thread has exclusive access to where it writes, so there
are never any race conditions. Since we maintain global
BFS behavior, threads read from and write to our queues
at different times, so that potential source of unexpected
behavior is also removed. Random assignment of frontier
nodes to new threads via these queues gives us the same
naturally good load balancing that multicore SPIN enjoys.

Structurally, our algorithm is quite similar to that found
in Section 2. Each thread removes a state from its queue,
generates successors, checks to see if the successor has been
previously visited or violates the property, and if that is not
the case, assigns the successors to random new threads for
the next round. A ”round” lasts until all the states in each
queue have had their successors expanded and assigned to
new threads. Then the process repeats with the successor
states, and continues to do so until all states have been ex-
hausted. When a round completes, synchronization occurs.

In CUDA, threads within a block can be synchronized with
a syncthreads() call, but traditionally the only way to syn-
chronize multiple blocks of threads has been with a return
to the host program on the CPU. Since this requires send-
ing data over the BUS on the motherboard, this is a costly
operation that is frequently a bottleneck for GPGPU pro-
gramming. [21] describes a simple technique called fast-

barrier synchronization (see Algorithm 2), which lets multi-
ple blocks synchronize with each other while remaining on
the GPU. With N blocks, the 0th thread of each block i sets
the ith value of an input array to a common goal value. The
first N threads of block 1 continuously check on their cor-
responding locations in the input array for that goal value,
and update the ith location in an output array with the
goal value when it is found. The syncthreads() function is
called by each thread in block 1 before updating the output
array, to keep that block synchronous. The 0th thread in
each block will continue to wait until its value in the output
array is the goal, at which point it will call syncthreads()
within its block and continue execution. Including this sim-
ple function to our code has allowed us to call the kernel
once at the start of GPU execution, and continue running
on the GPU until the exploration is complete.

Algorithm 2 Fast-barrier synchronization [21]

1: device void syncblocks(int N, int * in, int * out)
{

// thread ID in a block
2: int tid in blk = threadIdx.x;
3: int nBlockNum = gridDim.x;
4: int bid = blockIdx.x;

//only thread 0 is used for synchronization
5: if (tid in blk == 0)

{
6: in[bid] = N;

}
7: if (bid == 1)

{
8: if (tid in blk < nBlockNum)

{
9: while (in[tid in blk] != N)

{//Do nothing here}
}

10: syncthreads();

11: if (tid in blk < nBlockNum)
{

12: out[tid in blk] != N;
}

}
13: if (tid in blk == 0)

{
14: while (out[bid] != N)

{//Do nothing here}
}

15: syncthreads();
}

4.2 State Generation
Another point which was touched upon in Section 2 is that,
for reachability analysis and other interesting verification
problems, an a priori graph search is much easier and less
useful than generating new states in the graph on-the-fly.
Ideally, entire graphs should be propagated from an initial
state and a list of rules for generating new states.

The SPIN model checker creates this list of rules at compile
time when pre-processing a Promela file as input. Specif-
ically, SPIN’s pan.m and pan.r files describe the rules for
forward and reverse state transitions, respectively. As we
are currently aiming to check safety properties only via BFS,
we only concern ourselves with the pan.m file. This file is
essentially comprised of a giant switch statement, detailing
how each process type can change local and global data. In
general, the size of this switch is bounded by the number
of unique process types, not the total number of processes.
As an example, with the Dining Philosophers problem, 5
philosophers and 15 philosophers will have the same pan.m
file. This scaling behavior is great for the GPU, since it
means these descriptions can be stored in the smaller, faster
memory types for even quite large problems. Unfortunately,
the fact that transition rules are listed in a switch makes
this file unusable on the GPU.

While the GPU is a massively parallel computing platform,
one of the drawbacks is how it handles branching behav-
ior. CUDA, and programming for the GPGPU in general, is
strongest when the same instruction, or sequence of instruc-
tions, is applied many times in parallel to different data.
This is often referred to as a SIMD (Single Instruction, Mul-
tiple Data) or SIMT (Single Program, Multiple Thread) ap-
proach to parallelism. While the CUDA compiler will not
reject an if-else or switch statement, there is a somewhat
harsh performance penalty to be paid for including branch-
ing. Normally, if your code featured a branch where 50% of
cases took the if path and 50% the else path, this would
total to 100% execution time, assuming each path is the
same time complexity. With CUDA, even if logically the
same 50-50 split should occur, it would have each thread
execute both paths and only keep the data from the logi-
cally correct executions. This means the same 50-50 split
would take not 100% but 200% execution time. While this
may not be terrible in some cases (since a 2x penalty com-
pared to a sequential CPU program is not terrible if you
are using 200+ threads to speed up the computation), the
problem really lies in what is known as branch divergence.
Since most instructions in CUDA are performed by warps of
threads, usually 32, branching imposes two problems. First,
you cannot explicitly designate smaller numbers of threads
to take each path in a branch by breaking it up into multiple
instructions to be computed by half-warps or smaller; a warp
is the smallest unit you can work with. Second, if you are
scheduling multiple tasks for different warps and one has to
handle branching, this can greatly impact scheduling. If all
other warps are supposed to synchronize with the branch-
ing warp, they now all suffer the performance penalty of
that branching warp. And while the 200% penalty may not
be much, many of the switch statements in the pan.m files
have >20 different cases- more than a 2000% performance
penalty!

Since the scaling behavior of pan.m is appealing, but the
penalty of using it as-is would be exceedingly harsh, we
required a GPU-friendly translation. Our goal became to
change the different instructions described in the switch into
a single, common, instruction per program, merely with dif-
ferent values. The result was a small template resembling
the pan.m file, but without branching. This template also
had great influence on our state format; much like SPIN,

we use global state vectors containing both global variables
and process-local state information. Each of our global state
vectors are encoded as single 64-bit integers and masks are
selected based upon a combination of the bits describing lo-
cally relevant global variables and the current local state of
the process. This is not to say that we use branching; tech-
nically speaking, all of the available bit masks are always
applied, but those which are not enabled simply compute to
0. This is demonstrated in Algorithm 3. The comments
show an if-else branching structure, but both branches are
added to the state s. The irrelevant path adds 0, leaving
no influence on the newly generated state. On top of elimi-
nating branching from SPIN’s switch statement, we use the
same method to remove branching from nondeterminism.
Lines 10-13 of the algorithm show an example of how non-
deterministic choice is covered by our system. Currently
these functions are produced manually, but since this is
normally a pre-processing step in SPIN and other model
checking programs, not part of the actual execution, and
our encoding contains no more information than the original
pan.m file, this is not an enormous issue. We do, however,
have plans to make this encoding automatically parsed from
Promela or Promela-like input in the near future.

As a simple example of our global state vectors and tran-
sition application, we offer the Dining Philosophers prob-
lem. The global state vector features one bit for each chop-
stick followed by two bits to describe each philosopher’s local
state, for a total of 3N bits per philosopher. A chopstick is
either available (1) or in-use (0), and a philosopher has ei-
ther no sticks (00), the stick to its left (01), both sticks (11),
or the stick to its right (10). Each philosopher picks up the
left stick first and does not relinquish it until it has taken
the right stick (and presumably eaten); the left stick is also
the first stick put down by each philosopher. When trying
to generate a new state, a philosopher process will take the
values of the stick to its left and right and its own local state
to determine enabled transitions. If there is a transition en-
abled by these bits, the resulting bit-mask will be applied
to those sticks and local state, and they will be integrated
into the global state vector. The bit-mask does not change
the local states of other philosopher processes or sticks that
are not locally relevant. If the transition is not enabled (the
sticks necessary to make the transition are not available),
then the resulting bit-mask is 0 and the state remains the
same. Since that state would have already been explored, it
does not get further expanded for the next round.

4.3 Hashing Techniques
Once states have been generated, they need to be checked
for past visitation and stored if they are new. Since this
list needs to be checked and updated by many threads at a
time without an expensive locking penalty, with each thread
needing to check against the entire list, we required a highly
parallel (preferably GPU) data structure. Cuckoo hashing,
as described in [1], later refined in [2], and available in the
CUDA Parallel Primitives (CUDPP) library, seemed to suit
our needs. Cuckoo hashing is a very straightforward tech-
nique in which each entry in the table gets a total of H, usu-
ally 4, unique hash values from H different hash functions.
Each item will go to its first location of the table and evict
the current entry, if there is one. The evicted entry uses its
value and the index it was evicted from to determine which

Algorithm 3 On-the-fly state generation for GPU

//i = the process id executing
//d = nondeterministic branch
//N = number of processes
//s = current state (64 bits)

//Extract the program counter for process i
1: int bshift = i ∗ LOCAL STATE NUMBITS;
2: int pc = (s & (PC MASK << bshift)) >> bshift;

//Store local pc increment
3: int pc i= (1L << bshift);

//Extract the local/global variables
4: j = (s & (J MASK << bshift));
5: j = j >> (bshift + OFFSET J);

6: pos = (s & (POS MASK << bshift));
7: pos = pos >> (bshift + OFFSET POS);

...

//Execution of Promela code
//NCS: if
//:: j = 1; goto wait;
//fi;
//GPU code

8: s+=(pc==NCS) * ((1-j) << (bshift + OFFSET J));
9: s+=(pc==NCS) * (2 ∗ pc i); //goto wait

...
//Handling if and nondeterminism
//q3: if
//:: d step {k<N && (k==i || pos[k]<j);

k = k+1;} goto q3;}
//:: d step {pos[j-1]!=i || k==N;

j = j+1;} goto wait;
//fi;

10: k inc = (1L << (bshift + OFFSET K));
11: j inc = (1L << (bshift + OFFSET J));
12: s+=(pc==Q3)*(d*(k<N)*(k==i || pos k<j)*k inc);
13: s+=(pc==Q3)*((1-d)*(s j!=i || k==N)*(j inc-2*pc i));
14: return s;

of its hash functions had been used, and then moves in to
the slot corresponding to its next hash value. This eviction
chain continues until either every item is properly slotted
into the table, or the chain grows too large. When the chain
grows excessively large an additional hash function is used
for a smaller, secondary table called the stash. In practice,
the hash values are tuned so the number of items in the
stash are minimized and collisions there are avoided.

The hash and stash constants are combinations of a random
number generator and a very large prime divisor. The con-
stants are used alongside the global state vector to produce
H+1 unique hash values (one for the stash).

While [20] abandoned the use of cuckoo hashing in favor
of their own hashing scheme, this was largely due to their
state representation. Adding items to the cuckoo hash table
and checking entries can only be guaranteed to be atomic
for 64-bit or smaller values. Since the states used in [20] are
larger than 64-bits in size, they did not have these atomic

properties. Our global state vectors are single 64-bit inte-
gers, so we can use cuckoo hashing and preserve these atomic
guarantees, without the need of a major re-design.

5. RESULTS
All experiments were performed on a 2.93GHz Intel Xeon
X5670 processor with 12 logical cores and 30GB shared
memory. This system included an EVGA GTX 670 GPU
with 2GB global memory, which was used with CUDA ver-
sion 5.0 for the GPU programs. The SPIN and multicore
SPIN experiments used version 6.2.3 of the model checker.
Multicore experiments used 11 of the 12 logical cores avail-
able, with one core performing the remaining system tasks.

All GPU experiments used 2 blocks of 128 threads each,
H = 4 for the hash table, and eviction chains of 30. These
values were determined to be optimal in an independent se-
ries of experiments (not included in the paper). The excep-
tion to this is the number of threads, which is non-optimal
for small problems but optimal for larger problems. We
chose to keep this value constant to maintain the integrity
of the experiments, despite the overhead disadvantage it in-
troduces on smaller state spaces. Two of the three Promela
files used came from the BEEM database, with the Promela
code for Dining Philosophers provided directly by the SPIN
creator Gerard Holzmann to match the specifics of our vari-
ant of the classical problem.

For all experiments, SPIN and multicore SPIN state-space
optimizations are disabled. This is not to give us an un-
fair advantage, but rather to ensure that the total num-
ber of visited states is the same for all tools. As such, the
states-per-second metric can be properly judged. The excep-
tion to this is the final three graphs, in which SPIN has its
partial-order reduction algorithm enabled (for both SPIN
platforms). This actually serves to demonstrate the need
to disable optimizations for these tests, as both versions of
SPIN have lower states/second rates for the Peterson suite
with the state space reduced, but have a significant speed-up
in exploration (∼1.27x).

The Anderson problem is a queue-lock mutual-exclusion al-
gorithm found in the BEEM database, and we experimented
with the Anderson 2, 3, and 4 models from said database.
Anderson 2 and Anderson 3 each have three processes, but
differ in how they enter the critical section. The former
follows the simpler pattern of the even-numbered Ander-
son models, resulting in 1461 unique states, while the latter
uses the more complex odd-numbered Anderson instruction,
producing 52.5 million unique states. Anderson 4 is another
even-patterned model, with four processes and a total of
29,300 unique states.

Figure 2 shows the results for the Anderson algorithm. As in
all of these graphs, the y-axis is the number of unique states
visited per second and the x-axis are the various models for
the algorithm. Traditional SPIN results are in red, multi-
core SPIN results are in blue, and GPU-based results are in
green. There are two features of this graph that stand out:
the apparent lack of results for the GPU version on Ander-
son 2 and for multicore SPIN on Anderson 3, and the very
large green bar for Anderson 3. For Anderson 2, the GPU
version produces just over 1,300 unique states per second,

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

Anderson 2 Anderson 3 Anderson 4

St
at

es
/s

ec

SPIN Multicore SPIN GPU

Figure 2: Anderson Algorithm Results.

compared to the massive 1.46 million unique states per sec-
ond produced by SPIN. This is highly misleading, however,
since Anderson 2 only has 1,461 unique states. Both our
GPU system and multicore SPIN appear to perform poorly
in comparison due to their respective overheads. The GPU
overhead is much larger, as we kept the number of threads
constant for all experiments, and we therefore incurred a
significant performance penalty on smaller models.

The results for Anderson 3 are much more interesting. The
GPU-based result is over 1.6 million states per second, whereas
the multicore version of SPIN did not complete the search.
Unlike traditional SPIN, which expands its hash table dy-
namically, when the hash table of multicore SPIN becomes
full, the search terminates. Since the search failed to com-
plete, its Anderson 3 data was not included. The results for
the Anderson 4 model are a less pronounced version of those
seen with Anderson 2, as the larger model has less overhead
penalty, but it still does not perfrom well enough to trump
traditional SPIN.

0

200000

400000

600000

800000

1000000

1200000

1400000

DP 10 DP 11 DP 12 DP 13 DP 14 DP 15

St
at

es
/s

ec

SPIN Multicore SPIN GPU

Figure 3: Dining Philosophers Algorithm Results.

The Dining Philosophers problem is a well-known mutex al-
gorithm where N philosophers have access to N chopsticks,
one to the left and the other to the right, and each philoso-
pher needs both to eat with (access the critical section).
In our specific version, the philosopher always picks up the
left stick, followed by the right stick, and then places them
back down in the same order. If a philosopher picks up the
left stick, he cannot place it down until he has acquired the

right stick. Figure 3 shows the results for the problem for
10-15 philosopher processes. Dining Philosophers 15, which
produces just over 9.3 million states, shows the GPU ver-
sion coming out on top with performance decreasing until it
reaches its minimum at 10 philosophers. This trend is the
opposite of SPIN but for a similar reason. Just as the GPU
experiences overhead regardless of the number of states vis-
ited, causing large penalties on models with fewer states,
SPIN suffers overhead on larger models, since it needs to
dynamically resize its hash table. As such, the GPU version
is able to achieve 7.26x the number of states per second of
SPIN at 15 philosophers, but only 0.48x for 10. Multicore
SPIN has its peak performance at 13 processes, but main-
tains relatively high states-per-second rates for the other
tests. At 14 processes, the performance of multicore SPIN
and the GPU-based version is almost equal, with a slight
edge going to the former.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

Peterson 1 Peterson 2 Peterson 3 Peterson 4

St
at

es
/s

ec

SPIN Multicore SPIN GPU

Figure 4: Peterson Algorithm Results.

Figure 4 shows the results for the Peterson problem. This
is a mutual-exclusion protocol for N processes, and can be
found in the BEEM model-checking database. All four vari-
ants produce a relatively small number of states, peaking
at 1.1 million for Peterson 4, with the fewest at 12,498 for
Peterson 1. What is noteworthy about this set of experi-
ments is that, once again, as the number of states climb, so
does the performance of both our GPU-based system and
multicore SPIN.

The logical question then is why did we stop at Peterson 4,
instead of continuing to Peterson 5 and beyond until the
overhead penalty vanished? The answer is that the number
of states produced by Peterson 5 in some preliminary tests
exceeded 1 billion. This is much larger than the number
of states we can support on a hash table in 2GB of global
GPU memory. That may quickly change, however, as the
memory footprint of GPUs continues to frequently double in
size. Based on this preliminary result, and the results from
the other tests showing our top performance when states are
at or above roughly 10 million in number, we are confident
that we will come out on top for Peterson 5 when enough
GPU memory becomes available.

The final three graphs, Figures 5-7, have SPIN’s partial-
order reduction (p.o.r.) algorithm enabled for the tradi-
tional SPIN and Multicore platforms. This algorithm is on
by default for both platforms and is disabled with the flag

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

Anderson 2 Anderson 3 Anderson 4

St
at

es
/s

ec

SPIN Multicore SPIN GPU

Figure 5: Anderson Results with Partial-Order Re-
duction for SPIN/Multicore.

0

200000

400000

600000

800000

1000000

1200000

1400000

DP 10 DP 11 DP 12 DP 13 DP 14 DP 15

St
at

es
/s

ec

SPIN Multicore SPIN GPU

Figure 6: Dining Philosophers Results with Partial-
Order Reduction for SPIN/Multicore.

-DNOREDUCE. In our testing suite, the only problem that
saw a reduction in the number of states with this flag re-
moved was Peterson. The other two saw a slight perfor-
mance penalty for running the algorithm without a state-
space reduction, thereby still exploring the same number of
states. Looking at Figure 7, it would seem that p.o.r. neg-
atively impacted performance. This is not true, however.
Although the number of unique states visited per second
decreased, the total number of states, and therefore the ex-
ecution time, decreased dramatically as well.

This is the one graph in the paper that is slightly misleading,
since our system does not yet have this feature and therefore
explores the entire search space. The reduced state space is
still a subset of the original, and the state representation is
still the same, but many superfluous states are skipped in
order to achieve massive speed-up in state exploration.

We chose to include these experiments because we wanted to
show the power of p.o.r. as a technique to achieve speed-up;
the Peterson 4 and 3 models both take over 1.27x as long to
run with it disabled, and there are other problems where this
can be even more significant. The multicore version of SPIN
sees similar gains on problems where p.o.r. has an impact on
the state space. The performance penalty when it does not
work is relatively minor, and is well below the overhead for

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Peterson 1 Peterson 2 Peterson 3 Peterson 4

St
at

es
/s

ec

SPIN Multicore SPIN GPU

Figure 7: Peterson Results with Partial-Order Re-
duction for SPIN/Multicore.

running on the GPU. We plan on integrating p.o.r. with our
GPU-based system to gain the available benefits.

We did not directly compare the performance of our sys-
tem to GPUexplore [20]. While it was our intention to in-
clude this tool in our experiments, after running models with
GPUexplore and speaking with one of the authors, we re-
alized that any conclusions we would draw would not be
apt. The reasons for this are two-fold: first, their system
also requires a great deal of modeling by hand at this time,
not unlike our own; second, the different state representa-
tion ends up having a significant impact on the number of
states visited. The LTSs they use do not support variables,
which impacts automatic model conversion, but also may
alter the number of states visited. Upon running one of the
provided models to completion, and running the equivalent
model with SPIN, GPUexplore had not only not outper-
formed SPIN on the model, but produced an order of mag-
nitude fewer unique states than the mainstay model checker.
While this does not necessarily mean the results were not
equivalent, it does mean that the states-per-second metric
we have been measuring would have been difficult to inter-
pret. If GPUexplore were to constantly produce less states,
the metric would be unfairly biased in favor of our system.
Instead, we chose not to include GPUexplore in our perfor-
mance evaluation.

6. CONCLUSIONS
We set out to establish a GPGPU-parallel version of the
2012 multicore SPIN model checker [11]. While there still
may be room for improvement, our initial results are quite
strong. Although we incur significant overhead on smaller-
sized problems due to the fact that we are using the 256
GPU threads for our experiments, we excel on problems
with state spaces between approximately 10 million and 100
million states. The lower bound is due to overhead (below
10 million states, the overhead from maintaining 256 threads
dominates), whereas the upper bound is due to the size of the
GPU memory we had available. Since GPU memory sizes
continue to double, this upper bound is ever-expanding.

Our best result was on the Dining Philosophers problem
with 15 processes, where we achieved 7.26x speed-up when
compared to traditional SPIN. We also managed to out-pace

multicore SPIN. One may argue that this result is not very
impressive considering the 256 threads used on the GPU ver-
sus the 11 logical cores used by multicore SPIN. Live, GPU-
based state-space exploration, however, is a non-trivial prob-
lem, as evidenced by the considerations we needed to make
for control-flow branching, memory footprint, and data trans-
fer. See also [20], where 512-thread GPUexplore achieved
results comparable to 10-core LTSMIN.

Future work will focus on continuing to improve our perfor-
mance via further consideration of GPU memory types and
coalesced access patterns, as well as new features such as
dynamic memory allocation in the new version of CUDA.
Dynamic memory allocation will figure prominently in the
new hashing scheme we plan to develop, as we will use this
facility to ensure high utilization of the hash table.

Future work will also involve the incorporation of many fea-
tures found in SPIN, including optimizations such as partial-
order reduction. We are also working on generating models
directly from Promela or a similar Promela-like input for-
mat. Only with this feature could we truly be considered to
have the GPU-version of the Simple Promela INterpreter,
but we believe we are well on our way to this goal.

7. ACKNOWLEDGMENT
We would like to thank Gerard Holzmann for passing on to
us implementation details of the SPIN model checker, sup-
plying us with an optimal Promela encoding of the Dining
Philosopher problem with which we could test our imple-
mentation, and for providing general direction as we worked
on implementing his algorithm on the GPGPU architec-
ture.

8. REFERENCES
[1] D. A. Alcantara, A. Sharf, F. Abbasinejad,

S. Sengupta, M. Mitzenmacher, J. D. Owens, and
N. Amenta. Real-time parallel hashing on the GPU. In
ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH
Asia ’09, pages 154:1–154:9, New York, NY, USA,
2009. ACM.

[2] D. A. F. Alcantara. Efficient hash tables on the GPU,
2011. Copyright - Copyright ProQuest, UMI
Dissertations Publishing 2011; Last updated -
2014-01-23; First page - n/a; M3: Ph.D.

[3] J. Barnat, P. Bauch, L. Brim, and M. C̆es̆ka.
Designing fast LTL model checking algorithms for
many-core GPUs. Journal of Parallel and Distributed
Computing, 72(9):1083–1097, 2012. Accelerators for
High-Performance Computing.

[4] J. Barnat, L. Brim, and P. Roc̆kai. Scalable multi-core
LTL model-checking. In D. Bos̆nac̆ki and S. Edelkamp,
editors, Proc. of SPIN 2007: the 14th international
SPIN conference on Model checking software, volume
4595 of Lecture Notes in Computer Science, pages
187–203. Springer Berlin Heidelberg, 2007.

[5] J. Barnat, L. Brim, and P. Roc̆kai. DiVinE multi-core
- a parallel LTL model-checker. In S. Cha, J.-Y. Choi,
M. Kim, I. Lee, and M. Viswanathan, editors, Proc. of
ATVA 2008: the 6th International Symposium on
Automated Technology for Verification and Analysis,
Seoul, Korea, October 20-23, volume 5311 of Lecture

Notes in Computer Science, pages 234–239. Springer
Berlin Heidelberg, 2008.

[6] J. Barnat, L. Brim, and J. Str̆́ıbrná. Distributed LTL
model-checking in SPIN. In M. Dwyer, editor, Proc. of
SPIN 2001: the 8th International SPIN Workshop on
Model Checking of Software, volume 2057 of Lecture
Notes in Computer Science, pages 200–216. Springer
Berlin Heidelberg, 2001.

[7] A. Buluç and K. Madduri. Parallel breadth-first
search on distributed memory systems. In Proc. of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11,
pages 65:1–65:12, New York, NY, USA, 2011. ACM.

[8] Y. Deng, B. D. Wang, and S. Mu. Taming irregular
EDA applications on GPUs. In Proceedings of the
ICCAD ’09: the International Conference on
Computer-Aided Design, ICCAD ’09, pages 539–546,
New York, NY, USA, 2009. ACM.

[9] S. Edelkamp and D. Sulewski. Efficient explicit-state
model checking on general purpose graphics
processors. In J. Pol and M. Weber, editors, Proc. of
SPIN’10: the 17th International SPIN Conference on
Model Checking Software, volume 6349 of Lecture
Notes in Computer Science, pages 106–123. Springer
Berlin Heidelberg, 2010.

[10] P. Harish and P. Narayanan. Accelerating large graph
algorithms on the GPU using CUDA. In S. Aluru,
M. Parashar, R. Badrinath, and V. Prasanna, editors,
Proc. of HiPC’07: the 14th international conference
on High performance computing, volume 4873 of
Lecture Notes in Computer Science, pages 197–208.
Springer Berlin Heidelberg, 2007.

[11] G. Holzmann. Parallelizing the SPIN model checker.
In A. Donaldson and D. Parker, editors, Proc. of SPIN
2012: the 19th International Workshop on SPIN
Model Checking Software, volume 7385 of Lecture
Notes in Computer Science, pages 155–171. Springer
Berlin Heidelberg, 2012.

[12] G. Holzmann and D. Bos̆nac̆ki. The design of a
multicore extension of the SPIN model checker. IEEE
Transactions on Software Engineering,
33(10):659–674, Oct 2007.

[13] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun.
Accelerating CUDA graph algorithms at maximum
warp. In Proc. of PPoPP ’11: the 16th ACM
Symposium on Principles and Practice of Parallel
Programming, PPoPP ’11, pages 267–276, New York,
NY, USA, 2011. ACM.

[14] L. Luo, M. Wong, and W. Hwu. An effective GPU
implementation of breadth-first search. In Proc. of
DAC ’10: the 47th Design Automation Conference,
DAC ’10, pages 52–55, New York, NY, USA, 2010.
ACM.

[15] M. M. Michael. High performance dynamic lock-free
hash tables and list-based sets. In Proc. of SPAA ’02:
the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’02, pages 73–82,
New York, NY, USA, 2002. ACM.

[16] O. Shalev and N. Shavit. Split-ordered lists: Lock-free
extensible hash tables. Journal of the ACM,
53(3):379–405, may 2006.

[17] C.-H. Shann, T.-L. Huang, and C. Chen. A practical

nonblocking queue algorithm using compare-and-swap.
In Proc. of ICPADS ’00: the 7th International
Conference on Parallel and Distributed Systems, pages
470–475, 2000.

[18] K. Verstoep, H. Bal, J. Barnat, and L. Brim. Efficient
large-scale model checking. In Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International
Symposium on, pages 1–12, May 2009.

[19] V. Vineet and P. J. Narayanan. CUDA cuts: Fast
graph cuts on the GPU. In Proc. of CVPRW ’08: the
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, pages 1–8,
June 2008.

[20] A. Wijs and D. Bos̆nac̆ki. GPUexplore: Many-core
on-the-fly state space exploration using GPUs. In
E. Ábráham and K. Havelund, editors, Proc. of
TACAS 2014: the 20th International Conference on
Tools and Algorithms for the Construction and
Analysis of Systems, volume 8413 of Lecture Notes in
Computer Science, pages 233–247. Springer Berlin
Heidelberg, 2014.

[21] S. Xiao and W. chun Feng. Inter-block GPU
communication via fast barrier synchronization. In
Proc. of IPDPS 2010: the IEEE International
Symposium on Parallel Distributed Processing, pages
1–12, April 2010.

