
Unit Testing for SPIN: runspin and parsepan

Theo C. Ruys
RUwise – The Netherlands
theo.ruys@gmail.com

ABSTRACT
This paper presents runspin and parsepan, two utilities to
ease the verification process with the Spin model checker.
runspin allows the management of verification configura-
tions within Promela models and takes care of the auto-
matic verification. Moreover, runspin adds essential data to
the verification report. parsepan is used to selectively re-
trieve information from verification reports. Used together
the two tools can act as unit testing engine for Promela
models.

Categories and Subject Descriptors
[Software and its engineering]: Software functional prop-
erties—Formal methods, Model checking

General Terms
Management, Verification Trajectory

1. INTRODUCTION
It is indisputable that the verification results obtained using
a verification tool should always be reproducible. With-
out tool support, the verification engineer has to resort to
general engineering practices and record all verification ac-
tivities into a (digital) log-book. Consequently, the quality
of the verification process depends on the accuracy of the
validation engineer. The careful recording of information on
the different models during the verification phase becomes
even more indispensable when errors are found in one of the
verification models. Apart from the fact that the erroneous
models have to be corrected and reverified, all models that
have been verified previously and which are affected by the
error should be reverified as well [7].

State-of-the-art verification tools like Spin [2, 12] provide
the user with an extensive set of options and directives to
optimize and tune the functionality and performance of the
verification run. To reproduce a verification run of a model
checker all these options should be recorded. Preferably

together with the verification model and the verification re-
sults. Furthermore, the nature of verification tools is that
they either need a lot of processing time or need a lot of
memory or even both. Statistics on such properties of ver-
ification runs are valuable attributes of the verification tra-
jectory [7], especially when benchmarking verification tools.

Over the last fifteen years we have been involved in several
verification projects with Spin (e.g., [5, 6, 8, 11]), where
we had to deal with many different Promela models and
extensive sets of properties to verify. This usually resulted
in a huge collection of verification reports. Collecting the
interesting data from these verification reports turned out
to be tedious and error-prone.

In this paper we present two complementary tools to assist
the verification engineer when using Spin: runspin is a script
to automate the complete verification of a Promela model,
and parsepan can be used to retrieve specific information
from Spin’s verification reports. Both tools have been de-
veloped along several verification projects and have evolved
from in-house scripts to mature utilities, and should be use-
ful for (advanced) users of Spin. Both runspin and parsepan
are open-source and available from [10] and [9], respectively.

In Sec. 2 we explain how runspin and parsepan are typically
used. In Sec. 3 we dive deeper into the features of runspin
and Sec. 4 discusses parsepan in more detail. Sec. 5 ends the
paper with a short summary and some directions for future
work.

2. USAGE
To control the verification process with Spin, we would typ-
ically use the make utility [1] in combination with small
write-once-use-once scripts . The runspin/parsepan toolset
lifts much of the burden of administrating and controling the
verification trajectory from the verification engineer, though.

The runspin/parsepan toolset has the following features:

• grouping : compilation- and verification options can be
stored within the Promela file,

• unit-testing : after modifying the Promela model, all
properties get (re)verified automatically,

• enhanced reporting : compilation- and verification op-
tions are included in the verification report, and

Promela
model

runspin

parsepan

verification
summary

with runspin
configurations

annotated
pan reportannotated

pan reportannotated
pan report

summary
with yes/no

spin

gcc

pan

Figure 1: Unit-testing.
runspin -a -p model.prom | parsepan -s -t

Promela
model Y

runspin

parsepan

.csv file

contains
configurations

annotated
pan reportannotated

pan reportannotated
pan report

Promela
model X

Promela
model Z

spreadsheet

config
file

Figure 2: Analysing verification results.
runspin -f ex.cfg -n cf *.prom | parsepan -d ’c’ > cf.csv

• retrieval : straightforward selection of individual data
values of the verification report to allow further anal-
ysis.

Configuration. A complete set of commands and options to
conduct a single verification run is called a configuration.
For Spin a configuration consist of three parts: the options
for spin, the options for the C compiler (gcc) and the options
for the pan verifier. A configuration usually corresponds to
a correctness property that has to be verified.

To illustrate how runspin and parsepan are typically used,
we discuss two examples. In Fig. 1, runspin and parsepan
are used in a unit test setting. The Promela model con-
tains several configurations that have to be verified. Af-
ter modifying the Promela model, runspin ensures that all
properties are (re)verified. The verification output is passed
to parsepan which shows a summary of the all verification
reports.

In Fig. 2, the verification results of several Promela (bench-
mark) models are compared. The configurations are read
from a configuration file and runspin takes care of verifying
all Promela models against all configurations. The verifi-
cation results are passed to parsepan which transforms the
output to a comma separated values (.csv) file. This file
is then imported into a spreadsheet, where further analysis
can take place.

To illustrate the use of runspin and parsepan we introduce
a small example. Fig. 3 shows a Promela model of Pe-
terson’s algorithm [4], an algorithm for mutual exclusion.
The critical section is modelled by the variable mutex. The
mutual exclusion algorithm should satisfy at least three cor-

rectness requirements: freedom from deadlock, mutual ex-
clusion: only one process can be in the critical section at
the same time, and freedom from starvation: if any pro-
cess tries to enter its critical section, then that process must
eventually succeed.

3. RUNSPIN
runspin is a bash script (400 lines of code) that automates
the complete verification of a Promela model with Spin and
adds extra information to pan’s verification report. First,
runspin will retrieve the configuration to verify the Promela
model. Then runspin invokes spin to generate the verifica-
tion program pan.c. Subsequently, runspin invokes gcc to
compile pan.c. Finally runspin executes the compiled pan

verifier. Apart from automating the verification process,
runspin adds valuable extra information to pan’s verification
report, e.g., the Promela file name, the name of the config-
uration, the exact commands used, date of verification, unix
time, etc. Fig. 4 shows (the top part of) the verification re-
port after verifying the configuration named deadlock with
runspin:

runspin -n deadlock -p peterson.prom

The lines starting with > have been added by runspin. We
have omitted pan’s standard part of the verification report.

Configurations are typically stored within the Promela file
as a single line comment. See the first three lines of Fig. 3.
The string runspin identifies a configuration. The string af-
ter the underscore is the name of the configuration. Each
command of the configuration is prefixed by % (to mimick a
shell prompt) and the last command should also be termi-
nated by %. Configurations can also be specified in a sepa-
rate file. The name of the configuration is then enclosed in

/* runspin_deadlock : %spin -a %gcc -o pan -DSAFETY pan.c %./ pan % */

/* runspin_mutex : %spin -DLTL -a %gcc -o pan pan.c %./ pan -a % */

/* runspin_progress : %spin -a %gcc -o pan -DNP -DNOCLAIM pan.c %./ pan -l -f % */

bit q1, q2;

byte turn;

byte mutex;

active proctype P1() {

do

:: q1=true; turn =1;

!q2 || (turn == 2);

progress:

mutex ++; mutex --; /* critical section */

q1=false;

od;

}

active proctype P2() {

do

:: q2=true; turn =2;

!q1 || (turn == 1);

mutex ++; mutex --; /* critical section */

q2=false;

od;

}

#ifdef LTL

ltl mutex { [] (mutex !=2) }

#endif

Figure 3: Peterson’s algorithm [4] as Promela model.

> promela file : peterson.prom

> date : 16-Apr -2014 16:15:10

> spin version : Spin Version 6.2.7 -- 2 March 2014

> gcc version : 4.2.1

> runspin command : runspin -n deadlock -p peterson.prom

> config source : commands retrieved from promela file (option -p)

> config name : deadlock

> spin command : spin -a

> gcc command : gcc -o pan -DSAFETY pan.c

> pan command : ./pan

(Spin Version 6.2.7 -- 2 March 2014)

+ Partial Order Reduction

...

Figure 4: Verification report: information added by runspin.

$runspin -a -p peterson.prom | parsepan --summary --header

rs_promela_file rs_config_name errors states_stored state_vector

peterson.prom deadlock 0 36 20

peterson.prom mutex 0 36 36

peterson.prom progress 0 69 36

Figure 5: Output of a unit-test run.

[deadlock] // invalid -end states

spin -a

gcc -o pan -DSAFETY pan.c

./pan

[mutex] // use LTL to check mutex

spin -DLTL -a

gcc -o pan pan.c

./pan -a

[progress] // checking for starvation

spin -a

gcc -o pan -DNP -DNOCLAIM pan.c

./pan -l -f

Figure 6: Example of a configuration file.

brackets and the three series of commands are written on
three separate lines. Java-style one-line comments (//) can
be used to document the configuration file. Fig. 6 shows
the same configurations as specified in Fig. 3, but now as a
configuration file. In practice, however, a configuration file
is typically used when several Promela models are verified
using the same configuration. This is useful for benchmark
studies, when several different Promela model the same
system. We used this extensively for [8].

4. PARSEPAN
parsepan is a Python script (400 lines of code of which 200
lines are pattern definitions) that parses a Spin verification
report and exports the (key,value) pairs of the verification re-
port as character delimited values. The format of parsepan’s
ouptut can be customized through several options. We de-
liberately let parsepan export delimited output only: it is
straightforward to transform the output of parsepan to other
formats (e.g., LATEX, xml).

Apart from pan’s standard verification report, parsepan rec-
ognizes the output added by the runspin script. parsepan
recognizes more than 120 different data items in a verifi-
cation report. By default, parsepan outputs all data items
that it recognizes. Naturally, parsepan has several options
to control what data values are reported and in what order
they are presented.

Fig. 5 shows an example of running runspin and parsepan
as unit test. The runspin command ensures that all con-
figurations in peterson.prom are verified. The verification
reports are passed to parsepan which presents a summary
(i.e., the most important data values, including the number
of errors) of the verifications together with a header row of
the key names of the data values. Data values are separated
by tabs. Note that the key names of data items added by
runspin have a rs_ prefix.

5. CONCLUSIONS
In this paper we have presented runspin and parsepan, two
utilities to ease the verification process with Spin. runspin
allows the management of verification configurations within
Promela models and takes care of the automatic verifica-
tion. Furthermore, runspin adds essential data to the verifi-
cation report. The parsepan utility can be used to selectively
retrieve information from verification reports. Used together

the two tools can act as unit testing engine for Promela
models.

With new verification projects ahead, the development of
both tools will further evolve. Currently runspin and parsepan
only support the Spin model checker. In the near future we
will add support for the swarm tool [3]. For a new major
release of runspin we plan to generalize runspin to a tool
which can automate the validation process of other valida-
tion tools as well.

6. REFERENCES
[1] S. I. Feldman. Make – A Program for Maintaining

Computer Programs. Software – Practice and
Experience, 9(3):255–265, Mar. 1979.

[2] G. J. Holzman. The Spin Model Checker – Primer
and Reference Manual. Addison-Wesley, Boston, USA,
2003.

[3] G. J. Holzmann, R. Joshi, and A. Groce. Tackling
Large Verification Problems with the Swarm Tool. In
K. Havelund, R. Majumdar, and J. Palsberg, editors,
Proc. of SPIN 2008, LNCS 5156, pages 134–143.
Springer, 2008.

[4] G. L. Peterson. Myths About the Mutual Exclusion
Problem. Information Processing Letters,
12(3):115–116, 1981.

[5] T. C. Ruys. Towards Effective Model Checking. PhD
thesis, Formal Methods and Tools group, Department
of Computer Science, University of Twente, Enschede,
The Netherlands, March 2001.

[6] T. C. Ruys. Optimal Scheduling Using Branch and
Bound with SPIN 4.0. In T. Ball and S. K. Rajamani,
editors, Model Checking Software - Proc. of the 10th
Int. SPIN Workshop (SPIN 2003), Portland, OR,
USA, May 9-10, 2003, LNCS 2648, pages 1–17.
Springer, 2003.

[7] T. C. Ruys and E. Brinksma. Managing the
Verification Trajectory. Int. Journal on Software Tools
for Technology Transfer (STTT), 4(2):246–259, 2003.

[8] T. C. Ruys and P. Kars. Gossiping Girls Are All
Alike. In A. F. Donaldson and D. Parker, editors,
Proc. of SPIN 2012, LNCS 7385, pages 117–136.
Springer, 2012.

[9] GitHub: repository for parsepan.
https://github.com/tcruys/parsepan.

[10] GitHub: repository for runspin.
https://github.com/tcruys/runspin.

[11] Rigorous Examination of Reactive Systems (RERS)
Challenge. http://www.rers-challenge.org.

[12] The Spin Model Checker. http://spinroot.com/.

https://github.com/tcruys/parsepan
https://github.com/tcruys/runspin
http://www.rers-challenge.org
http://spinroot.com/

	Introduction
	Usage
	runspin
	parsepan
	Conclusions
	References

