
TravMC2: Higher-Order Model Checking for
Alternating Parity Tree Automata

Robin P. Neatherway
robin.neatherway@cs.ox.ac.uk

C.-H. Luke Ong
lo@cs.ox.ac.uk

Department of Computer Science
University of Oxford

Wolfson Building, Parks Road, OX1 3QD
United Kingdom

ABSTRACT
Higher-order model checking is the problem of model checking
(possibly) infinite trees generated by higher-order recursion schemes
(HORS). HORS are a natural abstract model of functional pro-
grams, and HORS model checkers play a similar rôle to check-
ers of Boolean programs in the imperative setting. Most research
effort so far has focused on checking safety properties specified us-
ing trivial tree automata i.e. Büchi tree automata all of whose states
are final. Building on our previous work, we present a higher-order
model checker, TRAVMC2, which supports properties specified us-
ing alternating parity tree automata (or equivalently monadic sec-
ond order logic). Our experimental results offer an encouraging
comparison with an existing checker, TRECS-APT.

1. INTRODUCTION
Model checking has been applied with great success to first-order
imperative programs, but only recently has started to gain trac-
tion in the verification of higher-order functional programs. In
this context the problem of model checking higher-order recur-
sion schemes (HORS) should be viewed as a smooth generalisa-
tion of finite-state and pushdown model checking, with finite-state
and pushdown systems (or Boolean programs) being captured by
order-0 and order-1 HORS respectively.

A wave of practically motivated results starting with TRECS [5,
1, 10, 2, 13] have attacked the problem of checking properties de-
scribed by the class of (alternating) trivial tree automata. These
are Büchi automata (over possibly-infinite trees) all of whose states
are accepting; they correspond to safety properties, such as reacha-
bility, which have finite counter-examples. Abstraction-refinement
techniques [7, 12] have enabled the application of these model
checkers to Turing-complete programs.

To date, the most efficient safety higher-order model checker, PREF-
ACE [13], readily scales to handle several thousand function defini-
tions, but this is not yet the case for liveness properties. Currently
there is only a single such model checker in the literature, which

SPIN ’14 San Jose, California USA

extends the successful approach of TRECS to properties specified
using alternating parity tree automata (APT) [3]. In this paper
we present a sound and complete tool that solves the HORS/APT
model checking problem by implementing a different, traversal-
based, algorithm, and offer an experimental evaluation including a
comparison with TRECS-APT.

2. IMPLEMENTATION
Our tool, TRAVMC2, builds on earlier work [10] for properties
specified using deterministic automata with only a single (accept-
ing) priority. In this work we allow full APT which generalise the
Büchi acceptance condition: every state is assigned a priority (from
a finite set of numbers) and along every infinite path in the input
tree, of the states visited infinitely often, the largest priority must
be even. Thus, our extension is two-fold: (i) we allow alterna-
tion in the transition function of the automaton, and (ii) we allow
arbitrary use of priorities. We make use of the characterisation of
the model checking problem as an intersection type inference prob-
lem as given by Kobayashi and Ong [6]. In this setting we take as
base types the states of a given property automaton; and a typing
judgement Γ ` t : q is valid if, and only if, Γ is “consistent” (w.r.t.
HORS reduction) and t reduces to a possibly-infinite tree accepted
from the automaton state q. Therefore, given a HORS with start
symbol S and automaton with initial state q0, if we can find a con-
sistent type environment Γ such that Γ ` S : q0 is provable then
the tree generated by the HORS is guaranteed to be accepted by the
automaton.

An example HORS G and (a prefix of) the tree generated by G is
shown below.

S → F a

F x→ f x (H (b x))

H x→ h x (F x)

f

a h

b f

a b h

a ...
...

The reduction of G starts from S and proceeds by reducing any
fully applied function symbol according to the rewrite rules, sub-
stituting operands for variables as usual:

S → F a→ f a (H (b a))→ f a (h (b a) (F (b a)))→ · · ·

Each subsequent occurrence of f and h will have left subtree bna
with n increasing and unbounded; as such this tree is not regular.
We might wish to verify that every left branch is finite, which can



(S: (q0, 2))

(F: ((q1,2) → q0, 2))

(H: ((q1,2) → q0, 2))

(F: ((q1,2) → q0, 2))

(H: (Top → q0, 2))

(a) Derivation tree

(S : q0, 2)

({F : (q1, 1) → q0}, 0)

(F : (q1, 1) → q0, 2)

({H : (q1, 1) → q0}, 0)

(H : (q1, 1) → q0, 2)

(b) Witness

Figure 1: A terminating state of TRAVMC2

be achieved using a tree automaton. For simplicity we present a de-
terministic automaton A. A has alphabet {f, h, a}, states {q0, q1}
(with initial state q0), priority function {q0 7→ 2, q1 7→ 1} (so that
q0 is accepting and q1 rejecting) and transition function δ:

(q0, f) 7→ q1 q0, (q0, h) 7→ q1 q0,
(q1, b) 7→ q1, (q1, a) 7→ t

The tree will be accepted byA, as the only infinite path is the spine
(f h)ω , which will be labelled by state q0 (having even priority).
The transitions for f and h transition to state q1 for the left child,
but these branches are all finite.

As in previous work [10] our algorithm searches for a witnessing
type environment Γ by lazily building a series of typing deriva-
tions for the right-hand sides of rules following an outermost re-
duction strategy inspired by the concept of traversals (used in the
original game-semantic proof of decidability of the model check-
ing problem [11]). The exploration starts with the requirement to
demonstrate that S has type q0 (which would imply that the tree
generated by S is accepted from state q0 of the automaton). For
each type binding we assume for a function symbol we also prove
that the right-hand side of the corresponding rewrite rule can be as-
signed the same type in order to maintain consistency. The tool in-
corporates a termination check, which searches for duplicate types
in the tree of derivations, indicating that the “recursive knot” can
be tied. A key difference with the earlier work is that the check
for termination must also ensure that the acceptance condition of
the automaton is satisfied. In the underlying type system this is
achieved by tying the notion of consistency to a parity game over
types and environments.

A representation of the algorithm state (a tree of typing derivations)
for this simple example after four rounds of expansion can be seen
in Figure 1a, where each node is labelled by a type binding and
automaton priority, and contains a proof (not shown) that the right-
hand side of the corresponding rewrite rule can be assigned the type
from the binding. We can see here how the arrow type constructor
is used in a standard fashion to represent function types, so that the
nodes labelled with F contain typing derivations proving that F is a
function that takes a tree accepted from state q1 after seeing priority
2, and returns a tree accepted from state q0. In the right-hand side
of S this is certainly a useful way for F to behave, as it is applied to

a (which is accepted from q1 according to the transition function of
A), and S should generate a tree accepted from state q0. Although
we do not have space to give the type system in full, as an example
the typing derivation found in the root node is as follows:

{F : ((q1, 2)→ q0, 2)} ` F : (q1, 2)→ q0 ∅ ` a : q1

{F : ((q1, 2)→ q0, 2)} ` F a : q0

The edges are dependencies, so assigning a type to F depends on
a type for H and vice versa, as might be expected from the rewrite
rules. An invariant of the algorithm is that every interior node of
the tree contains a valid typing derivation (hence the final node is
dashed to indicate it has not yet been explored); and so, given the
dependencies expressed in the edge relation in this state, the algo-
rithm terminates. A witness (see Figure 1b) can be extracted – a
parity game where Verifier (owning the ellipse nodes) must play a
type environment to justify each binding and is guaranteed to have
a winning strategy. Here, the second component of each node is
the priority and we can see that the only infinite path has maximum
priority 2, making it winning for Verifier.

It is a theorem that the input is a YES instance if every path from
the root of the derivation tree either:

(i) reaches an explored leaf, or

(ii) encounters two nodes labelled with the same type binding, hav-
ing an even priority and there is no node having a larger odd priority
between them. This mirrors the acceptance condition of the APT.

Note that we do not solve a parity game explicitly, although if these
conditions are satisfied then necessarily we can extract a witness
along with a winning strategy from the current derivation tree.

For instances derived from programs, which are typically much
larger, the branching factor of the tree will often range up to five
or higher, while the number of nodes in the final algorithm state
will be hundreds or thousands. We are guaranteed to find a witness
for a YES instance due to the finiteness of the space of intersection
types for any given instance, which is n-exponential (i.e. tower of
exponentials of height n) in the order of the HORS. A relationship



between computation of the algorithm and running the automaton
over the generated tree ensures that the maximal priority labellings
of nodes in the derivation tree will eventually be even.

In the “trivial” case, where all automaton states are accepting and
therefore counterexamples must be finite, we are also guaranteed
to find a witnessing counterexample for a NO instance. However,
in this richer setting, we must recover completeness by running
our semi-algorithm for both the property and its complement in
parallel.

In order to handle disjunctive choices in the automaton transition
function, TRAVMC2 still builds only a single tree as in the deter-
ministic case, but includes path information in the typing deriva-
tions and node labels. When checking for termination we consider
deterministic projections of the state corresponding to a particular
series of choices made by the automaton. If any projection satisfies
the termination condition, then we are done.

3. RESULTS
We have benchmarked TRAVMC2 against TRECS-APT using a
number of examples, including all those from the TRECS-APT
paper [3]. We have modified other examples, abstractions of real
programs, from the literature to check liveness properties. The tests
were carried out on a 2.6GHz Intel Core 2 Quad processor running
Windows 7 and the results can be seen in Table 1. For each problem
instance we give its size (‘S’) in terms of the number of symbols in
the HORS, the maximum order (‘O’) of any function symbol, the
number of priorities (‘P’) in the property automaton and the result
(‘R’) i.e. whether the problem was a YES instance. The timings are
given in seconds; when a tool did not terminate within 60 seconds
this is indicated by “–”.

On the smaller examples, the performance of TRAVMC2 is gener-
ally comparable to that of TRECS-APT, if usually slightly slower.
However, on the larger examples (over size 200) in our collection,
TRAVMC2 does seem to outperform TRECS-APT consistently.
Both tools time-out on examples past a certain size, indicating that
more tuning and optimisation is required.

3.1 Optimisations
Without a number of optimisations, the hyper-exponential com-
plexity of the problem is overwhelming, even for relatively small
inputs. However, with the following optimisations in place, the re-
sults are quite encouraging, handling inputs of up to order 6 and up
to 5 priorities.

Subgoal guidance. When searching for a terminating state be-
tween rounds of exploration and enlargement of the derivation tree,
along some paths from the root we will find duplicate accepting
type bindings as described earlier. In the case where every path has
such duplicates we are ready to return YES, otherwise we mark any
unexplored nodes on these paths as “dormant” and do not expand
them in the next round. This allows us to focus effort in exploring
relevant areas of the derivation tree.

Actual parameter revisit avoidance. As our algorithm ex-
plores the problem space in a way guided by the reduction of the
HORS, the tool will encounter many situations where a variable is
used non-linearly. Up to order 1, if the two occurrences of the vari-

Benchmark S O P R T-MC2 TRECS

file 74 3 2 Y 0.39 0.21
imperative 79 3 2 Y 0.43 0.30
imperative-awt 82 3 2 Y 0.41 0.30
gcalloc 84 2 3 Y 0.40 0.07
reverse 95 2 2 Y 0.40 0.07
lock1 100 4 1 Y 0.37 0.09
pgm 122 4 2 N 0.56 0.69
merge 135 2 2 Y 0.45 0.52
homrep 142 3 2 Y 0.75 0.36
bsort 146 2 2 Y 0.43 0.22
intercept 151 4 2 Y 0.43 0.23
intercept-awt 155 4 2 Y 1.97 0.28
var-dwt 160 5 2 Y 0.45 1.57
order5-variant-awt 163 5 2 Y 0.47 2.52
loop-dj-2 181 5 5 N 2.42 0.49
fileocamlc-awt 226 4 2 N 0.64 2.02
twofiles 289 3 3 N 0.47 1.10
twofilesexn 296 3 3 Y 0.50 0.95
fileocamlc 311 4 3 Y 0.63 6.59
merge3 538 2 2 Y 1.30 –
map-plus-one 583 5 2 N 1.39 –
dna 699 2 4 Y 4.31 –
map-plus-one-1 854 5 2 N 31.12 –
search-e-church 1303 6 2 N 1.81 –
fold-right 1855 5 1 Y – –

Table 1: Benchmarking TRAVMC2 and TRECS-APT

able have the same return type, then computation can be shared as
the term bound to the variable will necessarily use any arguments
in the same way. Beyond order 1, however, interaction with the
context is not sufficiently restricted for the approach to generalise.
In certain situations this can reduce the size of the derivation tree
by an exponential factor. For a full description, see [10].

Reification caching. In order to maintain the relationship be-
tween intersection types in the derivation tree, we use open types
built up from type variables. In constrast to the universally quan-
tified type variables used in ML type systems, in our work a type
variable of order n is assigned an intersection of open types of order
n− 1 (or automaton states at order 0). Sharing these type variables
between typing derivations allows us to preserve an invariant of
consistency of the derivation tree, crucial to soundness, even when
the control flow of the algorithm becomes very complex at higher
orders. However, reifying these types to concrete intersection types
in order to perform the termination check can dominate the runtime
of the algorithm. By caching the result of reification for each type
variable we can avoid the majority of lookups while preserving cor-
rectness by invalidating cache entries in the transitive closure of the
dependencies for any type variable that we update.

Trivial path conflation. In the case where the property is spec-
ified using a trivial automaton, it is possible to safely confuse paths
of exploration corresponding to different non-deterministic automa-
ton choices. Observe that for a trivial automaton, every counter-
example must be finite. We record those paths that have encoun-
tered a potential counterexample and, excluding these, consider the
rest of the tree conjunctively during the termination check. As ev-



ery counter-example is finite, the (incorrect) type information they
provide is gradually filtered out until eventually, even if there are
infinitely many counter-examples, all those remaining are of such
length that the tool is guaranteed to find a consistent prefix of the
derivation tree that does not include any bad type information. This
optimisation is a powerful tool to combat the many paths of explo-
ration introduced by non-deterministic choices.

Benchmark S O R Topt T TRECS-APT

fileocamlc 218 4 Y 0.92 – –
fileocamlc2 210 4 Y 0.78 – –
merge2 454 2 Y 2.03 – 4.43
order5-2 141 5 Y 2.80 – –
rev 109 2 Y 0.44 35.67 0.41
twofiles 143 4 Y 0.42 0.49 3.19

We investigated the effect of this optimisation and the results can
be seen in the table above, which contains a number of examples
with disjunctive choices added to the property. Timings for this
optimisation are in the column “Topt” compared with the standard
algorithm in column “T”. The results are quite striking and under-
line the difficulty of efficiently maintaining the non-deterministic
choices independently.

3.2 Related work
In this paper we have focused on an experimental comparison within
the HORS model checking paradigm. In common with TRECS-
APT, our approach makes use of the intersection type character-
ization of the model checking problem (as do all practical HORS
model checkers except one [2]). The underlying algorithm is how-
ever rather different. Our algorithm, which builds on TRAVMC,
is based on the notion of traversals induced by the fully abstract
game semantics of these schemes, but presented as a goal-directed
construction of derivations in the intersection type system. Another
difference is that in TRECS-APT a parity game must be explicitly
solved after every iteration while in our approach we search for a
state that implies there must exist a winning strategy in the parity
game without constructing and solving it explicitly.

There are notable alternative approaches to the verification of higher-
order programs:

(i) Jhala et al. [14, 4] use an SMT solver and predicate abstrac-
tion to infer refinement types for programs in OCaml and Haskell.
Lazy reduction semantics in Haskell require proving termination of
intermediate computations to stay sound, otherwise divergence al-
lows inference of any type, even though the potentially diverging
term may never be reduced. This is achieved by encoding a notion
of size into the refinement types themselves.

(ii) Binary reachability [9, 8] aims to verify liveness properties by
showing that all pairs of states s1 →∗ s2 are related by a disjunc-
tively well-founded relation.

A proper comparison with these approaches would require integra-
tion of this model checker with an abstraction technique, and is left
for future work.

4. CONCLUSION
We have presented TRAVMC2, a tool that implements a new higher-
order model checking algorithm with respect to alternating parity

automata. On a range of benchmarks, we have shown that the per-
formance of TRAVMC2 is generally comparable to that of TRECS-
APT, usually slightly slower on the smaller examples but superior
on the larger examples. Both, however, will require further optimi-
sations to replicate the success of HORS model checkers that target
safety properties. The tool and benchmarks are available to down-
load from http://mjolnir.cs.ox.ac.uk/web/horsapt/.

For future work we intend, based on these experiments, to address
the highlighted issue of handling non-deterministic choice. The
current approach is rather naïve and much work could be shared
between the different choices. It may also be productive to consider
methods that only distinguish non-deterministic choices where nec-
essary, as in the HORS safety model checker PREFACE [13]. In the
long term we aim to integrate TRAVMC2 into a larger verification
tool with an abstraction phase, to check properties of Haskell or
ML programs.

Acknowledgments
We would like to thank Koichi Fujima and Naoki Kobayashi for
their help benchmarking against the TRECS-APT tool, and Steven
Ramsay for helpful discussions.

5. REFERENCES
[1] C. H. Broadbent, A. Carayol, M. Hague, and O. Serre.

C-shore: a collapsible approach to higher-order verification.
In ICFP, pages 13–24, 2013.

[2] C. H. Broadbent and N. Kobayashi. Saturation-based model
checking of higher-order recursion schemes. In CSL, pages
129–148, 2013.

[3] K. Fujima, S. Ito, and N. Kobayashi. Practical alternating
parity tree automata model checking of higher-order
recursion schemes. In C. chieh Shan, editor, APLAS, volume
8301 of Lecture Notes in Computer Science, pages 17–32.
Springer, 2013.

[4] M. Kawaguchi, P. M. Rondon, and R. Jhala. Dsolve: Safety
verification via liquid types. In CAV, pages 123–126, 2010.

[5] N. Kobayashi. Model-checking higher-order functions. In
PPDP, pages 25–36, 2009.

[6] N. Kobayashi and C.-H. L. Ong. A type system equivalent to
the modal mu-calculus model checking of higher-order
recursion schemes. In LICS, pages 179–188, 2009.

[7] N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction
and cegar for higher-order model checking. In PLDI, 2011.

[8] T. Kuwahara, T. Terauchi, H. Unno, and N. Kobayashi.
Termination verification for higher-order functional
programs. In ESOP, 2014.

[9] R. Ledesma-Garza and A. Rybalchenko. Binary reachability
analysis of higher order functional programs. In SAS, 2012.

[10] R. P. Neatherway, S. J. Ramsay, and C.-H. L. Ong. A
traversal-based algorithm for higher-order model checking.
In ICFP, pages 353–364, 2012.

[11] C.-H. L. Ong. On model-checking trees generated by
higher-order recursion schemes. In LICS, pages 81–90, 2006.

[12] C.-H. L. Ong and S. J. Ramsay. Verifying functional
programs with pattern matching algebraic data types. In
POPL, pages 587–598, 2011.

[13] S. J. Ramsay, R. P. Neatherway, and C.-H. L. Ong. A
type-directed abstraction refinement approach to
higher-order model checking. In POPL, pages 61–72, 2014.

[14] N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement
types. In ESOP, pages 209–228, 2013.


