
Generic and Efficient Attacker Models in SPIN

Noomene Ben Henda
Ericsson Research Stockholm, Färögatan 6 16480, SWEDEN

noamen.ben.henda@ericsson.com

ABSTRACT
In telecommunication networks, it is common that security
protocol procedures rely on context information and other
parameters of the global system state. Current security ver-
ification tools are well suited for analyzing protocols in iso-
lation and it is not clear how they can be used for protocols
intended to be run in more“dynamic”settings. Think of pro-
tocol procedures sharing parameters, arbitrarily interleaved
or used as building blocks in more complex compound proce-
dures. SPIN is a well established general purpose verification
tool that has good support for modeling such systems. In
contrast to specialized tools, SPIN lacks support for crypto-
graphic primitives and intruder model which are necessary
for checking security properties. We consider a special class
of security protocols that fit well in the SPIN framework.
Our modeling method is systematic, generic and efficient
enough so that SPIN could find all the expected attacks on
several of the classical key distribution protocols.

Categories and Subject Descriptors
C.2.2 [Computer-communication Networks]: Network
Protocols—Protocol verification

General Terms
Theory, Security, Verification, Experimentation

1. INTRODUCTION

Background. In systems like telecommunication networks,
protocol procedures are usually used as building blocks in
more complex compound procedures. For example a han-
dover relies on several procedures from different protocols in
order to establish a new data path through another base sta-
tion [1] (TS. 36.300). These comprise the handover request
negotiation, the new bearer establishment, the security ac-
tivation for the new radio connection, etc. Furthermore, the
procedures involve several nodes in the network, namely:
a terminal, two base stations, a special node for mobility

management and a gateway node for the user plane traffic.
Adding to the complex nature of such operation, there are
strict efficiency requirements in order to make the transition
as smooth as possible and thus minimally disrupt the user
experience. Such requirements imply various restrictions on
the design of the security related procedures which typically
have to be integrated in existing communication protocols.
For example a common practice in key establishment proce-
dures is the use of counters instead of nonces in the session
key derivation process. Examples include, using message
sequence numbers from underlying transport protocols, or
dedicated counters keeping track of the number of runs of
some procedure. The problems with counters is that they
need to be synchronized among the communicating peers,
and that they require additional special procedures for han-
dling situations like when the counter is reset. This is re-
quired in order to prevent key re-use.

Formal verification of security protocols has been ongoing
for two decades. State of the art tools like Scyther [9],
ProVerif [6] and Tamarin [22] can provide unbounded ver-
ification. That is, they prove the security properties for
unbounded number of agents or sessions. Scyther has been
used in different case studies from which we cite [10, 11].
Scyther is user friendly and has a simple modeling language.
However, the language does not provide support for state
variables and control flow such as loops and conditionals.
ProVerif is also widely used [4, 16, 25]. Its modeling lan-
guage is a typed variant of the pi calculus [5]. It is more
expressive than Scyther’s providing for example support for
conditionals. Compared to the previous tools, Tamarin is
the most recent one. It has a low level language that is ex-
pressive enough for modeling state variables and counters.
Using Tamarin requires advanced knowledge and in general
the tool doesn’t scale well to complicated models exploiting
the full potential of its input language. SPIN [15] uses the
Promela language which is a good alternative for its simplic-
ity and expressiveness. However, in contrast to specialized
tools, SPIN neither has support for cryptographic primi-
tives nor for an intruder model. Such features are required
for checking security properties.

In general, formal analysis of security protocols is performed
in the symbolic Dolev-Yao intruder model [13]. In this model,
the intruder has full control over the communication medium.
Cryptography is assumed perfect so that the intruder cannot
decrypt or encrypt messages without the necessary keys. In
particular, the intruder has the ability to intercept, record

and replay any exchanged messages. Technically, this model
induces an infinite state system and thus even simple prob-
lems like reachability are undecidable [14]. For that, one
has to restrict the intruder model by for example imposing
memory bounds. As a matter of fact, the attacks on the
protocol examples that we consider require very little of the
attacker memory.

We are interested in using SPIN, which is a finite state
model-checker, for analyzing security protocols. In particu-
lar, we want to analyze to which extent the attacker model
can be weakened and still remain efficient, i.e. be able to find
real attacks. For that we need to model bounded instances of
the protocols. This can be achieved by for example restrict-
ing the number of agents running the protocols and using a
finite-memory attacker model. In general, even in such finite
settings, the problem is still difficult (NP-complete) [24].

Contribution. We consider a simple class of security proto-
cols and we give a precise formalization of the corresponding
operational semantics using transition systems. This class
of security protocols fits well in the SPIN framework. We
illustrate on an example a systematic method for modeling
such protocols in Promela in order to check secrecy and au-
thentication properties. We describe and use a weak generic
intruder model that is efficient enough to find attacks in
several of the well-known broken key distribution protocols.

Related Work. The most relevant works that are similar
to ours are [21, 17]. In [21], the authors describe a simi-
lar approach for modeling security protocols and illustrate
it on the reduced version of Needham-Shroeder (NS) pro-
tocol. The approach is different in few aspects such as in
the use of several channels for handling different types of
messages. In our method, we use one channel and we as-
sume a fixed “one-size-fits-all” message length and we defer
the type checking of the message fields to the processes im-
plementing the different roles of the protocol. One other
difference is that the method of [21] relies on static analysis
to list all possible messages that can be generated by the in-
truder. The intruder process is then implemented based on
that information. Compared to this, our intruder process is
generic and can be reused as is for different protocol models.
In [17], the authors present a generic method for modeling
security protocols that is tailored for checking only secrecy
properties. They also illustrate their method on the reduced
version of NS. Compared to this our method allows checking
authentication as well.

Outline. In the next section, we describe a restricted class
of security protocols and formalize the corresponding oper-
ational semantics. We dedicate Section 3 to illustrate with
an example a systematic method for modeling such class of
security protocols in Promela. In Section 4, we present our
experimental results with SPIN. We conclude in Section 5
by a summary and future works. For shortage of space, we
have left out the full versions of our Promela models. They
can be provided on request.

2. SECURITY PROTOCOLS

2.1 Preliminaries and Notations
Security protocols are communication protocols that rely
on cryptographic primitives in order to guaranty properties
such as secrecy of the exchanged messages and authentica-
tion of the communicating agents (or principals). A security
protocol can be defined by a list of protocol rules of the form
of (1). This particular rule represents an agent A sending
to another agent B the message x encrypted with the public
key of B denoted by pk(B).

A −→ B : {x}pk(B) (1)

Alternatively, a protocol can be defined as a set of roles
where each role is a non-empty indexed list of actions. There
are receive and send message actions denoted by recv and
send respectively. Using this notation, the protocol rule
of (1) can be expressed as follows:

RoleA : RoleB :

1. send({x}pk(B)) 1. recv({x}pk(B))

In general protocol descriptions contain components like vari-
ables (A,B), functions (pk) and constructions like {x}pk(B)

to represent messages. To formalize the description, we as-
sume a set of typed variables denoted by V. Types are im-
plicit in our protocol descriptions, but we use the variable
names as type indicators. We consider three possible types
of variables: agents, nonces and keys.

For the agent type we assume a set of values (a domain)
representing agent identities denoted by A. We use variables
with names like A,B,C . . . to range over agents. We reserve
I for the intruder agent.

For the cryptographic primitives, we assume a set of keys K
and use the functions pk, sk : A → K and ssk : A×A → K
mapping agents to their public, secret and secret shared keys
respectively. Given a key k ∈ K, we denote by k−1 its inverse
key defined by

k
−1 :=







sk(A) if k = pk(A),
pk(A) if k = sk(A),
ssk(A,B) if k = ssk(A,B),

for some agents A and B.

A nonce is a fresh entity bound to a protocol specific execu-
tion and that cannot be reused in another one. We let the
variables Na,Nb,Nc . . . range over the set of nonce values
that we denote by N .

Messages are terms that can be variables, or concrete val-
ues such as agents (identities), nonces, or keys. For any
other type of information such as message headers, plain-
text, etc., we assume a set of constants that we denote by
C. Messages can as well be constructed from other messages
by encryption, grouping or function application. More pre-
cisely, we define the set of messages X by first adding the
ground messages:

V ∪ A ∪N ∪ K ∪ C ⊆ X

and then inductively the constructed messages:

∀A,B ∈ V ∪ A : pk(A), sk(A), ssk(A,B) ∈ X

∀x ∈ X , k ∈ K : {x}k ∈ X

∀x1, x2 ∈ X : (x1, x2) ∈ X

A message is said to be ground if it is free from variables.

Observe that the last rule in the definition of X can be
generalized to arbitrary tuples in a straightforward manner.
In general, the way in which messages are grouped is clear
and the use of parenthesis does not add any information. In
such cases, parenthesis are simply omitted.

Compared to the protocol formalization in [8], our protocol
definition is based on a different set of types and fixed set of
functions. The message definition can be extended to other
functions with arbitrary signatures provided that functions
are only applied to ground messages. Despite the restric-
tions, many protocols (as shown in the next section) can be
described using this formalism.

2.2 Protocol Examples
We consider four of the classical key distribution protocols
which are two versions the Needham-Shroeder (NS) public
key protocol [23], the Tatebayashi-Matsuzaki-Newman key
distribution protocol [26], and a simplified version of the
Denning-Sacco (DS) key distribution protocol [12].

The goal of the NS protocol is the mutual authentication of
two agents: an initiator A and a responder B. The protocol
relies on public key cryptography. Each agent possesses a
public key. In addition, each agent shares a secret key with
a trusted server S from which public keys can be retrieved.
The complete version of the protocol is shown in Fig. 1 (to
the left). A reduced version (to the right in the same figure)
can be obtained assuming that the agents already know each
others public keys.

A −→ S : A,B

S −→ A : {pk(B), B}ssk(S,A)

A −→ B : {Na,A}pk(B) A −→ B : {Na,A}pk(B)

B −→ S : B,A

S −→ B : {pk(A), A}ssk(S,B)

B −→ A : {Na,Nb}pk(A) B −→ A : {Na,Nb}pk(A)

A −→ B : {Nb}pk(B) A −→ B : {Nb}pk(B)

Figure 1: The full (left column) and reduced (right
column) versions of the NS protocol

The TMN protocol is for the establishment of a secret session
key between two agents A and B via a trusted server S (see
Fig. 2). The protocol relies on Vernam encryption (exclusive
or). First, the agents send to the server nonces Na and
Nb encrypted by the server public key. Then, the server
replies by the Vernam encryption of the nonces denoted by
V (Na,Nb) and thus each agent, knowing one of the nonces,
can retrieve the other one.

A −→ S : B, {Na}pk(S)

S −→ B : A

B −→ S : A, {Nb}pk(S)

S −→ A : B, V (Na,Nb)

Figure 2: The TMN protocol

The goal of the DS protocol is the establishment of a secret
key between two agents A and B. A simplified version of
the protocol is shown in Fig. 3 where A sends to B a fresh
secret session key ssk(A,B) encrypted by A secret key and
the the public key of B. Agent B replies then by a message
Sec encrypted by this session key. Since ssk(A,B) is secret,
the message Sec should remain secret.

A −→ B : {{ssk(A,B)}sk(A)}pk(B)

B −→ A : {Sec}ssk(A,B)

Figure 3: Simplified version of the DS protocol

2.3 Intruder Model
In the Dolev-Yao model, the attacker has full control of the
communication medium. That is the attacker can intercept,
drop, forward, or replay any sent message. While intercept-
ing messages, the attacker collects knowledge. He can then
use this knowledge to create and send his own messages or
tamper with other agent messages.

We denote by K the set of all messages in possession of the
attacker. During the execution of the protocol, the intruder
adds to K any sent message. For a message x, we use I ⊢K x
to denote that the intruder can derive or learn x using his
knowledge. Depending on the message type, this derivation
of new knowledge is achieved using the deconstruction rules
of Fig. 4. Using this new knowledge, the intruder can create

x ∈ K

I ⊢K x
possess

I ⊢K (x1, x2)

I ⊢K x1
proj1

I ⊢K (x1, x2)

I ⊢K x2
proj2

I ⊢K {x}k I ⊢K k−1

I ⊢K x
decrypt

Figure 4: Knowledge deconstruction rules

and send his own messages. Creation of new messages is
based on the construction rules of Fig. 5.

2.4 Operational Semantics
The goal of our formal analysis is to check the security prop-
erties of secrecy and authentication. In order to formalize
the properties, we need to formalize the operational seman-
tics of security protocols. This requires defining the notion
of instantiation by which we can create execution threads for
running the different roles. First, let’s fix a protocol with
n ∈ N roles denoted by P = {r1, r2, . . . , rn}.

x ∈ K

I ⊢K x
possess

I ⊢K x1 I ⊢K x2

I ⊢K (x1, x2)
pair

I ⊢K x I ⊢K k

I ⊢K {x}k
encrypt

Figure 5: Knowledge construction rules

For a role r ∈ P , we denote by V(r) the set of variables in r.
As explained earlier all the variables are typed. A role r ∈ P
is instantiated by a substitution σ : V(r) → A∪N ∪K. We
denote by σ(r) the set of all such substitutions, i.e. (A ∪

N ∪ K)V(r). We will only consider well-typed substitutions,
i.e. mapping variables to values in their respective domains.
We assume that the role action lists are indexed from 1 and
let r[i] denote the ith action in r in case it is defined, and ⊥
otherwise. An instance (or thread) of role r is a tuple (r, i, σ)
where i ∈ N is the current action that can be executed (the
instruction pointer) and σ ∈ σ(r).

A transition system is a tuple (S, sinit,→) where S is a set
of states, sinit ∈ S is an initial state and →∈ S × S is
a transition relation. Abusing notation, we write s → s′

to denote that (s, s′) ∈→. Given an initial set of ground
messages Kinit assumed to be known to the intruder, the
protocol P (together with Kinit) induces a transition sys-
tem (S, sinit,→) where each state in S is a tuple (c, Th,K)
such that c ∈ N is a counter used for keeping track of the
number of created threads, Th is a function from N to role
instances used to assign a unique number (identifier) to each
instance, and K, as defined earlier, is the set of messages in
the possession of the intruder. For a role r and a state s ∈ S,
we say that a substitution σ ∈ σ(r) is admissible for s and
write σ ⊲ s iff σ does not map any of the nonce variables of
r to the same value as any of the substitutions in the other
instances of the same role r. Given a number i ∈ N and
a role instance (r, j, σ), we denote by Th[i 7→ (r, j, σ)] the
function defined from Th as follows:

∀n ∈ N : Th[i 7→ (r, j, σ)](n) :=

{

(r, j, σ) if n = i, and
Th(n) otherwise.

The initial state sinit is defined by (0, Th∅,Kinit) where we
use Th∅ to denote the role instance function that is unde-
fined everywhere. Finally, the transition relation → is as
defined in Fig. 6 by the create, receive and send rules.

2.5 Security Properties
In general for a sequence π, we use |π| to denote its length
(∞ if its infinite) and π[i] to denote its ith element if any,
and ⊥ otherwise. Assume a protocol P (together with a set
Kinit) and the induced transition system (S, sinit,→). A
trace τ (or run) of P is a possibly infinite sequence of states
s1s2s3 . . . such that for s1 = sinit and ∀i.1 ≤ i < |τ | : si →
si+1. The set of all traces of P is denoted by Traces(P)

We are interested in checking secrecy and authentication
properties. Secrecy is related to which messages that are in
the possession of the attacker. This is a state property that
can be formulated as an invariant on the set of reachable
states. For that let’s denote by Reach(P) the set of reach-
able states. These are the states that occur in the traces of
P . Given a message x, the condition on Reach(P) for the

secrecy of x is given by

∀s = (c, Th,K) ∈ Reach(P) : ¬(I ⊢K x). (2)

Informally, this means that the intruder is never able to learn
the message x.

Authentication properties are on the other hand trace prop-
erties [7, 20]. They can be of the form “if an event happens,
then another event must have happened before”. We will
only consider such forms. In order to be able to define such
properties, we extend the role grammar with special event
actions that are transparent to the intruder. More precisely,
for a message x we use event(x) to denote the event action
with argument x. In order to handle events, we extend the
transition relation → with a “non-silent” relation

x
−→⊆ S×S

where x ∈ X . This relation is defined by the emit rule in
Fig. 6. For a trace τ of P , we use τ↑ to denote the sequence
of“emitted”event messages (if any) by the taken transitions.
Given two messages x, y ∈ X , a trace property of the form“if
event x happens, then event y must have happened before”
can then be formulated as follows:

∀τ ∈ Traces(P) ∀i.1 ≤ i ≤ |τ↑| :

τ
↑[i] = x =⇒ ∃j.1 ≤ j ≤ i : τ↑[j] = y. (3)

We show in the example of the next section how such prop-
erties can be reduced to state properties of the form (2).

3. PROMELA MODELING
Our approach for modeling security protocols in Promela
consists of three phases: the protocol phase, the intruder
phase and the security properties phase. The protocol mod-
eling phase is simple and can be generated automatically
from a higher level specification language in a similar man-
ner to how it is done in the Casper tool [19]. The two last
phases are generic and the resulting models can be reused
for different protocols after possibly small modifications. To
illustrate the method, we use as an example the DS protocol
of Fig. 3.

3.1 Protocol Model
The first step is to model the communication medium. In
contrast to the method in [21], we will not consider separate
channels for the different message structures. Instead, we
normalize the message format and consider only one syn-
chronous channel. By normalizing, we mean using a mes-
sage length, i.e. number of fields, that can fit all possible
messages in the protocol specifications. Each field in such
message represents a place holder for a function application
result, or a concrete value of a variable. Unused fields are
filled with a padding (a constant to be defined). The enforce-
ment of the format and the type checking of the messages is
deferred to the process implementations of the roles. For a
protocol P , we denote by ♯(P) this message length that we
define as follows: First, for a message x ∈ X , we let

♯(x) :=



















1 if x ∈ V ∪ A ∪N ∪ C ∪ K,
1 if x = pk(y) or x = sk(y) for some y ∈ X ,
1 if x = ssk(x1, x2) for some x1, x2 ∈ X ,
♯(x1) + ♯(x2) if x = (x1, x2) for some x1, x2 ∈ X ,
♯(x1) + ♯(x2) if x = {x1}x2

for some x1, x2 ∈ X .

Informally, ♯(x) is the number of function applications, con-
stants, identities, nonce values, key values, and variables

s = (c, Th,K) ∈ S r ∈ P σ ∈ σ(r) ⊲ s

s → (c+ 1, Th[c+ 1 7→ (r, 1, σ)],K)
create

s = (c, Th,K) ∈ S r ∈ P i, j ∈ N σ ∈ σ(r) Th(i) = (r, j, σ) x ∈ X r[j] = recv(x)

s → (c, Th[i 7→ (r, j + 1, σ)],K ∪ σ(x))
receive

s = (c, Th,K) ∈ S r ∈ P i, j ∈ N σ ∈ σ(r) Th(i) = (r, j, σ) x ∈ X r[j] = send(x) I ⊢K σ(x)

s → (c, Th[i 7→ (r, j + 1, σ)],K)
send

s = (c, Th,K) ∈ S r ∈ P i, j ∈ N σ ∈ σ(r) Th(i) = (r, j, σ) x ∈ X r[j] = event(x)

s
σ(x)
−−−→ (c, Th[i 7→ (r, j + 1, σ)],K)

emit

Figure 6: Transition relation

that are not used as function arguments in x. For a role
r ∈ P , a message x ∈ X and an action act(x) ∈ r for some
act ∈ {send, recv}, we define ♯(act(x)) := ♯(x). We extend
♯ to roles by ♯(r) = maxi∈N r[i] where ♯(⊥) := 0. Finally,
we let ♯(P) := maxr∈P ♯(r). Observe that for our exam-
ple, ♯(DS) = 3. Using this definition, we can declare the
communication channel for DS.

chan comm = [0] of {mtype , mtype , mtype } ;

The second step is to create the different variable domains.
In order to do that, we define one set of names that contains
all possible concrete values of the variables in the protocol
assuming a fixed number of role instances. In general, given
a protocol P , the corresponding set of names is defined as
follows: First, we add a name representing a different agent
identity for each role in P . Then we add a name for the
intruder agent. If one of the roles in P contains a nonce
variable, then we add names representing nonce values for
each of the newly added agents (including the intruder). If
one of the roles contains a key variable, then we add similarly
different names representing key agents. For each different
function used in P (for example sk or pk), we add names
representing the values of the function application on all
possible combination of arguments (for example of the added
agent names). Finally, we a add a name for each different
constant. The resulting set of names for the DS example is
then:

mtype = {NULL , Sec , A, B, I , PKa , PKb , PKi , SKa
, SKb , SKi , SSKab , SSKai , SSKbi } ;

where NULL is a special name used to fill in unused message
fields (the padding constant). The names are internally rep-
resented by integer constants and the whole set mtype is
represented by a range in decreasing order from the value
of NULL to 1. Therefore NULL can be used to represent the
name set size. In addition, macros can be used to define for
example type predicates, and also to map agent names to
corresponding nonces, keys, etc.

The next step is the implementation of the roles. Each role
is implemented by a process taking an agent name as input.
This name represents the identity of the agent running the
role. The process for the initiator role takes an additional
argument (agent name) representing the responder identity
(intended peer). As expected, in the process of Fig. 7, there
are two communication events (lines 7 and 10) correspond-
ing to the send and receive operations in the higher level

1 proctype I n i t i a t o r (mtype a ;mtype b)
2 {
3 mtype sskab , s e c ;
4 atomic {
5 I n iRunn i ng (a , b) ;
6 Ses s i onKey (a , b , s skab) ;
7 comm! kab , Sec re tKey (a) , Pub l i cKey (b) ;
8 }
9 atomic {

10 comm? sec , e va l (s skab) , e va l (NULL) ;
11 In iCommit (a , b) ;
12 }
13 }

Figure 7: Initiator process for the DS protocol

specification of the protocol from Fig. 3. Observe the use
of macros in lines 6 and 7, namely: SessionKey, SecretKey
and PublicKey. Intuitively, the macros are the implementa-
tion of the functions from the protocol specification. Since
we already created all possible names for the corresponding
arguments and possible results, we only need to relate them
as intended so that for example the SecretKey(A) is SKa and
the SecretKey(B) is SKb, and so forth. Depending on how
the names are arranged in the declaration, such macros can
be implemented by simple arithmetic operations such as for
SecretKey(x):

de f i n e Secre tKey (x) x − 6

In the worst case, one has to use conditionals to map each
possible combination of argument names to the intended
result name such as for SessionKey(a, b, k):

de f i n e Ses s i onKey (a , b , k)
i f
: : (a == A && b == B) | | (b == B && b == A)

−> k = SSKab
: : (a == A && b == I) | | (b == I && b == A)

−> k = SSKai
. . .

In both cases, this translation process can be done automat-
ically.

The responder process is provided in Fig. 8. As mentionned
earlier, the format and type checking of the messages is de-
ferred to the processes and hence the recurrent use of eval
(lines 5 in Fig. 8 and 10 in Fig. 7), and special macros like
IsSecretKey in line 6.

1 proctype Re c e i v e r (mtype b)
2 {
3 mtype sskab , ska , pkb , s e c ;
4 atomic {
5 comm? sskab , ska , e va l (Pub l i cKey (b)) ;
6 I s S e c r e tKe y (ska) ;
7 RecRunning (Agent (ska) , b) ;
8 }
9 atomic {

10 Se c r e t (Agent (ska) , s e c) ;
11 comm! sec , sskab , NULL ;
12 RecCommit (Agent (ska) , b) ;
13 }
14 }

Figure 8: Responder process for the DS protocol

The final step is the instantiation of the roles. This is done
in the main process below. Observe that we include the pos-
sibility of the initiator starting a session with the intruder.
In our models, the intruder is always given similar “creden-
tials” (PKi,SKi, SSKai, SSKbi) as honest agents so that he
can play the same roles. In such cases one can regard the
intruder as impersonating compromised agents.

i n i t {
atomic
{

i f
: : run I n i t i a t o r (A,B)
: : run I n i t i a t o r (A, I)

f i ;
run Re c e i v e r (B) ;

}
}

This role instantiation process is very restricted compared
to the create rule of Fig. 6. Nevertheless, it is sufficient for
finding the expected attacks (see Section 4).

3.2 Intruder Model
In the formal model of security protocols (Section 2), the
intruder has an infinite memory so that he can record any
exchanged messages and thus the set K can grow arbitrarily.
Obviously, we cannot implement such model in Promela.
Nevertheless, since we have a finite number of instances and
we have already defined all the possible free names we can
use Boolean vectors to keep track of the intruder knowledge.

boo l Knows [NULL] ;
boo l Keys [NULL] ;

The Keys vector is used for keeping track of the encryption
keys in the possession of the intruder (like public ones). The
Knows vector is used in a similar manner for all other types
of names but for keys it has different implications; more
precisely it means that the intruder knows the corresponding
inverse keys. Observe that one can exploit the fact that the
set of names is a range and use the names directly as indices
for access.

The vectors are intended to be updated upon each inter-
ception of a message. This does not provide enough support
for fully implementing the intruder capability defined by the
receive rule of Fig. 6. In fact the other issue that needs to

be solved is the capacity of the intruder to store messages
“unknown” to him such as messages encrypted with keys he
doesn’t possess. In the formal model, the intruder can store
such messages so that he can later forward or use them in
his own created messages (replay attacks). In our case, we
will consider a finite memory intruder with the capacity of
storing at most one message.

The intruder is implemented in a separate process shown in
Fig. 9. The main loop contains three statements. The first

1 proctype I n t r u d e r ()
2 {
3 mtype d = NULL , k1 = NULL , k2 = NULL ;
4 mtype pd = NULL , pk1 = NULL , pk2 = NULL ;
5 do
6 : : comm?d , k1 , k2 −>
7 atomic {
8 AddToKnowledge (d , k1 , k2) ;
9 i f

10 : : s k i p
11 : : pd = d ; pk1 = k1 ; pk2 = k2
12 f i ;
13 i f
14 : : s k i p
15 : : comm! d , k1 , k2
16 f i
17 }
18 : : RandMessage (d , k1 , k2) −>
19 atomic {
20 I sVa l i dMe s s ag e (d , k1 , k2 , pd , pk1 , pk2

) −> comm! d , k1 , k2
21 }
22 : : comm! pd1 , pd2 , pk
23 od
24 }

Figure 9: The intruder process

one (lines 6-17) implements the message interception capa-
bility in the following steps: First (line 8), the intruder up-
dates his knowledge using a function called AddToKnowledge

which simply updates the Keys and Knows vectors. Second,
he can choose to either update his memory by storing the
message thus erasing any previously stored one (line 10) or
not (11). Last, the intruder can choose to drop the inter-
cepted message (14) or forward it (15).

The second statement (lines 18-21) implements the message
creation and injection capability. For that, the intruder uses
a function called RandMessage for message creation and a
macro called IsValidMessage for checking: a) the format and
the field types of the created message, and b) its consistency
with the intruder knowledge. In particular, this last check is
needed in order to avoid false attacks and thus is important
for completness.

The third statement (line 22) simply sends the stored mes-
sage hence partly implementing the intruder capability of
replaying old messages.

The intruder process is generic and can be reused as is mod-
ulo small modifications for adapting it to protocols with
different message length. The choice of the local variable
names, which can be arbitrary, was based on the expected
field types only for clarity. The function for the random mes-

sage creation can be also generic as illustrated in Fig. 10 but
we have also experimented with other variants (Section 4).

i n l i n e RandMessage (d , k1 , k2)
{

atomic {
do

: : (d < NULL) −> d = d + 1
: : (d > 1) −> d = d − 1
: : (k1 < NULL) −> k1 = k1 + 1
: : (k1 > 1) −> k1 = k1 − 1
: : (k2 < NULL) −> k2 = k2 + 1
: : (k2 > 1) −> k2 = k2 − 1
: : break

od ;
}

}

Figure 10: Generic random message creation func-
tion

The parts that are more related to the protocol specifications
are shown below. The AddToKnowledge function implements
the message deconstruction rules of Fig. 4.

i n l i n e AddToKnowledge (d , k1 , k2)
{

i f
: : I sKey (k2) && Knows [k2 − 1] &&

I sS e c r e tKe y (k1) −>
Knows [d − 1] ;
i f

: : I sKey (d) −> Keys [d − 1] = 1
: : e l s e s k i p

f i
: : IsNULL (k2) && IsKey (k1) && Knows [k1 − 1]

−>
Knows [d − 1] = 1

: : e l s e s k i p
f i ;

}

While the IsValidMessagemacro checks the construction rules
of Fig. 5. In this particular case, we allow the construction
of messages using information from the stored one which is
passed to the macro in the additional arguments pd, pk1, pk2.

de f i n e I sVa l i dMe s s ag e (d , k1 , k2 , pd , pk1 , pk2)
((I sKey (k2) && Keys [k2 − 1] &&

I sS e c r e tKe y (k1) | | IsNULL (k2)) &&
Keys [k1 − 1] && Knows [d − 1]) | |

(I sKey (k2) && Keys [k2 − 1] &&
k1 == pk1 && d == pd)

Observe that all of the intruder related functions and macros
can also be automatically generated from any higher level
specification of protocols that is based on the notations and
definitions we present in Section 2.

Finally, now that we have defined the intruder model, what
remains to do is to update the main process in order to first
define the intruder initial knowledge and then run the cor-
responding process. The definition of the initial knowledge
is achieved by setting the known names’values to true in the
knowledge vectors (Knows and Keys). In the DS case, all the
names, except Sec, SSKab,SKa, SKb, are initially known to
the intruder.

3.3 Security Properties
We use active processes to check for the security proper-
ties which we implement using macros and some additional
global variables.

A secrecy property can be checked by querying the knowl-
edge of the intruder (see (2) in Section 2). In our modeling
approach, we capture this knowledge in the Boolean vector
Knows. Therefore, for the DS protocol example, an invariant
for the secrecy of the Sec message can be defined as follows:

de f i n e Sec Inv (! Knows [Sec − 1])

A possible implementation of a process for checking this in-
variant is given below.

a c t i v e proctype SecMonitor ()
{

atomic {
do

: : ! Sec Inv −> a s s e r t (Sec Inv)
od

}
}

In order to check authentication, we reduce trace properties
of the form of (3) to state properties in the Promela models.
We do that following the methodology of [21] which makes
use of global variables to record the occurrence of the events
that are of interest. The property is then expressed as a
Boolean condition on those variables. Such condition can be
monitored in a similar manner to how it is done for secrecy.

a c t i v e proctype AuthMonitor ()
{

atomic {
do

: : ! AuthInv −> a s s e r t (AuthInv)
od

}
}

In general, we will assume that protocols, such as the ones
we consider always contain an initiator role and a respon-
der role that need to authenticate each others. We consider
two events: Running and Commit indicating that an agent
has respectively initiated and completed a protocol run with
another agent. This technique is well described in Lowe’s
works [20, 18]. We then introduce four global Boolean vari-
ables for authentication in order to record the corresponding
Running and Commit (implicit) events in the model.

b i t In iRunningAB = 0 ;
b i t IniCommitAB = 0 ;
b i t ResRunningAB = 0 ;
b i t ResCommitAB = 0 ;

We use then different macros to update the authentication
variables at specific points during the execution of the pro-
tocol.

de f i n e I n iRunn i ng (x , y)
i f
: : ((x == A) && (y == B)) −> In iRunningAB = 1
: : e l s e s k i p
f i

de f i n e In iCommit (x , y)
. . .

Finally, the authentication invariant can be defined as fol-
lows:

de f i n e AuthInv
((! IniCommitAB | | RecRunningAB) &&

(! RecCommitAB | | In iRunningAB))

Observe that the only parts that are specific to the proto-
col in the implementation of the security properties are the
definition of the secrecy invariant and the placement of the
authentication macro calls in the role processes.

4. EXPERIMENTAL RESULTS
Using our methodology, we have implemented all the pro-
tocol examples of Section 2. We have also experimented
with different implementation variants of the function for
the random message creation. SPIN was able to find all the
expected attacks. We used a laptop with an i5 Intel proces-
sor where we executed SPIN in a 1GB RAM virtual machine
running a 32 bit version of Linux. All the results are sum-
marized in Table 1. We run SPIN with the bitstate storage
and breadth-first search modes. After each unsuccessful run
of SPIN, we keep doubling the estimated state space until
either an attack is found or the memory limit is reached in-
dicated respectively by “a” or “u” in the table. Some of the
found attacks are show in figures below (See Fig. 11, Fig. 12,
Fig. 13 and Fig. 14).

In Table 1, the column headers denote the different used
implementation variants of the message creation function
RandMessage. The variant ATT1 corresponds to the one
shown in Fig. 10. ATT2 is an alternative version which
exploits the intruder current knowledge in order to restrict
the number of available choices in the loop. In this version,
we use Boolean variables to prevent recurrent modifications
of the same field in contrast to ATT1 where any field can
be modified several times. Each of the additional variables
is used as guard which is set as soon as the corresponding
field is modified preventing any further changes. Notice that
since in ATT2, we are exploiting the intruder knowledge, we
need to allow the creation of messages containing unknown
data from the stored one. Therefore, the function requires
additional arguments for passing the stored message data.
We give below an extract of the implementation of ATT2

for the DS protocol example.

i n l i n e RandMessage (d , k1 , k2 , pd , pk1 , pk2)
{

atomic {
boo l dSet = 0 , k1Set = 0 , k2Set = 0 ;
do

: : ! dSet −> d = NULL ; dSet = 1
: : Knows [A − 1] && ! dSet −> d = A; dSet =

1
: : Knows [B − 1] && ! dSet −> d = B; dSet =

1
. . .

The ATT3 variant is shown below. The motivation behind it
was to make a generic version of ATT2 that is independent of
the protocol implementation names. This is can be done by
further exploiting the fact that the name set is a range. The
idea is to alter ATT1 so that unknown names are skipped.
In the version below we skip one unknown name at a time
(lines 8-9). But this can be further developed in order to skip

Table 1: Experimental results: (a) for attack and
(u) for unresolved

Protocol ATT1 ATT2 ATT3 ATT4

DS a a a a
Reduced NS a a a a
Full NS u u u a
TMN a a a a

arbitrary number of adjacent unknown names in the range.
Such code would be complex but still can be automatically
generated.

1 i n l i n e RandMessage (d , k1 , k2 , pd , pk1 , pk2)
2 {
3 atomic {
4 do
5 : : (d < NULL && (Knows [d] | | d + 1 == pd)

) −> d = d + 1
6 : : (d > 1 && (Knows [d − 2] | | d − 1 == pd

) −> d = d − 1
7 . . .
8 : : (d < NULL − 1 && ! (Knows [d] | | d + 1

== pd)) −> d = d + 2
9 : : (d > 2 && ! (Knows [d − 2] | | d −1 == pd

)) −> d = d − 2
10 . . .

The final variant we consider is ATT4. It is derived from
the previous one by simply eliminating the statements for
skipping unknown names (lines like 8-9). This is an unsound
modification because the function can no longer scan the
whole range and the choices for the new names are restricted
to only the adjacent known ones. Surprisingly, this is the
only variant which was efficient enough so that the attack
on the full NS protocol could be found as well.

5. CONCLUSION
We have considered a restricted class of security protocols
and gave a precise formalization of the corresponding oper-
ational semantics using transition systems. This is to moti-
vate the use of state based model checkers such as SPIN. We
have then described a method for implementing and analyz-
ing such class of security protocols in SPIN. The description
was informal, but as future work the method can be for-
malized and implemented in an automatic translator tool.
The intruder model implementations we provide are simple,
generic and sufficiently efficient so that SPIN could find all
the expected attacks on several of the classical key distribu-
tion protocols. One possible direct extension of this work
could be to consider how to adapt the approach to other
types of message variables such as tickets, time-stamps or
counters. Another one could be to analyze to which extent
the method can scale to arbitrary (up to a fixed bound)
number of agents each running one of the protocol roles.

6. REFERENCES
[1] 3GPP The Mobile Broadband Standard.

http://www.3gpp.org/specifications/.

[2] 10th Computer Security Foundations Workshop
(CSFW ’97), June 10-12, 1997, Rockport,
Massachusetts, USA. IEEE Computer Society, 1997.

[3] 14th IEEE Computer Security Foundations Workshop
(CSFW-14 2001), 11-13 June 2001, Cape Breton,

Intruder:5

1!I,B,NULLServer:4

1?I,B,NULL

1!PKb,B,SSKi

1?PKb,B,SSKiInitiator:2

1!A,I,NULL

1?A,I,NULL

1!PKi,I,SSKa

1?PKi,I,SSKa

1!Na,A,PKi

1?Na,A,PKi

1!Na,A,PKbReceiver:3

1?Na,A,PKb

1!B,A,NULL

1?B,A,NULL

1!PKa,A,SSKb

1?PKa,A,SSKb

1!Na,Nb,PKa

1?Na,Nb,PKa

1!NULL,Nb,PKi

1?NULL,Nb,PKi

1!NULL,Nb,PKb

1?NULL,Nb,PKb

Figure 11: A trace for an attack on the full NS

Nova Scotia, Canada. IEEE Computer Society, 2001.

[4] M. Abadi, B. Blanchet, and C. Fournet. Just fast
keying in the pi calculus. In D. A. Schmidt, editor,
ESOP, volume 2986 of Lecture Notes in Computer
Science, pages 340–354. Springer, 2004.

[5] M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. In C. Hankin and
D. Schmidt, editors, POPL, pages 104–115. ACM,
2001.

[6] B. Blanchet. An efficient cryptographic protocol
verifier based on prolog rules. In CSFW [3], pages
82–96.

[7] B. Blanchet. Automatic verification of
correspondences for security protocols. Journal of
Computer Security, 17(4):363–434, 2009.

[8] C. Cremers and S. Mauw. Operational Semantics and
Verification of Security Protocols. Information
Security and Cryptography. Springer, 2012.

[9] C. J. F. Cremers. The scyther tool: Verification,
falsification, and analysis of security protocols. In
A. Gupta and S. Malik, editors, CAV, volume 5123 of
Lecture Notes in Computer Science, pages 414–418.
Springer, 2008.

[10] C. J. F. Cremers. Session-state reveal is stronger than
ephemeral key reveal: Attacking the naxos
authenticated key exchange protocol. In M. Abdalla,
D. Pointcheval, P.-A. Fouque, and D. Vergnaud,
editors, ACNS, volume 5536 of Lecture Notes in
Computer Science, pages 20–33, 2009.

[11] C. J. F. Cremers. Key exchange in ipsec revisited:
Formal analysis of ikev1 and ikev2. In V. Atluri and
C. Dı́az, editors, ESORICS, volume 6879 of Lecture
Notes in Computer Science, pages 315–334. Springer,

Initiator:2

1!Na,A,PKi Intruder:4

1?Na,A,PKi

1!Na,A,PKbReceiver:3

1?Na,A,PKb

1!Na,Nb,PKa

1?Na,Nb,PKa

1!NULL,Nb,PKi

1?NULL,Nb,PKi

1!NULL,Nb,PKb

1?NULL,Nb,PKb

Figure 12: A trace for an attack on the reduced NS

Initiator:2

1!A,B,Ka,PKs Server:4

1?A,B,Ka,PKs

1!B,A,NULL,NULL Intruder:5

1?B,A,NULL,NULL

1!B,B,NULL,NULLReceiver:3

1?B,B,NULL,NULL

1!B,B,Kb,PKs

1?B,B,Kb,PKs

1!B,A,Ki,PKs

1?B,A,Ki,PKs

1!A,B,Kai,NULL

1?A,B,Kai,NULL

Figure 13: A trace for an attack on TMN

2011.

[12] D. E. Denning and G. M. Sacco. Timestamps in key
distribution protocols. Commun. ACM, 24(8):533–536,
1981.

[13] D. Dolev and A. C.-C. Yao. On the security of public
key protocols. IEEE Transactions on Information
Theory, 29(2):198–207, 1983.

[14] N. A. Durgin, P. Lincoln, and J. C. Mitchell. Multiset
rewriting and the complexity of bounded security
protocols. Journal of Computer Security,
12(2):247–311, 2004.

[15] G. J. Holzmann. The model checker spin. IEEE Trans.
Software Eng., 23(5):279–295, 1997.

[16] M. Jakobsson and S. Wetzel. Security weaknesses in
bluetooth. In Proceedings of the 2001 Conference on
Topics in Cryptology: The Cryptographer’s Track at
RSA, CT-RSA 2001, pages 176–191, London, UK,
UK, 2001. Springer-Verlag.

[17] A. S. Khan, M. Mukund, and S. P. Suresh. Generic
verification of security protocols. In P. Godefroid,
editor, SPIN, volume 3639 of Lecture Notes in
Computer Science, pages 221–235. Springer, 2005.

[18] G. Lowe. Breaking and fixing the needham-schroeder
public-key protocol using fdr. In T. Margaria and
B. Steffen, editors, TACAS, volume 1055 of Lecture
Notes in Computer Science, pages 147–166. Springer,

Initiator:3

1!Kai,SKa,PKi Intruder:5

1?Kai,SKa,PKi

1!Kai,SKa,PKbReceiver:4

1?Kai,SKa,PKb

1!Sec,Kai,NULL

1?Sec,Kai,NULL

Figure 14: A trace for an attack on DS

1996.

[19] G. Lowe. Casper: A compiler for the analysis of
security protocols. In CSFW [2], pages 18–30.

[20] G. Lowe. A hierarchy of authentication specification.
In CSFW [2], pages 31–44.

[21] P. Maggi and R. Sisto. Using spin to verify security
properties of cryptographic protocols. In D. Bosnacki
and S. Leue, editors, SPIN, volume 2318 of Lecture
Notes in Computer Science, pages 187–204. Springer,
2002.

[22] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin.
The tamarin prover for the symbolic analysis of
security protocols. In N. Sharygina and H. Veith,
editors, CAV, volume 8044 of Lecture Notes in
Computer Science, pages 696–701. Springer, 2013.

[23] R. M. Needham and M. D. Schroeder. Using
encryption for authentication in large networks of
computers. Commun. ACM, 21(12):993–999, 1978.

[24] M. Rusinowitch and M. Turuani. Protocol insecurity
with finite number of sessions is np-complete. In
CSFW [3], pages 174–.

[25] C. Tang, D. A. Naumann, and S. Wetzel. Symbolic
analysis for security of roaming protocols in mobile
networks - [extended abstract]. In M. Rajarajan,
F. Piper, H. Wang, and G. Kesidis, editors,
SecureComm, volume 96 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, pages 480–490.
Springer, 2011.

[26] M. Tatebayashi, N. Matsuzaki, and D. B. N. Jr. Key
distribution protocol for digital mobile communication
systems. In G. Brassard, editor, CRYPTO, volume
435 of Lecture Notes in Computer Science, pages
324–334. Springer, 1989.

