
VERIGE: Verification with Invariant Generation Engine

Nicolas Latorre, Francesco Alberti, Natasha Sharygina
University of Lugano

via G. Buffi, 13
Lugano, Switzerland

ABSTRACT
Program verification systems fail in verifying programs if ap-
propriate loop invariants are not suggested. Generation of
loop invariants in general is an art and providing them man-
ually is a highly complex task (if possible at all). In this pa-
per we present verige, a tool that integrates a verifier with
an invariant generator engine. verige implements a novel
generic algorithm that alleviates the load on the invariant
generator and consequently achieves a general speed-up of
program verification.

1. INTRODUCTION
Deductively verifying that a program meets its specification
is a hard task: the programmer has to annotate the pro-
gram with loop invariants and other formulæ that will be
exploited by the underlying program verification system in
order to check the (partial1) correctness of the input code.
In this paper we take into consideration programs with ar-
rays. If defining good loop invariants is generally an art and
definitely out of reach for the vast majority of the program-
mers, defining loop invariants for programs with arrays is
a much harder task, as quantification comes into play. In-
deed interesting properties over arrays, like “being sorted”,
“being initialized”, etc., are expressible only by exploiting
quantifiers.

The tool we present in this paper, verige, alleviates the
task of manually writing loop invariants and additional an-
notations necessary for a deductive proof of a program by
coupling a program verification system, Boogie [5], with
an invariant generator able to infer quantified invariants,
safari [2]. The novelty of verige, differentiating it with
respect to standard invariant generation techniques, lies in
the way the program verification system and the invariant

1A program S is partially correct iff, given a precondi-
tion P and a postcondition Q, every terminating execution
of S starting in a state satisfying P , terminates in a state
satisfying Q.

generator are integrated. Boogie takes as input an anno-
tated program with pre-conditions, post-conditions, invari-
ants, assertions, etc. and produces a set of first-order for-
mulæ, called verification conditions, which validity implies
the partial correctness of the input annotated code. The va-
lidity of this formulæ is checked by feeding them into an Sat-
isfiability Modulo Theory (SMT) solver. The lack of some
required annotation causes the failure of the SMT-solver in
proving the validity of some verification conditions. In this
case Boogie displays some execution traces, i.e., the por-
tions of the input code, corresponding to the verification
condition which validity has not been proven by the SMT-
solver. At this point the user would have to analyze the ex-
ecution traces, provide further annotations and re-run Boo-
gie on the program. With verige, instead, such execution
traces are automatically passed to safari. safari will ana-
lyze the traces and either find a real error of the input code,
that will be reported to the user, or automatically provide
the additional annotations required to prove the verification
conditions associated to the execution traces.

The fact that verige exploits an invariant generator for
quantified properties like safari and how safari is exploited
in the verification process differentiates verige from the re-
lated literature on invariant generation. Abstract interpre-
tation approaches (e.g., [10,16]) do not ensure that the gen-
erated invariants are precise enough to prove a given post-
condition. The closest work to verige are, to the best of our
knowledge, those presented in [14,15]. In [14] the portions of
the program requiring an analysis are determined with the
help of a SAT solver, while in our case such paths are de-
termined by the failure of the SMT-solver behind Boogie.
The approach presented in [15] exploits the same driving
engine for the analysis, that is Boogie, but the invariant
inference is performed by exploiting different abstract do-
mains (with the risk, as discussed before, of not being able
to compute sufficiently precise invariants). Our refinement
technique can be viewed as an extension of the CEGAR
paradigm [9], where counterexamples are not concrete ex-
ecutions of the program under analysis but fractions of it.
The approach implemented in verige differs as well from
the one presented in [7] as verige exploits an invariant gen-
erator which is not based on templates.

For experimentation, we tested verige on various programs
with arrays. Boogie by itself fails in verifying such pro-
grams as they lack loop invariants. Notably, verige suc-
ceeds in verifying such programs. Furthermore, we com-

Figure 1: verige architecture.

pared the integration strategy of verige with the one where
the entire program is given directly to safari. The ex-
periments show that the “lazy” integration implemented in
verige allows to achieve a speed-up with respect to an “ea-
ger” integration between Boogie and safari, where the for-
mer acts only as a pre-processor and the entire load of the
verification is put on safari. This is justified by the fact
that verige executes safari only on those parts of the pro-
gram where invariants are really needed, thus reducing the
“noise” that safari would have to process if executed on the
entire input program.

2. THE TOOL
Figure 1 sketches verige architecture, while the pseudo-
code in Algorithm 1 offers a description of the integration
algorithm implemented in our tool. verige starts by exe-
cuting Boogie on the input program P (line 3). Boogie
might return a set of execution traces to inform the user
about a failure of the underlying theorem prover in check-
ing the generated verification conditions. Such execution
traces are caught by verige and analyzed with the help
of safari. Notably, Boogie might return the same execu-
tion trace multiple times2. This might generate an infinite
loop where Boogie will return the same execution trace for
which safari will provide always the same invariants. To
overcome such problem, verige keeps track of all executions
traces analyzed in the past. If the same execution trace is
detected, verige generalizes the execution trace (getSuper-
setCE procedure at line 6). The intuition behind this step
is that by analyzing a bigger portion of the program, sa-
fari will generate more general invariants. The execution
trace is then analyzed and optimized (line 7) to successfully
exploit different heuristics and capabilities of safari. From
the internal representation of the execution trace verige
generates the transition system for safari and executes the
invariant generator engine. The termination of safari gives
two outcomes: either a true counterexample or an invari-

2This can be due to several reasons, analyzed in detail in
Section 2.4.

Algorithm 1: Lazy integration algorithm

Data: An annotated BoogiePL program P
Result: Boogie verification result of the BoogiePL program

with quantified invariants generated by safari
1 begin
2 PastCEs ← ∅;
3 〈 ce, numErrors 〉 ← Boogie(P);
4 while (numErrors > 0) do
5 while (ce ∈ PastCEs) do
6 ce ← getSupersetCE(ce);

7 ir ← optimize(ce);
8 〈 v, I(v), τ(v,v′), U(v) 〉 ← ce2ts(ir);
9 〈 result , invariant 〉 ← safari(〈v, I(v), τ(v,v′), U(v)〉);

10 if (result = unsafe) then
11 return UNSAFE, ce;

12 invariantsMap ← storeInvariants(invariant);
13 P ← toBoogie(invariantsMap, P);
14 〈 ce, numErrors 〉 ← Boogie(P);

15 return VERIFIED;

ant for the transition system representing the portion of the
program analyzed. The invariant is finally added to the
BoogiePL program, which is again analyzed by Boogie.

Notably, while verige exploits Boogie and safari, the in-
tegration framework can instantiated with different program
verification systems and invariant generation engines. Next
we describe in more details the implementation details of
verige.

2.1 Code optimization
verige works on the code printed by Boogie when exe-
cuted with the option -printInstrumented. The Boo-
giePL code obtained with this option is the result of differ-
ent optimizations performed on the input source code [6].
It is a set of basic blocks , where each block has a label, a
possibly empty set of assumptions, a set of instructions, a
possibly empty set of assertions and a possibly empty set of
goto labels describing successor blocks.

Execution traces are translated by verige into transition
systems accepted by safari. The translation process imple-
mented in verige optimizes the code in order to better ex-
ploit safari capabilities. The main optimizations performed
by verige are the following.

Opt I. The first optimization targets the reduction of re-
dundant or “useless” variables. These can be tempo-
rary variables used for e.g., expressing array swaps
(swaps can be encoded in the language accepted by
safari without introducing a temporary variable since
array updates are expressed as case-defined functions)
or variables of the original program that are not in-
volved in the computation of the subprograms ana-
lyzed with the execution traces.

Opt II. The second optimization separates blocks that con-
tain dependent instructions. For each pair of instruc-
tions of a block, i1 and i2, i1 and i2 are dependent if
i1 is executed before i2 and i1 defines a variable used
by i2. The optimization separates two dependent in-
structions in two different, but related, blocks.

Opt III. The third optimization is required to match syn-
tactic restrictions of safari input language (e.g., guards
flattening3, maximum number of array indexes per
transition, etc.).

2.2 Transition system generation
Given an optimized internal representation of the BoogiePL
program, verige can generate the corresponding transition
system S = (v, I(v), τ(v,v′)). The optimized representa-
tion is a sequence of blocks of the kind

li0 :

assume φ(v)

Upd(v,v′)

goto li1 , . . . , lin

(1)

where Upd(v,v′) is a conjunction of statements of the kind

v′j := E(v)

for all v′j ∈ v′. E is a general expression over program
variables. For each block we generate n transitions of the
kind

pc = li0 ∧ φ(v) ∧ Upd(v,v′) ∧ pc′ = lij (2)

for 1 ≤ j ≤ n. The formula U(v), representing the unsafe
states for which we want to test the reachability from I(v)
by a repeated application of τ(v,v′), is generated from the
assertion that, according to last Boogie execution, “might
not hold”. safari is then executed. safari implements a
backward reachability analysis enhanced with abstraction-
refinement features [1]. In the context of this work, safari
is exploited in order to generate safe inductive invariants,
which are provided by enabling the option display_safe
_invariant.

2.3 Annotating the BoogiePL source code
If safari proves the safety of its input, it returns an invariant
of the kind ∧

li∈L

pc = li → ψli(v)

where pc is a fresh variable with respect to v and has been
introduced by verige for translating the execution traces
into transition systems. verige will add each conjunct in
the corresponding block of the control-flow graph defined by
Boogie by adding new assert statements of the kind

assert(ψli(v));

Notably, by adding new assertions to the code, verige is
mimicking the human interactive process of examining the
execution traces provided by the program verification systems
and adding new “facts” that, if confirmed, may help in prov-
ing the safety of the code. We remark that the formulæ gen-
erated by safari are added as new assertions in the code.
That is, Boogie will take advantage of these formulæ by re-
verify that they are indeed inductive annotations. Another
strategy would have been adding the formulæ as assump-
tions. In this case, however, the problem would have been
weakened significantly, with the risk of becoming unsound.

3A formula is said to be flat if the array variables are
indexed only by existentially quantified variables.

2.4 Execution traces generalization
Verification conditions generated by Boogie are (quanti-
fied) formulæ over some theory of interest T specifying the
semantics of the program instructions. In our experimental
setting, T will be the theory of arrays T Z

A, i.e., the theory of
arrays having Presburger arithmetic for interpreting array
indices [8]. Deciding the validity of quantified formulæ over
T Z
A is, in general, undecidable (only some quantified frag-

ments of T Z
A admits decision procedures [3, 8, 13]). In order

to deal with this theoretical limitation, Boogie relies on
the matching modulo equalities (E-matching) heuristic [12]
implemented in the Z3 SMT solver [11]. Such heuristic ex-
ploits a given pattern to find suitable instances for the uni-
versally quantified variables. If the instantiated quantifier-
free formula is inconsistent, the solver can correctly say that
the input quantified formulæ are unsatisfiable, implying the
validity of the given verification conditions. Otherwise it
would simply return an unknown message for those not
revealing inconsistent cores4. In the case of Boogie, the
patterns for driving the E-matching procedure are auto-
matically generated according to some internal heuristics.
Given the complexity of the verification conditions gener-
ated when verifying array programs, it might well happen
to receive unknown outcomes from the SMT-Solver, even
for proof obligations representing paths already refined by
safari. This can happen because safari has its own in-
ternal procedures for instantiating quantifiers [2], and the
E-matching pattern produced by Boogie might not be able
to replicate the instantiations performed by safari to prove
the inductiveness of some annotations. Clearly, this situa-
tion leads to an infinite loop if not handled properly.

We devised to overcome this situation by generalizing the
execution traces. That is, verige caches all the execution
traces returned by Boogie. If Boogie returns more than
once the same execution trace, verige generalizes it (lines
5-6 of Algorithm 1) by returning a portion of the original
program including the execution traces returned by Boo-
gie. More precisely, let B be the set of basic blocks in the
execution trace returned by Boogie, and let bin ∈ B be the
entry block of the execution trace and be ∈ B the exit block.
verige first considers if the original program admits a path
from bin to be involving some blocks {b′1, . . . , b′n} not belong-
ing to B. If so, B ∪ {b′1, . . . , b′n} becomes the new execution
trace. If it is not possible to enlarge B by considering other
paths from bin to be, verige searches for find a portion of
the original control-flow graph including B either by start-
ing from an ancestor b′in of bin or ending in a block b′e which
is reachable from be.

3. EXPERIMENTAL EVALUATION
verige5 was tested on a variety of state-of-the-art bench-
marks. We focused our experimentation on programs with
arrays since they pose non-trivial problems and a good play-
ground to test capabilities/performance of the verification
tools. The programs we selected perform various operations
over arrays, like copying one array into another, sorting an

4Boogie files produced to check the validity of verifi-
cation conditions exploits the incrementality of the SMT-
solver in such a way that it is possible to precisely recognize
on which verification conditions the solver failed.

5Available at http://atelier.inf.usi.ch/
~latorren/verige/verige.html

http://atelier.inf.usi.ch/~latorren/verige/verige.html
http://atelier.inf.usi.ch/~latorren/verige/verige.html

Figure 2: Comparison between the invariant gener-
ation time (in seconds) in the eager and lazy mode.

array, initializing all element of an array (or part of them) to
a given value, finding the maximum or minimum element of
an array, etc. All these programs are annotated with post-
conditions or assertions stating interesting properties about
arrays.To the best of our knowledge, highly engineered verifi-
cation engines generally fail to verify such programs6. Given
the lack of loop invariants, Boogie alone cannot verify any
of them either. In addition we point out that inferring such
invariants by hand is definitely far from being an easy and
trivial process (see Appendix A for a worked out example).

We explicitly focused our experimentation on safe programs
in order to evaluate the effectiveness of our new lazy in-
tegration. In particular, we wanted to compare our new
integrated framework against a more classical one where the
invariant generation engine works on the entire program.
With respect to the new lazy integration, the latter one
we call eager. verige can execute both integration modes
(the lazy integration is enabled by the command line option
-lazy).

Experimentation has been performed on a machine equipped
with an Intel i5 @ 2.53GHz processor, 4GB of RAM and run-
ning OSX 10.6.8. We used Boogie 4.2 and z3 4.1. Figure 2
reports a comparison of the verification times of verige exe-
cuted in lazy and eager mode. This experimental evaluation
shows clearly that the lazy approach is not overloading the
verification process. This is because the points below the di-
agonal, representing the examples where the eager approach
is faster than the lazy one, are not far from the diagonal.
However the points above the diagonal are definitely far from
it. This means that, in general, the lazy integration might
introduces a small overhead, but also can achieve a substan-
tial speed-up (up to an order of magnitude). To rephrase in
less formal words: by adopting the lazy approach the user
is not loosing anything with the chance of gaining a lot. For
this reason, the lazy integration constitutes a valid alterna-
tive to the more standard verification approach where the
entire load of the verification is on the invariant generation.

6For example, the CodeContracts verification system,
which implements invariance-inference algorithms for ar-
rays, as described in [10], generally fails on our benchmarks.

4. CONCLUSION AND FUTURE WORK
We presented a new tool, verige, where the program veri-
fication system Boogie and the invariant generator safari
are successfully integrated. We tested it on various chal-
lenging programs with arrays. Experimentally, verige suc-
ceeds and is competitive with respect to other state-of-the-
art tools. As a future work, it would be interesting to try
different refinement strategies since it is a crucial part of the
integration and designing new enhanced procedures for this
task might lead to further improvements in verification of
complex programs.

5. REFERENCES
[1] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise,

and N. Sharygina. Lazy abstraction with interpolants
for arrays. In LPAR, pages 46–61, 2012.

[2] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise,
and N. Sharygina. SAFARI: SMT-Based Abstraction
for Arrays with Interpolants. In CAV, pages 679–685,
2012.

[3] F. Alberti, S. Ghilardi, and N. Sharygina. Decision
procedures for flat array properties. In TACAS, pages
15–30, 2014.

[4] F. Alberti and N. Sharygina. Invariant generation by
infinite-state model checking. In 2nd International
Workshop on Intermediate Verification Languages,
2012.

[5] M. Barnett, B.Y.E. Chang, R. DeLine, B. Jacobs, and
K.R.M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In FMCO, pages 364–387,
2005.

[6] M. Barnett and K.R.M. Leino. Weakest-precondition
of unstructured programs. In PASTE, pages 82–87,
2005.

[7] D. Beyer, T. A. Henzinger, R. Majumdar, and
A. Rybalchenko. Path invariants. In PLDI, pages
300–309, 2007.

[8] A.R. Bradley, Z. Manna, and H.B. Sipma. What’s
decidable about arrays? In VMCAI, pages 427–442,
2006.

[9] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction
refinement. In CAV, pages 154–169, 2000.

[10] P. Cousot, R. Cousot, and F. Logozzo. A parametric
segmentation functor for fully automatic and scalable
array content analysis. In POPL, pages 105–118, 2011.

[11] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS, pages 337–340, 2008.

[12] D.L. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a
theorem prover for program checking. Technical
Report HPL-2003-148, HP Labs, 2003.

[13] Y. Ge and L. de Moura. Complete instantiation for
quantified formulas in satisfiabiliby modulo theories.
In CAV, pages 306–320, 2009.

[14] W.R. Harris, S. Sankaranarayanan, F. Ivancic, and
A. Gupta. Program analysis via satisfiability modulo
path programs. In POPL, pages 71–82, 2010.

[15] K.R.M. Leino and F. Logozzo. Loop invariants on
demand. In APLAS, pages 119–134, 2005.

[16] A. Podelski and T. Wies. Counterexample-guided
focus. In POPL, pages 249–260, 2010.

APPENDIX
A. A WORKED-OUT EXAMPLE
In this section we show, by following step by step the execution of verige, how the lazy procedure interleaves safari and
Boogie. The source code we take into account for this demonstration is the well-known bubbleSort procedure (reported in
Figure 3). We point out that manually finding suitable loop invariants for this procedure, which has a nested loop, is far from
being trivial.

For such procedure, verige generates an Internal Representation retrieved from the output of Boogie when executed with
the option -printInstrumented (see Figure 4). Subsequently, our lazy approach requires a Boogie execution on the
original source code. In the case of the bubbleSort procedure, given the lack of loop invariants, Boogie is not able to
check that the implementation obeys to its specifications. The counterexample returned by boogie is the sequence of blocks
(b0, b5LH, b5LD, return) of the bubbleSort control-flow graph (Figure 4). At this point, safari enters the scene. verige

generates the transition system S(1) = (v, I(v)(1), τ(v,v′)(1)), with v = pc, a, i, sw and I(1)(v), τ(v,v′)(1) defined as follows:7

I(v)(1) := pc = b0

τ(v,v′)(1) :=

 (pc = b0 ∧ sw′ ∧ pc′ = b5LH) ∨
(pc = b5LH ∧ pc′ = b5LD) ∨
(pc = b5LD ∧ ¬sw ∧ pc′ = return)


Notice that this transition relation does not admit any loop path. In such cases, safari cannot diverge. verige detects
the absence of loops and executes safari without enabling abstraction-refinement features. safari, in turn, shows that the
transition system S(1) cannot reach the unsafe formula

pc = return ∧ ∃x, y.(0 ≤ x ∧ x < y ∧ y < L ∧ a[x] > a[y])

and returns a safe inductive invariant for S(1), made by the conjunction of the following formulæ:

pc = return → ∀z0, z1.((0 ≤ z0 ∧ z0 < z1 ∧ z1 < L)→ (a[z0] ≤ a[z1]))

pc = b5LD → ∀z0, z1.((0 ≤ z0 ∧ z0 < z1 ∧ z1 < L ∧ ¬sw)→ (a[z0] ≤ a[z1]))

pc = b5LH → ∀z0, z1.((0 ≤ z0 ∧ z0 < z1 ∧ z1 < L ∧ ¬sw)→ (a[z0] ≤ a[z1]))

The invariants are plugged into the Internal Representation of the code as new assertions, and Boogie is executed on the code
just annotated. Once again, Boogie complains that the underlying SMT-Solver (in our case, Z3) cannot verify the program,
and it returns a new counterexample. This time, the counterexample traverses the blocks (b0, b5LH, b5LB, b6LH, b6LD) of the

control-flow graph depicted in Figure 4. verige analyzes it and produces the transition system S(2) = (v, I(v)(2), τ(v,v′)(2))
made by the following formulæ:

I(v)(2) := pc = b0

τ(v,v′)(2) :=



(pc = b0 ∧ sw ∧ pc′ = b5LH) ∨
(pc = b5LH ∧ pc′ = b5LB) ∨
(pc = b5LB ∧ sw ∧ ¬sw′ ∧ i′ = 1 ∧ pc′ = b6LH) ∨
(pc = b6LH ∧ 1 ≤ i ∧ pc′ = b6LD) ∨
(pc = b6LD ∧ L ≤ i ∧ pc′ = b5LH)


In this case, since the transition system induces a control-flow graph with a loop, safari is executed enabling abstraction-
refinement features. As before, safari detects that S(2) cannot reach

pc = b5LH→ ∀z0, z1.((0 ≤ z0 ∧ z0 < z1 ∧ z1 < L ∧ ¬sw)→ (a[z0] ≤ a[z1]))

and generates the following intermediate assertions for Boogie:

pc = b5LH → ∀z0, z1.((0 ≤ z0 ∧ z0 < z1 ∧ z1 < L ∧ ¬sw)→ (a[z0] ≤ a[z1]))

pc = b5LD → ∀z0, z1.((0 ≤ z0 ∧ z0 < z1 ∧ z1 < i ∧ ¬sw)→ (a[z0] ≤ a[z1]))

pc = b6LH → ∀z0, z1.

((
0 ≤ z0 ∧ z0 < z1 ∧ z1 < i ∧
∧ i ≥ 1 ∧ ¬sw

)
→ (a[z0] ≤ a[z1])

)

The invariants generated in this second refinement are added to those generated before. With this bigger set of annotations,
Boogie verifies successfully the bubbleSort procedure.

7For the sake of readability, we are omitting identical updates of the kind v′ = v when reporting transition relations.

procedure bubbleSort (a[] , N) {
sw = true;

while (sw) {
sw = false; i = 1;

while (i < L) {
if (a[i− 1] > a[i]) {
t = a[i]; a[i] = a[i− 1]; a[i− 1] = t;

sw = true;

}
i = i+ 1;

}
}
assert (∀x, y.(0 ≤ x < y < N)→ a[x] ≤ a[y]);

}

Figure 3: The procedure bubbleSort.

b0:
sw := true;
goto b5LH;

b5LH:
goto b5LD, b5LB;

b5LB:
assume sw = true;
sw := false;
i := 1;
goto b6LH;

b6LH:
assume 1 <= i;
goto b6LD, b6LB;

b6LB:
assume i < L;
goto b7T, b7E;

b7T:
assume a[i - 1] > a[i];
t := a[i]; a[i] := a[i - 1];
a[i - 1] := t; sw := true;
goto b4;

b7E:
assume a[i] >= a[i - 1];
goto b4;

b4:
i := i + 1;
goto b6LH;

b6LD:
assume L <= i;
goto b5LH;

b5LD:
assume sw = false;
return;

Figure 4: Internal Representation of the bubbleSort procedure. The entry block of the procedure is b0, the
exit block is return.

	Introduction
	The tool
	Code optimization
	Transition system generation
	Annotating the BoogiePL source code
	Execution traces generalization

	Experimental evaluation
	Conclusion and future work
	References
	A worked-out example

