
Automatic Handling of Native Methods in Java PathFinder

Nastaran Shafiei
NASA Ames Research Center, Moffett Field

nastaran.shafiei@nasa.gov

Franck van Breugel
York University, Toronto

franck@cse.yorku.ca

ABSTRACT
Java PathFinder (JPF) is a model checker for Java appli-
cations. Despite its maturity, JPF cannot be used to verify
any realistic Java application without a nontrivial amount
of work done by its user. One of the main limiting factors
towards model checking such applications is handling na-
tive calls. JPF provides ways for users to handle such calls.
However, those require modeling the behaviour of the na-
tive methods in Java which is labour intensive and hinders
the uptake of JPF by developers. This paper presents our
tool that extends JPF to address this problem. Our work
alleviates this burden for users by automatically handling
native calls. Our approach is based on delegating the exe-
cution of native calls from JPF to their original execution
environment. We showcase our extension by applying it to
a variety of simple yet realistic Java applications that JPF,
without our extension, cannot handle.

1. INTRODUCTION
JPF is an explicit-state model checker for Java applica-

tions. The core of JPF is a Java virtual machine (JVM)
using a runtime scheduler that executes the system under
test (SUT) in all possible ways. As it explores the state
space of the SUT, it checks for certain properties, such as
deadlocks and unhandled exceptions. The JPF distribution,
called jpf-core, comes with several classic concurrency ex-
amples, e.g., a solution to the dining philosophers problem
and a concurrent implementation of a bounded buffer. Al-
though these examples demonstrate that JPF is a powerful
tool to find intricate bugs, they cannot be considered realis-
tic. They lack ingredients in today’s Java applications, such
as a graphical user interface, interaction with a database,
and communication over the Internet. JPF crashes on al-
most any realistic Java application and applying it requires
a considerable amount of work.

One of the main challenges of applying JPF on real-world
applications is to handle native methods, that is, methods
invoked from the Java application but written in a different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

language, such as C and C++. The JVM of JPF can only
execute Java bytecode instructions. It crashes as soon as it
encounters a call to a native method unless the call is in-
tercepted by JPF. JPF provides two different mechanisms
(Section 2) to handle calls to native methods. Both ap-
proaches require the user to manually model native methods
in Java which is tedious and error prone. Moreover, many
such methods are not part of the documented Java APIs,
and their sources might not be even available.

In this paper, we present our tool, jpf-nhandler1, which is
an extension of JPF that automatically handles native calls.
To handle such calls, it provides a way to delegate their
execution to the operating system (OS). There are existing
tools that take a similar approach. VeriSoft [8], a model
checker for C code, intercepts certain system calls such as
operations on communication objects. KLEE [4], a symbolic
execution tool, also delegates read accesses of file systems to
the OS. Another example is the Moles framework [6] which
supplements a symbolic execution tool, Pex. It replaces calls
with alternative implementations to eliminate environment
dependencies such as the file system. Such calls need to be
specified by the user.

Our tool has been successfully applied to a variety of sim-
ple yet realistic Java applications. In the paper we present
a variety of examples which confirm that jpf-nhandler can
be used to model check Java applications including unhan-
dled native calls. For all these examples, JPF without our
extension crashes. We also discuss the limitations of our ap-
proach. Before we outline our approach, in the next section,
we explain those JPF features that are key to our work.

2. NATIVE CALLS IN JPF
JPF is a JVM on top of which the SUT runs. JPF it-

self is written in Java and, hence, runs on top of another
JVM, called the host JVM. The latter runs on top of the
OS. There are two approaches adopted by JPF to handle
native calls, both require modeling native methods in Java.
In one approach such model is provided at the JPF level
within model classes. These classes model the behaviour of
actual Java classes, and often abstract from particular de-
tails of the actual classes. They are part of JPF and have
the same names as the classes they model. Whenever JPF
encounters a class for which there exists a model class, it
model checks the model class instead of the actual class.

Another way is to provide a model of the native method at
the host JVM level using JPF’s model Java interface (MJI).

1https://bitbucket.org/nastaran/jpf-nhandler



MJI is implemented in analogy to the Java native interface
(JNI) [9]. Every standard JVM has a JNI, and whenever
it gets to a native call, JNI is used to transfer the execu-
tion from the JVM to OS. The so called native peer classes
play a key role in MJI. JPF uses a specific name pattern
to associate native peer methods with the methods of SUT
classes. Whenever it gets to a call associated with a native
peer method, it delegates the call to the host JVM. Hence,
the native call is not model checked, but executed on the
host JVM.

Since classes and objects are represented differently in
JPF than in an ordinary JVM, to implement a native peer
class one often has to translate from the one representa-
tion to the other and back. This is one of the challenges of
developing native peers. For example, consider the native
method getLength of the class java.lang.reflect.Array.
Let arr be an array object. The call Array.getLength(arr)
returns the length of arr. In JPF, arr is represented by an
ElementInfo object. To handle such a call, one needs to
be familiar with the ElementInfo structure to retrieve the
length. Moreover, the user needs to use the required nam-
ing pattern when implementing the native peer to make JPF
associate it to getLength.

JPF and its extensions currently include a few hundred
model classes and native peer classes. These classes are
mainly developed to handle native methods. However, there
are many more classes with native methods that are not
handled. Moreover, the implementation of existing model
classes and native peer classes are only compatible with cer-
tain Java versions. Furthermore, any Java application can
include user-defined native methods. To avoid JPF from
crashing on an application with an unhandled native call,
one needs to apply one of the two approaches which require
knowledge of JPF’s internal structure and the method spec-
ification. That can considerably limit the use of JPF. Thus,
a tool that can assist users to handle native calls automati-
cally can be very useful.

3. THE JPF-NHANDLER TOOL
As mentioned earlier, to handle native calls in a standard

JVM, the execution is automatically transferred to the OS
level. In a way, jpf-nhandler mimics the same functionality,
but at a different level, i.e., it automatically transfers exe-
cution between JPF and the host JVM, whereas, the JNI
feature transfers the execution between the host JVM and
the OS.

Our tool mainly relies on MJI and native peer classes. It
consists of three main components, forwarder, code genera-
tor and converter. When classes are being loaded into the
JPF runtime environment, the forwarder identifies and flags
the calls to be delegated by jpf-nhandler. The code gen-
erator creates bytecode for native peers on-the-fly (referred
to as OTF peers) using the library BCEL2. The converter
is used by OTF peers to translate objects and classes from
JPF to the host JVM and back. Whenever JPF encounters a
call to an unhandled native call, jpf-nhandler automatically
intercepts the call and delegates its execution from JPF to
the host JVM. To delegate the execution, the code genera-
tor creates an OTF peer (if it does not exist yet) and adds
a native peer method to it (if it does not exist yet).

To see how the body of OTF peer methods are im-

2http://commons.apache.org/bcel/

plemented, consider the native method allocateInstance

of the class sun.misc.Unsafe. Let unsafe be an Unsafe

object and let clazz be a Class object. The call un-

safe.allocateInstance(clazz) returns an uninitialized in-
stance of clazz. The following figure shows how this call
is handled by jpf-nhandler. The middle column represents
the code generated on-the-fly by jpf-nhandler as the body
of the allocateInstance native peer method which includes
three steps. (1) First, the JPF representation of unsafe and
clazz are transformed to corresponding JVM objects using
the converter. (2) Then, using the Java reflection API, the
original native method allocateInstance is called on the
JVM representation of unsafe with the JVM representa-
tion of clazz as its argument. Since this method is native,
its execution is delegated from the host JVM to the OS, us-
ing JNI. (3) Finally, using the converter, the result of the
method call is transformed from its JVM representation to
its JPF representation. This part also includes updating the
objects unsafe and clazz in JPF from their JVM represen-
tation, since these objects may have changed due to side
effects of the native method executed in part (2).

JPF uses instances of the class ClassInfo and Ele-

mentInfo to represent classes and objects, respectively.
Since jpf-nhandler interacts with the host JVM (steps 1
and 3 in the following figure), it needs to convert objects
and classes from JPF to the host JVM and back. Consider
converting a JVM object to a JPF object. Conversion is
performed recursively. Using the Java reflection API, the
converter goes through the fields of the JVM object and for
each non-primitive field it performs a conversion from JVM
to JPF.

However, this generic converter does not work if there
is an inconsistency between a model class and the actual
class it models. Since model classes abstract away details
from the original ones, they usually do not declare the same
fields as declared in the original classes. However, the con-
verter, explained above, relies on an one-to-one correspon-
dence between the fields of the model class and the actual
class. To address this issue, the converter uses the abstract
factory design to instantiate objects of type Converter,
the subclasses of which implement type-specific conversions.
The factory returns the generic converter, encapsulated by
GenericConverter, if there is no inconsistency, and a hand
crafted converter otherwise. For example, since the java.

util.Random model class and the actual class do not declare
the same fields, the factory returns a converter specific to
Random objects.

Our tool can be configured in a variety of ways. It can be
used to skip native calls instead of delegating them. It also
provides a way to specify which methods (native and non-
native) are delegated or skipped. Moreover, for methods
with primitive return types, it can make their OTF peers
return a nondeterministically chosen value. It can also be
configured to generate source code for OTF peers on-the-fly.

There are some limitations to our tool which are out-
lined below. Providing the source code of OTF peers al-
lows users to refine the implementation when a limitation
is encountered. In general, native code can modify arbi-
trary objects and classes through JNI. Currently, we only
reflect in JPF the changes made by the native code to
some objects and classes. For example, consider the call
unsafe.allocateInstance(clazz). Only changes made to
the objects unsafe and clazz and their classes are reflected



Converter c = new Converter(env);
Object unsafe = JPF2JVM.obtainJVMObj(jpfUnsafe);
=Object clazz = JPF2JVM.obtainJVMObj(jpfClazz);

unsafe.allocateInstance(clazz)

   jpf-nhandler      

Class<?> callerClass = Unsafe.class;
Method method = callerClass.
   getDeclaredMethod("allocateInstance",...);
  Object returnVal = 
   method.invoke(unsafe, new Object[]{clazz});

jpf-core

  JVM

  OS

MJI JNI

Native 
code

1

int result = JVM2JPF.obtainJPFObj(returnVal);
return result;

OTF peer 

2

3

in JPF. However, if the method were to change any other ob-
jects or classes, those changes would not be reflected in their
corresponding JPF representations. Moreover, delegation of
a method to the host JVM amounts to the assumption that
its execution is atomic. Furthermore, as JPF explores the
state space of the SUT it may backtrack to already visited
states. Therefore, a method may be delegated multiple times
which may lead to undesirable consequences, e.g., a method
that adds an entry to a database.

Due to these limitations, our tool is not sound, i.e., it may
explore executions which are inconsistent with the SUT be-
haviors, leading to false positives. It is also not complete,
i.e., it does not capture the state of the delegated calls, and
therefore the model checker may miss executions. However,
in practice, jpf-nhandler has proven to be useful. As is shown
in Section 4.1, it is applicable to a large variety of applica-
tions.

4. RESULTS AND TOOL USAGE
To compare our approach with the hand crafted approach

adopted by JPF, we selected four Java types that have been
already modeled by JPF. For each type we use a class with
a test suite that checks the correctness of the class methods.
We apply jpf-core and jpf-nhandler on our test classes. In
both cases, the classes are model checked successfully, and
all the tests pass. For each type, jpf-nhandler is configured
to delegate all the methods modeled by jpf-core. We apply
jpf-nhandler with two different settings. In one setting, it
generates OTF peers, and in the other one, it reuses the
OTF peers created in previous runs.

The following table presents our results which are the av-
erage of ten runs. The average standard deviation is 14 ms.
The last column of the table presents the total size (in terms
of lines of code) of the native peer and the model class used
to model the type in jpf-core. For classes Math and Array,
which are mostly implemented natively, jpf-nhandler would
avoid developing 443 lines of code requiring knowledge of
JPF’s internal structure and the method specifications.

4.1 Application of jpf-nhandler
Recently, our tool has been used in verifying a prototypical

next-generation air traffic controller system, Autoresolver,
at NASA. Below, we discuss simple Java applications which
contain ingredients found in today’s applications. None of

them can be verified by JPF without jpf-nhandler.

Communicating over a Network. A common way for
Java applications to communicate is using java.net.Socket

objects. We implemented a client application and a server
application. Both applications contain native calls that are
not handled by JPF. Using jpf-nhandler, we model check
the client on one machine when the server is running on an-
other machine. Red Hat’s JGroups provides a framework
for reliable multicast communication. In our example, two
applications communicate using a org.jgroups.JChannel.
One application sends a message which is received by the
other one. We execute the receiver on one machine while we
model check the sender on another machine.

Exploiting Graphics Processing Units (GPUs).
NVIDIA’s compute unified device architecture (CUDA) con-
tains an environment to program their GPUs. The package
jcuda enables Java applications to run CUDA code on the
GPU. We consider the application JCudaVectorAdd which is
part of the jcuda distribution. It creates two 100,000 ele-
ment arrays, runs some CUDA code on the GPU to add the
arrays, and finally checks the result. Several native methods
are needed to bridge the gap between the Java code and the
CUDA code. By delegating those calls using jpf-nhandler,
we were able to model check this application which led to
detection of a bug in JPF, i.e., arrays of floats are not con-
verted correctly.

Querying a Database. Apache Derby is a relational
database written in Java. In our application, we connect
to a database, create a new table, insert records into the
table, and finally close the connection. Our application in-
cludes several unhandled native calls. Using jpf-nhandler,
we model check this application successfully.

Scraping the Web We developed a web scraper which
reads the HTML of a web page. Our application contains
several calls to native methods that are not handled by JPF.
Using jpf-nhandler, this application is successfully model
checked.

Invoking Web Services Google’s translate web service-
translates phrases between natural languages. In our ap-
plication, we use this web service to translate phrases from
English to French. By delegating a call that sends an HTTP
request and returns the result as an object, the application
is verified successfully.



type jpf-core
(ms)

jpf-nhandler
(ms)

reusing
peers(ms)

overhead reusing peers
overhead

modeling
effort(loc)

String 3767 4582 4038 21% 7% 771
Math 6169 6974 6574 13% 6% 171
Array 44406 5007 4802 13% 8% 272
AtomicLong 4250 4719 4485 11% 5% 42

Playing Games. The Java code of computer games is
usually full of calls to native methods. In [10] we de-
scribe how jpf-nhandler is used to model check two com-
puter games, Hamurabi and a graphics based version of rock-
paper-scissors.

Solving Ordinary Differential Equations. The Apache
Commons mathematics library includes packages related
to mathematics and statistics. In our application, we use
the library to numerically solve ordinary differential equa-
tions. Successfully verifying the application requires using
jpf-nhandler.

5. RELATED WORK
The work presented in [7] also extends JPF to model check

some parts of the code and executes the rest on the host
JVM, but their objective is reducing the execution time and
not handling native calls. Their approach also translates
JPF objects to JVM objects and back, but has several lim-
itations from which ours does not suffer, e.g., their transla-
tion from JPF to JVM handles neither arrays nor instances
of classes without a default constructor. They also use re-
flection to invoke methods on the host JVM, but they do not
handle constructors and static initializers which are handled
by us.

There are several other extensions of JPF that also deal
with native methods. The work presented in [2] introduces
a framework to model check distributed Java applications.
It consists of several model classes that model network com-
munication in Java and contain native methods. The JPF
extension jpf-net-iocache [1] also model checks distributed
Java applications. It allows for model checking one com-
ponent of the distributed application, while the others run
in their normal environment. This is similar in flavour to
our tool. Since JPF can backtrack to previously visited
states, one has to prevent communications between that
component and the others from being repeated. To address
this, they introduce a cache that keeps track of commu-
nications. The work presented in [11] discusses the JPF
extension jpf-concurrent which models the package java.

util.concurrent. Although their main aim is to improve
the performance of JPF, they also handle several native
methods. Without using jpf-concurrent, our tool can model
check Java applications using java.util.concurrent, e.g.,
we have successfully model checked the implementation [3]
of a concurrent binary search tree.

6. CONCLUSION AND FUTURE WORK
This paper presents our extension jpf-nhandler of JPF

that automates the handling of native methods. It auto-
matically delegates the execution of the native method to
the host JVM. It automates the intertwining of the model
checking of Java code and the execution of native code. In
a way, it is similar to concolic execution.

Next we outline our plans to address some of the tool’s
limitations. To avoid a call from being delegated more than
once, we intend to use a cache (as it is used in [1]) to record

the effects of a delegated method call. If JPF encounters the
same call later, we simply reflect the cached effects in JPF.
The jpf-nhandler converter (Section 3) has a map which as-
sociates JPF objects to their JVM representations created
by the converter. By default, this maps is cleared after a
native call is handled. jpf-nhandler can be configured to not
clear the map to avoid recreating JVM objects. However,
in this setting, if JPF modifies an object that is stored in
the map, the JPF object and its JVM counterpart may get
out of sync. This discrepancy can be addressed using a lazy
update strategy explained in [7].

Objects are represented in JPF by ElementInfo objects
which contain more information than their corresponding
JVM counterparts. Hence, in the vocabulary of abstract in-
terpretation [5], the JPF representations form the concrete
domain and the JVM representations form the abstract do-
main. The conversion from JPF to JVM is the abstraction
function, and the conversion in the opposite direction is the
concretization function. We are interested to see whether
we can transfer results from abstract interpretation to our
setting.

7. REFERENCES
[1] C. Artho, W. Leungwattanakit, M. Hagiya, and

Y. Tanabe. Efficient model checking of networked
applications. In TOOLS, 2008.

[2] E. D. Barlas and T. Bultan. NetStub: a framework for
verification of distributed Java applications. In ASE,
2007.

[3] T. Brown and J. Helga. Non-blocking k-ary search
trees. In OPODIS, 2011.

[4] C. Cadar, D. Dunbar, and D. Engler. KLEE:
Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs.
In OSDI, 2008.

[5] P. Cousot. Abstract interpretation. ACM Computing
Surveys, 28(2), 1996.

[6] J. d. Halleux and N. Tillmann. Moles: Tool-Assisted
Environment Isolation with Closures. In TOOLS,
2010.

[7] M. d’Amorim, A. Sobeih, and D. Marinov. Optimized
execution of deterministic blocks in Java PathFinder.
In ICFEM, 2006.

[8] P. Godefroid, J. D. Herbsleb, L. J. Jagadeesan, and
D. Li. Ensuring Privacy in Presence Awareness
Systems: An Automated Verification Approach. In
CSCW, 2000.

[9] S. Liang. The Java Native Interface: Programmer’s
Guide and Specification. 1999.

[10] N. Shafiei and F. v. Breugel. Towards model checking
of computer games with Java PathFinder. In GAS,
2013.

[11] M. Ujma and N. Shafiei. jpf-concurrent: an extension
of Java PathFinder for java.util.concurrent. In JPF
Workshop, 2011.


	Introduction
	Native Calls in JPF
	The jpf-nhandler Tool
	Results and Tool Usage
	Application of jpf-nhandler

	Related Work
	Conclusion and Future Work
	References

