
SpinCause - A Tool for Causality Checking

Florian Leitner-Fischer
University of Konstanz, Germany

Konstanz, Germany
florian.leitner@uni-konstanz.de

Stefan Leue
University of Konstanz, Germany

Konstanz, Germany
stefan.leue@uni-konstanz.de

ABSTRACT
In this paper we present the SpinCause tool for causal-
ity checking of Promela and PRISM models. We give an
overview of the capabilities of SpinCause and briefly sketch
how the causality checking algorithms are integrated into the
state-space exploration algorithms used for model checking.
In addition we compare the runtime and memory needed
for causality checking with the different state-space explo-
ration algorithms and two newly proposed iterative causality
checking approaches.

1. INTRODUCTION
Model checking [6] is an automated technique to check whether
a model of a system violates a formalized property. In case
the property is violated, the model checker returns a coun-
terexample, which consists of a system execution trace lead-
ing to the property violation. While a counterexample helps
in retracing the system execution leading to the property vi-
olation, it does not identify causes of the property violation
and represents merely one possible execution of the system.

In recent work [16] we have proposed a method, complement-
ing model checking, called causality checking which aims at
providing insights into why a property was violated during
model checking. Causality checking uses an adaption of the
actual cause definition by Halpern and Pearl [11] in order to
algorithmically computed the causal events for a reachabil-
ity property violation. We adapt the actual cause definition
from [11] so that it can be applied to model checking. Since
the systems that we aim to analyze are concurrent systems,
the order in which the events occur also needs to be consid-
ered as a causal factor for the property violation, since for
instance, one execution trace might entail a race condition
and lead to a property violation while another execution
trace consisting of the same events might not violate the
property. We extend the adapted actual cause definition in
order to take the ordering of events into account as a causal
factor. The causal event orderings are captured by the event
order logic that we have proposed in [16].

Causality checking computes the event combinations causing
a property violation, together with the order in which the
events have to occur in order to be causal.

In this paper we present the SpinCause1 tool for causality
checking of Promela [12] and PRISM [14] models. SpinCause
is based on the SpinJa [7] tool-set a Java reimplementation
of the Spin [12] model checker. We give an overview of the
capabilities of SpinCause and briefly sketch how the causal-
ity checking algorithms are integrated into the state-space
exploration algorithms of SpinJa. We then compare the run-
time and memory needed for causality checking using differ-
ent state-space exploration algorithms.

2. THE SPINCAUSE TOOL
SpinCause comprises the following features:

● Causality checking of Promela models as proposed in [16].

● Causality checking of PRISM models via the PRISM to
Promela translation algorithm proposed in [17].

● Computation of the probabilities of causal event combi-
nations in PRISM models as proposed in [17].

● Representation of causal event orderings with the event
order logic (EOL) that we have proposed in [16].

● Visualization of the computed causal relationships with
fault trees [18], which are a method used in engineer-
ing practice to visualize the causal relationship between
events and requirement violations.

The causality checking approach proposed in [16] can be in-
tegrated into both of the standard state-space exploration
algorithms used in explicit state model checking, namely
depth-first search (DFS) and breadth-first search (BFS).
Whenever a bad or a good execution is found by the search
algorithm it is added to a special data-structure that is used
to compute the causality relationships. In order to efficiently
store the execution traces, we use two prefix tree [8] data-
structures, one prefix tree that stores the actions represent-
ing the events of the execution traces and one prefix tree
that stores the states of the execution traces. In order to
make causality decisions on-the-fly we have devised a data-
structure called subset graph. We can decide whether an
execution trace is causal as soon as we add it to the subset
graph.

1http://se.uni-konstanz.de/research1/tools/spincause

If DFS or BFS encounter a state that is already in the state-
space and hence all successors of this duplicate state have
already been explored, the successors are not explored for a
second time. When DFS encounters a duplicate state, it is
possible that the new trace to the duplicate state is shorter
or has a different event order than the already known execu-
tion traces leading to the duplicate state. Hence the new ex-
ecution trace is needed to ensure the minimality of the causal
event combinations and to be able to detect all orderings.
BFS explores the state-space following an exploration order
that leads to a monotonically increasing length of the exe-
cution traces, consequently, the new execution trace found
by BFS leading to the duplicate state either has the same
length as the already known execution trace leading to the
duplicate state, or the new execution trace is longer than
the already known execution trace. If the new execution
trace has the same length, the events on the trace have an
order that is different from the one in the already known
execution trace. Hence the new execution trace is needed
to be able to detect all orderings. We have implemented a
method called prefix matching that ensures that, all execu-
tion traces are found, by replacing an old prefix leading to a
duplicate state with the new prefix and adding the resulting
trace to the sub-set graph. For an in-depth discussion of the
integration of causality checking into DFS and BFS we refer
to [16].

In addition to the integration into DFS and BFS we propose
in Section 2.1 and Section 2.2 two iterative approaches that
reduce the runtime and memory consumption needed for
causality checking and have not been previously published.

2.1 Iterative approach
In the standard causality checking approach the bad and
good traces found during state-space exploration are added
to the data-structure used for causality checking and stored
if necessary. Especially due to the storage of the potentially
large number of good traces, this is not memory efficient. We
will now propose an iterative version of the approach that
consumes less memory. The iterative algorithm constitutes
of two consecutive executed state-space explorations with
BFS. In the first state-space exploration, we limit the causal-
ity checking to identify the minimal causal event combina-
tions for a property violation and in the second state-space
exploration, we focus on finding the causal event orderings
for the previously identified causal event combinations and
check whether the non-occurrence of some event is causal.
The iterative approach leverages the fact that the length of
the bad traces found by BFS is monotonically increasing,
hence the iterative approach is not implemented for DFS,
because this would be very memory inefficient.

2.2 Iterative approach with parallel BFS
In order to further optimize the runtime of the iterative
approach we extended the parallel breadth-first algorithm
already implemented in the SpinJa model checker to sup-
port causality checking. The parallelization of the BFS al-
gorithm is achieved by executing a predefined number of
BFS threads with a shared queue, state-space, and sub-set
graph for causality checking. Consequently each parallel
BFS thread retrieves a state from the shared queue and adds
the successor states to the shared queue and checks whether
one of the property is violated in one of the successor states.

3. EXPERIMENTAL EVALUATION
We evaluate the causality checking approach using four case
studies from academia and industry. We compare the run-
time and memory consumption of the standard causality
checking approach, the iterative approach, and the iterative
approach with parallel breadth-first search and summarize
our results. For all experiments partial-order reduction was
disabled and we computed all possible counterexamples with
the -c0 option of SpinJa. The following experiments were
performed on a PC with two Intel Xeon Processor (3.60 Ghz;
4 cores) and 144 GBs of RAM. Due to space restrictions we
present here only the results of the causality checking for
the airbag system.

Airbag system [1]. The architecture of the airbag system
consists of two acceleration sensors, one microcontroller to
perform the crash evaluation, and an actuator that controls
the deployment of the airbag. We are interested in com-
puting the causal events for an inadvertent ignition of the
airbag. The Promela model of the airbag system consists of
2,952 states and 25,340 transitions. While there are a to-
tal of 912 bad states, the causality checker result comprises
only 5 causal event combinations. Obviously, a manual anal-
ysis of this large number of traces in order to determine
causal factors would be very laborious. Figure 1 shows the
fault tree generated by the SpinCause tool. The event order
logic (EOL) formula returned by the causality checker is Ψ =
(FASICShortage)∨(FETStuckHigh . ASICStuckHigh)∨
(MicroControllerFailure . enableFET . armFASIC .
fireFASIC)∨(FETStuckHigh . MicroControllerFailure .
armFASIC . fireFASIC) ∨ (MicroControllerFailure .
enableFET . FASICStuckHigh). There is only one single

fault that can lead to an inadvertent deployment, namely
FASICShortage, which is represented by the EOL formula
FASICShortage. The combination of the basic events FET-
StuckHigh and FASICStuckHigh only leads to an inadvertent
deployment of the airbag if the basic event FETStuckHigh
occurs prior to the basic event FASICStuckHigh, which is
represented by the EOL formula FETStuckHigh .
FASICStuckHigh. The basic event MicroControllerFailure

can lead to an inadvertent deployment if it is followed by the
following sequence of basic events: enableFET, armFASIC,
and fireFASIC. This sequence is represented by the EOL
formula MicroControllerFailure. enableFET.armFASIC.
fireFASIC. If the basic event FETStuckHigh occurs prior
to the MicroControllerFailure the sequence in which arm-
FASIC and fireFASIC occur after the MicroControllerFail-
ure event suffices to lead to the top level event. This se-
quence is represented by the EOL formula FETStuckHigh.
MicroControllerFailure.armFASIC.fireFASIC. If the basic
event FASICStuckHigh occurs after MicroControllerFailure
and enableFET this also leads to a sequence leading to an in-
advertent deployment. It is represented by the EOL formula
MicroControllerFailure . enableFET . FASICStuckHigh .

Embedded control system [13]. Various failure modes can
lead to a shutdown of the system. We are interested in com-
puting the causal events for the event “system shut down”.
We set the constant MAX COUNT, which represents the
maximum number of processing failures that are tolerated
by the main processor, to a value of 5. SpinCause automati-
cally translates the PRISM model to a Promela model which
comprises 6,013 states and 25,340 transitions and contains a

Figure 1: Fault tree of the airbag system

total of 83 bad states. Note that for comparability reasons
we only computed the causal events without a probability
computation.

Train odometer controller [4]. The Promela model of the
train odometer comprises 11,722 states, 14,049 transition,
and 1368 bad states.

Airport surveillance radar (ASR) [2]. The ASR system was
modeled in the SysML from which a Promela model was
automatically derived by the QuantUM tool[15]. We an-
alyze two variants of the ASR system, one with one data-
processing channel and one with two redundant data-process-
ing channels. The one channel variant comprises 1,230,516
states and 7,492,866 transitions and the redundant two chan-
nel variant comprises 46,389,412 states and 326,412,170 tran-
sitions. The one channel variant contains 1,018,624 bad
states and the two channel variant contains 15,206,400 bad
states.

Discussion. We will now compare and discuss the runtime
and memory consumption of the proposed causality check-
ing approach. The runtime and memory needed for model
checking of the case studies with DFS and BFS and the run-
time and memory needed for causality checking including
model checking with DFS and BFS and the iterative causal-
ity checking approaches are given in Table 1. The runtime
and memory consumption for causality checking with DFS
of both variants of the ASR case study and with BFS of the
ASR case study with two channels can not be given because
the algorithm ran out of memory (oom.) prior to the com-
pletion of the causality checking. The following trends can
be identified:

● If no causality checking is done, DFS and BFS have ap-
proximately the same runtime and memory consumption.
The causality checking adds a runtime and memory penalty,
but the experiments show that causality checking is ap-
plicable to industrial size Promela models. In addition
causality checking provides valuable insight as to why the
hazard occurs, which is very tedious or even impossible to

determine if standard model checking and manual coun-
terexample analysis is used, due to the amount of coun-
terexamples generated.

● In the first implementation published in [16] we did not
use prefix trees in order to store the states and actions.
For the airbag model, for instance, the old implementa-
tion consumed 3.5 GBs of memory for causality checking
using BFS which is reduced to 18.51 MBs by the iterative
approach with parallel BFS using prefix trees.

● When performing causality checking, BFS outperforms
DFS for large models in terms of both runtime and mem-
ory consumption. BFS outperforms DFS because if BFS
is used, we can safely rely on the assumption that when
a bad trace is found all shorter bad traces already have
been found. This assumption assures that the minimality
constraint imposed by the causality conditions defined in
[16] holds as soon as a causal event combination is found.
If DFS is used, no assumptions on the length of the bad
trace can be made and thus a much larger number of traces
needs to be stored.

● For very small models, like the embedded model, both the
runtime and the memory consumption for the iterative
approaches are higher than for the standard approach.
This is due to the fact that the state-space is explored
twice. With increasing size of the model, the iterative ap-
proaches outperform the standard approach with respect
to runtime and memory consumption.

● With increasing size of the model the iterative approach
with parallel breadth-first search outperforms the itera-
tive approach with the standard BFS in terms of runtime
and memory. Note that even though for the parallel BFS
approach the different BFS threads need to be managed,
there is no overhead introduced by the parallelization of
BFS. With the iterative approaches it is possible to ana-
lyze the 2 channel variant of the ASR case study which
was not possible with the standard causality checking ap-
proaches because they ran out of memory.

4. RELATED WORK
Work documented in [3] uses the Halpern and Pearl ap-
proach to explain counterexamples in CTL model checking

Model Checking Causality Checking

DFS BFS DFS BFS
Iterative Approach
with standard BFS

Iterative Approach
with parallel BFS

RT
(sec.)

Mem
(MB)

RT
(sec.)

Mem
(MB)

RT
(sec.)

Mem
(MB)

RT
(sec.)

Mem
(MB)

RT
(sec.)

Mem
(MB)

RT
(sec.)

Mem
(MB)

Airbag 0.17 9.23 0.18 9.06 0.86 165.52 1.24 21.19 1.55 18.53 1.59 18.51
Embedded 0.05 8.94 0.06 8.76 0.13 19.95 0.16 9.43 0.75 17.99 0.75 17.99
Train Odo. 0.26 9.79 0.27 9.62 15.06 2280.86 2.59 63.36 1.59 19.21 1.44 19.11

ASR 1 Chan. 44.95 8,467.14 51,66 8,466.88 oom. oom. 750,31 24,663.61 65.31 16,661.11 34.04 325.14
ASR 2 Chan. 503.92 14,669.11 659.26 14,668.85 oom. oom. oom. oom. 1,342.69 27,759.32 1,328.08 12,415.36

Table 1: Runtime and memory needed for model checking of the case studies with DFS and BFS and for
causality checking with DFS and BFS and the iterative causality checking approaches.

by determining causality. However, this approach considers
only variable-value changes on single counterexamples. In [9]
a formal framework for reasoning about global contract vio-
lations is presented. This approach decides whether a prefix
of a local trace is the cause for a global property violation
or not, thus focusing on individual traces instead of a set of
traces. Work by Groce et al. described in [10] establishes
causality based on counterfactual reasoning by computing
distance metrics between execution traces. All of the above
mentioned approaches work only on single counterexamples.
To the best of our knowledge we are not aware of any other
causality checking algorithm identifying all causal events,
that can be integrated with explicit state-space exploration
algorithms, and which works on-the-fly. Chockler et al. de-
fine in [5] a coverage measure for model checking based on
the notion of causality, where as in our approach we aim at
computing the causal events for a property violation.

5. CONCLUSION
The SpinCause tool implements the causality checking ap-
proaches proposed in [16, 17] and offers causality analysis
for Promela and PRISM models. We have demonstrated
that causality checking can be applied to industrial sized
models and have shown that the iterative causality checking
approaches lead to a reduction of the consumed runtime and
memory.

6. REFERENCES
[1] H. Aljazzar, M. Fischer, L. Grunske, M. Kuntz,

F. Leitner-Fischer, and S. Leue. Safety Analysis of an
Airbag System Using Probabilistic FMEA and
Probabilistic Counterexamples. In Proc. of QEST
2009, Sixth International Conference on the
Quantitative Evaluation of Systems. IEEE Computer
Society, 2009.

[2] A. Beer, U. Kühne, F. Leitner-Fischer, S. Leue, and
R. Prem. Analysis of an Airport Surveillance Radar
using the QuantUM approach. Technical Report
soft-12-01, Chair for Software Engineering, University
of Konstanz, 2012.

[3] I. Beer, S. Ben-David, H. Chockler, A. Orni, and
R. Trefler. Explaining counterexamples using causality.
Formal Methods in System Design, 40(1):20–40, 2012.

[4] E. Böde, T. Peikenkamp, J. Rakow, and
S. Wischmeyer. Model Based Importance Analysis for
Minimal Cut Sets. In Proc. of ATVA 2008, volume
5311 of LNCS. Springer, 2008.

[5] H. Chockler, J. Y. Halpern, and O. Kupferman. What
causes a system to satisfy a specification? ACM
Transactions on Computational Logic, 9(3), 2008.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking (3rd ed.). The MIT Press, 2001.

[7] M. de Jonge and T. Ruys. The spinja model checker.
In Model Checking Software, volume 6349 of Lecture
Notes in Computer Science, pages 124–128. Springer,
2010.

[8] E. Fredkin. Trie memory. Communications of the
ACM, 3(9):490–499, 1960.

[9] G. Gössler, D. L. Métayer, and J.-B. Raclet. Causality
analysis in contract violation. In Runtime Verification,
volume 6418 of LNCS, pages 270–284. Springer
Verlag, 2010.

[10] A. Groce, S. Chaki, D. Kroening, and O. Strichman.
Error explanation with distance metrics. International
Journal on Software Tools for Technology Transfer
(STTT), 8(3), 2006.

[11] J. Halpern and J. Pearl. Causes and explanations: A
structural-model approach. Part I: Causes. The
British Journal for the Philosophy of Science, 2005.

[12] G. J. Holzmann. The SPIN Model Checker: Primer
and Reference Manual. Addision–Wesley, 2003.

[13] M. Kwiatkowska, G. Norman, and D. Parker.
Controller dependability analysis by probabilistic
model checking. Control Engineering Practice,
15(11):1427–1434, 2006.

[14] M. Kwiatkowska, G. Norman, and D. Parker. PRISM
4.0: Verification of probabilistic real-time systems. In
Proc. 23rd International Conference on Computer
Aided Verification (CAV’11), volume 6806 of LNCS,
pages 585–591. Springer, 2011.

[15] F. Leitner-Fischer and S. Leue. QuantUM:
Quantitative safety analysis of UML models. In
Proceedings Ninth Workshop on Quantitative Aspects
of Programming Languages (QAPL 2011), volume 57
of EPTCS, pages 16–30, 2011.

[16] F. Leitner-Fischer and S. Leue. Causality checking for
complex system models. In Proc. 14th International
Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI2013), LNCS.
Springer, 2013.

[17] F. Leitner-Fischer and S. Leue. On the synergy of
probabilistic causality computation and causality
checking. In In Model Checking Software - Proceedings
of International SPIN Symposium on Model Checking
of Software. Stony Brook, NY, USA, volume 7976 of
LNCS, pages 246–263. Springer Verlag, 2013.

[18] U.S. Nuclear Regulatory Commission. Fault Tree
Handbook, 1981. NUREG-0492.

Presentation Plan
We plan to structure the presentation into three parts, first a
brief introduction to causality checking. Second an overview
of the features of SpinCause as well as its architecture. And
third a demo of the SpinCause tool.

1. Part 0: Motivation

2. Part 1 (10%): Introduction to causality checking.

3. Part 2 (30%): The SpinCause Tool

● Key Features: causality checking of Promela mod-
els, causality checking of PRISM models via an
PRISM to Promela translation, computation of the
probabilities of causal event combinations in PRISM
models.

● Architecture

● Causality checking with DFS, BFS, and the itera-
tive approaches.

4. Part 3 (60%): Tool Demonstration
In this part, we will demonstrate SpinCause based on
the Airbag case study discussed in the paper. In addi-
tion we will show how SpinCause is integrated into the
QuantUM tool.

	Introduction
	The SpinCause Tool
	Iterative approach
	Iterative approach with parallel BFS

	Experimental evaluation
	Related Work
	Conclusion
	References

