
Toward Parameterized Verification of Synchronous
Distributed Applications

Sagar Chaki James Edmondson
Carnegie Mellon University, Pittsburgh, PA, USA

{chaki,jredmondson}@sei.cmu.edu

ABSTRACT
We present preliminary results on parameterized verifica-
tion of distributed applications that assume a synchronous
model of computation. Our theoretical results are negative
– the problem is undecidable even if each node has a sin-
gle bit of non-determinism and the property is a 1-index
safety property. Further, even if each node is completely
deterministic, and the property is again a 1-index safety,
parameterized verification cannot be solved via the cutoff
method. Empirically, we show how to encode such applica-
tions as Array-Based Systems and verify them using existing
model checkers. We demonstrate this approach on protocols
for distributed mutual exclusion and collision avoidance.

1. INTRODUCTION
Distributed applications play crucial, often unseen, roles in
our lives. There is also a growing need to incorporate them
into safety-critical domains. For example, there are US
mandates to incorporate communicating autonomous vehi-
cles on roadways1. Indeed, researchers have already started
developing intersection protocols [4] that rely on vehicle-to-
vehicle communication. Bugs in such distributed protocols
and applications have the potential to cause not only fi-
nancial damage, but also injury and loss of human lives.
Consequently, verifying the safety of such distributed pro-
tocols and applications before deployment in the real-world
has tangible monetary and public safety benefits.

In this paper, we focus on the verification of synchronous
distributed applications (SDAs). In such applications, each
node executes in rounds, and messages sent (or variables
written to) by a node in round r are visible to other nodes
in round r + 1. SDAs have been studied widely in the lit-
erature [13]. They are also easier to design and verify com-
pared to asynchronous applications. For example, the use of
PALS [1] – a “synchronizer” protocol in the hard real-time
domain – has been shown to reduce verification time [14] of
an avionics protocol from 35 hours to 30 seconds.

1http://www.nhtsa.gov/About+NHTSA/Press+
Releases/2014/USDOT+to+Move+Forward+with+
Vehicle-to-Vehicle+Communication+Technology+for+
Light+Vehicles

Copyright 2014 ACM. This material is based upon work funded and
supported by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and de-
velopment center. This material has been approved for public release
and unlimited distribution. DM-0001199

We assume shared memory based communication. Specifi-
cally, an SDA instance consists of n ∈ N nodes. Each node
Ni has access to its own unique id i ∈ [1, n], and a local
copy of an array GV with n elements. Each element of GV
is a bit-vector of known fixed width W . In each round r, Ni

computes a new value of GV [i] based on the current value
of all elements of GV . This value is propagated to the other
copies of GV prior to start of round r+ 1 by the underlying
communication infrastructure. Note that the element GV [i]
is modified only by node Ni. Initially, the first Z (for some
known Z ∈ [0,W]) bits of each array element are assigned
non-deterministically, and the remaining bits are set to ⊥.

As part of ongoing work [5], we have developed a domain-
specific language, called dasl, for programming SDAs and
safety requirements. We have also developed a verifying
compiler for dasl programs that handles finite instantiations
(i.e., when n is fixed and known) using model checking. In
this paper, we focus on the problem of parameterized verifi-
cation of SDAs – i.e., proving their correctness for arbitrary
number of nodes. We present the following results:

1. We show that parameterized verification of SDAs is
undecidable, even when Z = 1, and the property is a 1-
index safety property [8], i.e., of the form ∀i : G(φ(i)).

2. We show that even for Z = 0 (i.e., deterministic SDAs)
and 1-index safety properties, parameterized verifica-
tion cannot be solved via the cutoff method [8].

3. We present preliminary experimental results on verify-
ing SDAs by translating them into Array-Based Sys-
tems [10] (ABS). To this end, we present an encoding
of the synchronous semantics of SDAs over the asyn-
chronous semantics of ABS. We experimented with two
ABS verification tools – mcmt [11] and cubicle [6].
Both tools were able to verify our simplest examples
easily, but failed on more complex ones.

Related Work. Verification of parameterized systems has
been widely studied. Due to limited space, we only touch
upon some key points. One view of such systems is as a
set of automata communicating over a network. Emerson
and Namjoshi [8] present cutoff results in the case of ring
networks. Delzanno et al. [7] present decidability and unde-
cidability results for a range of network topologies with and
without broadcast using the formalism of well-structured
transition systems [9]. A good survey of work in this area,
and new results, is provided by Aminof et al. [3].

Another view of parameterized systems, closer to ours, is
that of an Array-Based System (ABS) [10]. An ABS con-
sists of a set of arrays, and guarded transitions. In each
step, one of the enabled transitions is applied to update the
array. Such systems have received increased attention over
the last few years, and new decision procedures and model
checkers [11, 6] have been developed for verifying them. By
encoding SDAs as ABSs, we are able to build on this work.

Verification of distributed algorithms is traditionally done
manually [13] using invariants, simulation relations etc.
John et al. have recently developed automated parame-
terized verification techniques for fault-tolerant distributed
algorithms [12]. They assume asynchronous semantics.

The rest of this paper is organized as follows. Sec. 2 presents
preliminary concepts. Sec. 3 presents our theoretical results.
Sec. 4 presents experimental results, and concludes.

2. PRELIMINARIES
Formally, a SDA P is a 4-tuple (GV ,W,Z, ρ) where: (i) GV
is the global array; (ii) each element if GV is a bitvector
of width W ∈ N; (iii) Z ∈ [0,W] is the number of non-
deterministic bits available to each node; and (iv) ρ is a
procedure executed by each node in every round.

Syntax. Let IV be a set of id variables, and id be a distin-
guished variable such that {GV }, IV and {id} are mutually
disjoint. The body of ρ is a statement. The “abstract” syn-
tax of statements, lvalues and expressions is given by the
following BNF grammar (w is an integer in [1,W]):

stmt := skip | lval = exp | ite(exp, stmt , stmt)

| all(IV , stmt) | 〈stmt+〉
lval := GV [id][w] |
exp := > | ⊥ | lval | GV [IV][w] | id | IV | �(exp+)

Intuitively, skip is a nop, lval = exp is an assignment, ite is
an “if-then-else”, all(v, st) executes st iteratively by substi-
tuting v with the id of each node, 〈st1 ; . . . ; stk〉 executes st1
through stk in sequence, and � is an operator. all enables
iteration over all nodes of P without knowing the exact num-
ber of such nodes a-priori. IV and id are natural numbers.
Statements are well-typed and variables are well-scoped.

Semantics. The instance of SDA P with n ∈ N nodes is
denoted P (n). Let A(n) be the set of arrays with n elements,
each a W -wide bitvector. The semantics of P (n) is the state
transition system (S, I,R) where: (i) S = A(n); (ii) I =
{a ∈ S | ∀i ∈ [1, n] � ∀j ∈ (Z,W] � a[i][j] = ⊥}; and R ⊆ S ×
S is the relation such that (s, s′) ∈ R iff for all i ∈ [1, n],
s′[i] is the final value of GV [i] if ρ is executed from the state
GV = s∧ id = i. Let R∗ denote the transitive closure of R.

Sequentialization. Note that P (n) is semantically equivalent
to a sequential program [[P (n)]] that maintains two copies of
GV – GV 0 and GV 1 – and executes iteratively. Initially,
GV 0 ∈ I. In each iteration, for each node Ni, it executes
ρ by reading from GV 0 and writing to GV 1[i]. After all
nodes have been processed, it copies GV 1 back to GV 0 and
proceeds with the next iteration. This observation is crucial
for modeling and verifying SDAs as Array-Based Programs.

Specification. A specification φ is a formula ∀i � Ψ(i) where
Ψ(i) is an expression with the following grammar:

exp := ∗ | > | ⊥ | lval | GV [i][w] | �(exp+)

Let the semantics of P (n) be (S, I,R). We say that P (n)
satisfies φ, denoted P (n) |= φ iff ∀a ∈ A(n) �(I, a) ∈ R∗ =⇒
∀j ∈ [1, n] � (a,Ψ(j)) = > where (a,Ψ(j)) is the evaluation
of Ψ(i) after each GV [i][w] has been replaced with a[j][w].

Parameterized Model Checking. The input to the param-
eterized model checking problem is a SDA P and a spec-
ification φ. Its output, denoted parmodck(P, φ) is ⊥ if
∃n ∈ N � P (n) 6|= φ, and > otherwise.

3. THEORETICAL RESULTS
We now show that the parameterized model checking prob-
lem is undecidable by reducing the Post Correspondence
Problem [15] to it. Initially, we assume Z ∈ [1,W]. Subse-
quently, we show that the undecidability holds even if Z = 1.

Post’s Correspondence Problem. Let Σ be an alphabet with
at least two letters. An instance I of PCP is given by two
sequences U = 〈u1, . . . , um〉 and V = 〈v1, . . . , vm〉 of strings
ui, vi ∈ Σ+. The output, denoted pcp(I), is ⊥ if there
exists a finite non-empty sequence (known as the solution)
〈i1, . . . , ip〉 with ij ∈ [1,m] for j ∈ [1, p] such that:

ui1 • . . . • uip = vi1 • . . . • vip

where • is string concatenation. PCP is undecidable [15].

For example, suppose U = 〈a, ab, bba〉 and V = 〈baa, aa, bb〉.
Then pcp(I) = ⊥ since there exists a solution 〈3, 2, 3, 1〉.
This is because u3 • u2 • u3 • u1 = bbaabbbaa = v3 • v2 •
v3 • v1. On the other hand, if U = 〈aa, aab, baaa〉 and V =
〈a, bb, abb〉, then pcp(I) = > since there is no solution (each
ui has a bigger length than the corresponding vi).

We show that for every instance I of PCP, there exists a SDA
P and specification φ such that parmodck(P, φ) = pcp(I).
For convenience, we assume that each element of GV is a
record whose fields are finite datatypes. Specifically, there
are five fields: (i) idu, posu, idv , and posv are initialized
non-deterministically; and (ii) st is initialized to 0. For sim-
plicity, we write f [i] to mean GV [i].f where f is a field.

At a high level, the SDA implements a protocol that works
as follows. Variable st[i] indicates the overall progress of
Ni in the protocol. Node N1 is a special node that helps in
detecting success. Every other node Ni, i > 1 represents two
letters: (i) the posu[i]-th letter in uidu[i], and (ii) the posv [i]-
th letter in vidv [i]. The protocol succeeds iff the sequence of
letters represented by 〈N2, . . . , Nn〉 is a solution to pcp(I).
The procedure ρ works as follows (the code is in Figure 1):

1. First ensures that the letters represented are valid and
identical. This is the case if (st[id] = 0) in Figure 1.
Note that st[id] = 1 means no further progress.

2. Next checks that N2 represents the first letter of a
word. This is the case if (st[id] = 2) in Figure 1.

if (st[id] = 0)
if (id = 1) st[id] := 2;
else if (1 ≤ idu[id] ≤ m ∧ 1 ≤ posu[id] ≤ |uidu[id]|∧

1 ≤ idv [id] ≤ m ∧ 1 ≤ posv [id] ≤ |vidv [id]|∧
uidu[id][posu[id]] = vidv [id][posv [id]])
st[id] := 2;

else st[id] := 1;
else if (st[id] = 2)

if (id 6= 2 ∨ (posu[id] = 1 ∧ posv [id] = 1)) st[id] := 3;
else st[id] := 1;

else if (st[id] = 3)
if (id ≤ 2 ∨ (X1 ∧X2 ∧X3 ∧X4)) st[id] := 4;
else st[id] := 1;

where:

X1 := posu[id] > 1 =⇒ (idu[id− 1] = idu[id]

∧posu[id− 1] = posu[id]− 1)

X2 := posv [id] > 1 =⇒ (idv [id− 1] = idv [id]

∧posv [id− 1] = posv [id]− 1)

X3 := posu[id] = 1 =⇒ posu[id− 1] = |uidu[id−1]|
X4 := posv [id] = 1 =⇒ posv [id− 1] = |vidv [id−1]|

Figure 1: Code Fragment for First Three Rounds.

3. Next checks that the node before it represents either
the previous letter in the same word or the last let-
ter in another word, as appropriate. This is the case
if (st[id] = 3) in Figure 1.

4. The final stage of ρ – denoted EqCheck– checks that
the nodes represent the same sequence of indices in
both U and V . Let the sequence of indices in U rep-
resented by the nodes be 〈iu1, . . . , iuq〉, and the se-
quence of indices on V represented by the nodes by
〈iv1, . . . , ivr〉. Starting with nodeN1, the program first
computes iu1 and iv1 and compares them, then com-
putes iu2 and iv2, and compares them, and so on. The
protocol succeeds iff 〈iu1, . . . , iuq〉 = 〈iv1, . . . , ivr〉.
Success is indicated by N1 entering a special ok state.
We next define EqCheck in more detail.

EqCheck: High-Level Idea. Node N1 sends out two tokens
– tu and tv – along the line 〈N1, . . . , Nn〉. If node Ni receives
tu there are two cases:

1. If Ni does not represent the last letter of its corre-
sponding U -word (i.e., if posu[i] 6= |uidu[i]|), it passes
tu to Ni+1 and moves to the done state.

2. If Ni represents the last letter of its U -word (i.e., if
posu[i] = |uidu[i]|), it waits for N1 to move to a special
green state. In any subsequent round, if Ni detects
that N1 is in the green state, it passes tu to Ni+1 and
moves to the done state.

A symmetric behavior (involving vidv [i] and posv [i]) occurs
if Ni receives token tv. Note that Ni may receive both tu
and tv in the same round. Node N1 moves to the green
state (for just one round) if it detects that both tokens have

else if (st[id] = 4)
if (id = 1) tu[id] := 1; tv[id] := 1;
else tu[id] := 0; tv[id] := 0;wtu[id] := 0;wtv[id] := 0;
st[id] = init;

else if (st[id] = init) ∧ (id = 1)
if (EXISTS(iu, wtu[iu] = 1) ∧ EXISTS(iv, wtv[iv] = 1))

if (iu = iv) st[id] := ok;
else if (idu[iu] = idv [iv]) st[id] := green;

else if (st[id] = init) ∧ (id 6= 1)
if (wtu[id] ∧ st[1] = green)
wtu[id] := 0; tu[id] := 1; st[id] := done;

else if (tu[id− 1] = 1 ∧ tu[id] = 0)
if (posu[id] = |uidu[id]|) wtu[id] := 1;
else tu[id] := 1; st[id] := done

if (wtv[id] = 1 ∧ st[1] = green)
wtv[id] := 0; tv[id] := 1; st[id] := done;

else if (tv[id− 1] = 1 ∧ tv[id] = 0)
if (posv [id] = |vidv [id]|) wtv[id] := 1;
else tv[id] := 1; st[id] := done

else if (st[id] = green) st[id] := init;

Figure 2: Code Fragment for EqCheck.

reached the ends of words from U and V with equal indices.
Specifically, suppose tu is with node Niu and tv is with node
Niv. Then, N1 moves to the green state for just one round
if the following condition holds:

posu[iu] = |uidu[iu]| ∧ posv [iv] = |vidv [iv]|
∧GV [iu].idu = GV [iv].idv

Also, N1 moves to the ok state if, in addition to the above
condition, iu = iv holds as well.

EqCheck: Implementation Details. To simulate token
passing with shared variables, we introduce two extra
Boolean fields tu and tv in each element of GV . Then,
node Ni has token tu (or tv) iff i is the largest index such
that tu[i − 1] = > (or tv[i − 1] = >). Thus, Ni passes tu
(or tv) to Ni+1 by setting tu[i] (or tv[i]) to >. We also have
two more Boolean fields wtu and wtv to indicate that the
node has token tu or tv and is waiting for N1 to move to the
green state. In the first round of EqCheck, tu, tv, wtu and
wtv are initialized appropriately. The code for EqCheck is
shown in Figure 2. Note that EXISTS can be implemented
using all and additional variables.

Consider the specification φ = ∀i � st[i] 6= ok. It can be
shown that parmodck(P, φ) = pcp(I). Thus we have:

Theorem 1. parmodck(P, φ) is undecidable.

We now show that parmodck(P, φ) is undecidable even if
Z = 1. Specifically, for any SDA P = (GV ,W,Z, ρ) where

Z > 1, there exists another SDA P̃ = (G̃V , W̃ , 1, ρ̃), such

that ∀n ∈ N, P (n) is simulated by P̃ (Z × n). In the first

round, every Z-th node of P̃ (Z × n) copies the NDBs from
its next Z−1 neighbors. Now every Z-th node has Z NDBs.
Note that there are n such nodes. Subsequently, node Ni of
P̃ (Z × n) simulates node Nj of P (n) iff i = (j − 1)×Z + 1.
This implies the next result.

Theorem 2. parmodck(P, φ) is undecidable even when
P = (GV ,W, 1, ρ).

Example mcmt cubicle
Time N SMT Time N SMT

MUTEX-OK 0.46 21 1158 0.61 668 614
MUTEX-BUG1 1.2 70 2630 1.8 - -
MUTEX-BUG2 0.52 48 1350 0.45 - -

COLL-OK * * * * * *
COLL-BUG1 253 1045 195K 248 - -
COLL-BUG2 * * * 2892 - -

Figure 3: Experimental Results. Times are in sec-
ond; N = no. of nodes; SMT = no. of calls to SMT
solver; - = data not reported; * = timeout.

The cutoff approach [8] for parameterized verification is
based on proving that for a certain class of specifications
φ and parameterized system P , there exists a known K ∈ N
such that ∀n > 0 � P (n) |= φ ⇐⇒ ∀n ≤ K � P (n) |= φ.
We now show that for SDAs, no such cutoff can exist even
if each node is completely deterministic.

Theorem 3. For each K ∈ N, there exists a specification
φ and a SDA P with Z = 0 such that ∀n ≤ K � P (n) |=
φ ∧ P (K + 1) 6|= φ.

Proof. Consider the SDA P where each element of GV
has one field st initialized to 0, and following function ρ:
if (id > K) st[id] := 2; else st[id] := 1. Let φ = ∀i�st [i] 6= 2.
Thus, ∀n ≤ K � P (n) |= φ ∧ P (K + 1) 6|= φ.

4. EXPERIMENTAL RESULTS
Recall that any SDA instance P (n) is semantically equiva-
lent to a sequential program [[P (n)]] that operates over two
copies of the array GV . We now show that [[P (n)]] can be
encoded as an Array-Based System (ABS). The main chal-
lenge is that in each iteration [[P (n)]] processes every array
element, while in an ABS, only one enabled transition is ex-
ecuted asynchronously in each step. Our solution is to: (i)
implement a “barrier” using “universal guards” [2]; (ii) use
the barrier to implement synchronicity via a protocol mod-
eled after “two-phase commit”. Due to lack of space, we are
unable to provide further details. However, all our examples
are available at http://snipurl.com/spin14.

We experimented with two sets of examples – mutual exclu-
sion and collision avoidance between mobile robots. Both
protocols use ordering between ids to ensure that at most
one node is in the critical section and no two nodes are in the
same physical location (a coordinate on a two-dimensional
grid). Mutual exclusion requires reserving and acquiring a
single lock. Collision avoidance is more complicated and re-
quires two locks – one for a node’s current location and the
other for the location the node is moving to.

For each example, we created three versions – one correct
and two buggy by omitting crucial checks in the protocol.
We manually translated each version into the input language
of two ABS model checkers – mcmt v2.5 and cubicle v0.5.
We then applied the two tools – using their default settings
– on their corresponding example files. All experiments were
done on a 2.3GHz Machine running 64bit Linux with a time
limit of 120 minutes and a memory limit of 4GB. Our exper-
imental results are shown in Fig. 3. Both mcmt and cubi-
cle performs symbolic backward reachability using an SMT
solver and heuristics to prune out unfeasible executions, and

detect fixed points. The results indicate that they are effec-
tive on all mutual exclusion examples and the buggy collision
avoidance examples. However, the safe collision avoidance
example is beyond the scope of both tools.

Conclusion. We presented preliminary results and caveats
toward parameterized verification of SDAs. We are explor-
ing several next steps: (i) formally defining and proving cor-
rectness of the translation from SDAs (written in dasl) to
ABSs; (ii) developing verification algorithms that operate on
SDAs directly instead of converting them to ABSs; (iii) im-
plementing a robust parameterized model checker for SDAs;
and (iv) performing a more comprehensive evaluation.

5. REFERENCES
[1] A. Al-Nayeem, M. Sun, X. Qiu, L. Sha, S. P. Miller,

and D. D. Cofer. A Formal Architecture Pattern for
Real-Time Distributed Systems. In Proc. of RTSS,
2009.

[2] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and
G. P. Rossi. Universal Guards, Relativization of
Quantifiers, and Failure Models in Model Checking
Modulo Theories. JSAT, 8(1/2), 2012.

[3] B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin.
Parameterized Model Checking of Token-Passing
Systems. In Proc. of VMCAI, 2014.

[4] S. R. Azimi, G. Bhatia, R. Rajkumar, and
P. Mudalige. Reliable intersection protocols using
vehicular networks. In Proc. of ICCPS, 2013.

[5] S. Chaki and J. Edmondson. Model-Driven Verifying
Compilation of Synchronous Distributed Applications,
2014. under submission.

[6] S. Conchon, A. Goel, S. Krstic, A. Mebsout, and
F. Zäıdi. Cubicle: A Parallel SMT-Based Model
Checker for Parameterized Systems - Tool Paper. In
Proc. of CAV, 2012.

[7] G. Delzanno, A. Sangnier, and G. Zavattaro.
Parameterized Verification of Ad Hoc Networks. In
Proc. of CONCUR, 2010.

[8] E. A. Emerson and K. S. Namjoshi. On Reasoning
About Rings. IJFCS, 14(4), 2003.

[9] A. Finkel and P. Schnoebelen. Well-structured
transition systems everywhere! TCS, 256(1-2), 2001.

[10] S. Ghilardi and S. Ranise. Backward Reachability of
Array-based Systems by SMT solving: Termination
and Invariant Synthesis. LMCS, 6(4), 2010.

[11] S. Ghilardi and S. Ranise. MCMT: A Model Checker
Modulo Theories. In Proc. of IJCAR, 2010.

[12] A. John, I. Konnov, U. Schmid, H. Veith, and
J. Widder. Parameterized model checking of
fault-tolerant distributed algorithms by abstraction. In
Proc. of FMCAD, 2013.

[13] N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann, 1996.

[14] S. P. Miller, D. D. Cofer, L. Sha, J. Meseguer, and
A. Al-Nayeem. Implementing logical synchrony in
integrated modular avionics. In Proc. of DASC, 2009.

[15] E. L. Post. A variant of a recursively unsolvable
problem, 1946. Bull. Amer. Math. Soc 52.

