
Guard-based Partial Order Reduction

Alfons Laarman, Elwin Pater, Jaco van de Pol, and Michael Weber

Formal Methods and Tools, University of Twente, The Netherlands
elwin.pater@gmail.com

{laarman,vdpol,michaelw}@cs.utwente.nl

Abstract. This paper aims at making partial order reduction indepen-
dent of the modeling language. Our starting point is the stubborn set
algorithm of Valmari (see also Godefroid’s thesis), which relies on nec-
essary enabling sets. We generalize it to a guard-based algorithm, which
can be implemented on top of an abstract model checking interface.

We extend the generalized algorithm by introducing necessary disabling
sets and adding a heuristics to improve state space reduction. The effect
of the changes to the algorithm are measured using an implementation
in the LTSmin model checking toolset. We compare our results to the
Spin model checker, both on the benchmarks from the BEEM database,
as well as on a number of Promela models.

In many cases, the reduction obtained by our algorithm surpasses the
ideal upper bound on the reduction obtained by the ample set method,
as established empirically by Geldenhuys, Hansen and Valmari.

1 Introduction

Model checking is an automated method to verify the correctness of concur-
rent systems by examining all possible execution paths for incorrect behavior.
The main difficulty is the state space explosion, which refers to the exponential
growth in the number of states obtained by interleaving executions of several
system components. Model checking has emerged since the 1980s [3] and several
advances have pushed its boundaries. Partial order reduction is among those.

Partial order reduction (POR) exploits independence and commutativity bet-
ween transitions in concurrent systems. Exhaustive verification needs to consider
only a subset of all possible concurrent interleavings, without losing the global
behavior of interest to the verified property. In practice, the state space is pruned
by considering a sufficient subset of successors in each state.

The idea to exploit commutativity between concurrent transitions has been
investigated by several researchers, leading to various algorithms for computing
a sufficient successor set. The challenge is to compute this subset during state
space generation (on-the-fly), based on the structure of the specification.

Already in 1981, Overman [19] suggested a method to avoid exploring all
interleavings, followed by Valmari’s [27,30,29] stubborn sets in 1988, 1991 and
1992. Also from 1988 onwards, Peled [16] developed the ample set [22,23], later
extended by Holzmann and Peled [14,24], Godefroid and Pirottin [8,10] the per-
sistent set [9], and Godefroid and Wolper [11] sleep sets. These foundations have
been extended and applied in numerous papers over the past 15 years.

Problem and Contributions. Previous work defines partial order reduction in
terms of either petri-nets [34] or parallel components with local program coun-
ters, called processes [14,9]. While this allows the exploitation of certain formalism-
specific properties, like fairness [23] and token conditions [32], is also complicates
the application to other formalisms, for instance, rule-based systems [12]. More-
over, current implementations are tightly coupled to a particular specification
language in order to compute a good syntactic approximation of a sufficient suc-
cessor set. In recognition of these problems, Valmari started early to generalize
the stubborn set theory for “transition/variable systems” [28,30].

To address the same problem for symbolic and parallel model checking algo-
rithms, we earlier proposed the Pins interface [2,18], separating language front-
ends from verification algorithms. Through Pins (Partitioned Interface to the
Next-State function) a user can use various high-performance model checking al-
gorithms for his favourite specification language, cf. Figure 1. Providing partial
order reduction as Pins2Pins wrapper once and for all allows every combination
of language and algorithm to benefit.

Wrappers

mCRL2 Promela DVE UPPAAL

 Variable reordering

Symbolic

Specification

Transition
caching

 Partial−order
Transition grouping reduction

PINS

PINS

Distributed Multi−core

Languages

Tools
Reachability

Pins2pins

Fig. 1. Modular Pins architecture of LTSmin

An important question is
whether and how an abstract in-
terface like Pins can support the
partial reduction theory. We pro-
pose a solution that is based on
the stubborn set theory. This the-
ory stipulates how to choose a
subset of transitions, enabled and
disabled, based on a careful anal-
ysis of their dependency relations.
These relations have been de-
scribed on the abstract level of transition systems before [30]. Additionally,
within the context of petri-nets, the relations were refined to include multiple
enabling conditions, a natural distinction in this formalism [32].

We generalize Valmari’s work to a complete language-agnostic setting, by
assuming that every transition consists of a number of guard conditions, both
enabling and disabling, and an assignment to state variables (Section 3). In
Section 4, we extend Pins with the necessary information: a co-enabled matrix
and optional; necessary enabling matrix on guards. In addition, we introduce
novel necessary disabling sets and a new heuristic-based selection criterion. As
optimal stubborn sets are expensive to compute precisely [32], our heuristic finds
reasonably effective stubborn sets in a short time, hopefully leading to smaller
state spaces. In Section 5, we show how LTL can be supported.

Our implementation resides in the LTSmin toolset [2], based on Pins. Any
language module that connects to Pins now obtains POR without having to
bother about its implementation details, it merely needs to export transition
guards and their dependencies via Pins. We demonstrate this by extending
LTSmin’s DVE and Promela [1] front-ends with guards and their matrices,

2

providing us excellent opportunities to evaluate our solution on the Dve models
of the BEEM repository [21] and compare against Spin [13], as Section 6 shows.

Compared to Spin, the new algorithm generally provides more reduction
and uses less memory, but takes more time to do so. We also show that our
implementation of guard-based stubborn sets yields more reduction than the
theoretically best reduction using ample sets, as reported by Geldenhuys et al. [7]
on a series of BEEM benchmarks.

Summarizing, these are the main contributions presented in this work:
1. Guard-based partial order reduction, which is a language-independent gener-

alization of the stubborn set method based on necessary enabling sets;
2. Some improvements to efficiently compute smaller stubborn sets:

(a) A refinement based on necessary disabling sets;
(b) A heuristic selection criterion for necessary enabling sets;

3. Two language module implementations exporting guards with dependencies;
4. An empirical evaluation of guard-based partial order reduction in LTSmin:

(a) A comparison on resource consumption and effectiveness of partial order
reduction between LTSmin [2] and Spin [13] on 16 Promela models.

(b) An impact analysis of necessary disabling sets and the heuristic selection.
(c) A comparison with the best possible reduction achieved with the ample

set method, as reported by Geldenhuys et al. [7], on BEEM models.

2 The Computational Model of Guarded Transitions

In the current section, we provide a model of computation comparable to [7], on
purpose leaving out the notion of processes. It has three main components: states,
guards and transitions. A state represents the global status of a system, guards
are predicates over states, and a transition represents a guarded state change.

Definition 1 (state). Let S = E1×E2×. . .×En be a set of vectors of elements.
Each element Ei represents some finite domain. A state s = 〈e1, e2, . . . , en〉 ∈ S
associates a value ei ∈ Ei to each element. We denote a projection to a single
element in the state as s[i] = ei.

Definition 2 (guard). A guard g : S → B is a total function that maps each
state to a boolean value, B = {true, false}. We write g(s) or ¬g(s) to denote that
guard g is true or false in state s. We also say that g is enabled/disabled.

Definition 3 (structural transition). A structural transition t ∈ T is a tuple
(G, a) such that a is an assignment a : S → S and G is a set of guards, also
denoted as Gt. We denote the set of enabled transitions by en(s) := {t ∈ T |∧
g∈Gt g(s)}. We write s

t−→ when t ∈ en(s), s
t−→ s′ when s

t−→ and s′ = a(s), and

we write s
t1t2...tk−−−−−→ sk, when ∃s1, . . . , sk ∈ S : s

t1−→ s1
t2−→ s2 . . .

tk−→ sk.

Definition 4 (state space). Let s0 ∈ S and let T be the set of transitions.
The state space from s0 induced by T is MT = (ST , s0, ∆), where s0 ∈ S is the

3

initial state, and ST ⊆ S is the set of reachable states, and ∆ ⊆ ST × T × ST
is the set of semantic transitions. These are defined to be the smallest sets such

that s0 ∈ ST , and if t ∈ T , s ∈ ST and s
t−→ s′, then s′ ∈ ST and (s, t, s′) ∈ ∆.

Valmari and Hansen [32, Def. 6] also define guards (conditions), which take
the role of enabling conditions for disabled transitions. We later generalize this
role to enabled transitions as well for our necessary disabling sets (Section 4.2).

In the rest of the paper, we fix an arbitrary set of vectors S = E1×E2× . . .×
En, initial state s0 ∈ S, and set of transitions T , with induced reachable state
space MT = (ST , s0, ∆). We often just write “transition” for elements of T .

It is easy to see that our model generalizes the setting including processes
(as in [7]). One can view the program counter of each process as a normal state
variable, check for its current value in a separate guard, and update it in the
transitions. But our definition is more general, since it can also be applied to
models without a natural notion of a fixed set of processes, for instance rule-
based systems, such as the linear process equations in mCRL [12].

Besides guarded transitions, structural information is required on the exact
involvement of state variables in a transition. Analogous to [30], we define that
some predicate g depends on index i, we test whether g(s) is different from g(s′)
for some s and s′ that only differ at index i.

Definition 5 (disagree sets). Given states s, s′ ∈ S, for 1 ≤ i ≤ n, we define
the set of indices on which s and s′ disagree as δ(s, s′) := {i | s[i] 6= s′[i]}.

Definition 6 (affect sets). For t = (G, a) ∈ T and g ∈ G, we define

1. the test set of g is Ts(g) ⊇ {i | ∃s, s′ ∈ S : δ(s, s′) = {i} ∧ g(s) 6= g(s′)},
2. the test set of t is Ts(t) :=

⋃
g∈G Ts(g),

3. the write set of t is Ws(t) ⊇
⋃
s∈ST

δ(s, s′) with s
t−→ s′,

4. the read set of t is Rs(t) ⊇ {i | ∃s, s′ ∈ S : δ(s, s′) = {i} ∧ s t−→ ∧s′ t−→ ∧
Ws(t) ∩ δ(a(s), a(s′)) 6= ∅}, and

5. the variable set of t is Vs(t) := Ts(t) ∪ Rs(t) ∪Ws(t).

Although these sets are defined in the context of the complete state space,
they may be statically over-approximated (⊇) by the language front-end.

Example 1. Suppose s ∈ S = N× N× N, consider the following transition: t :=
IF (s[1] = 0∧ s[2] < 10) THEN s[3] := s[1] + 1. This transition has two guards,
g1 = (s[1] = 0) and g2 = (s[2] < 10), with test sets Ts(g1) = {1},Ts(g2) = {2}.
Hence, the test set of the transition is Ts(t) = {1, 2}. The write set Ws(t) = {3},
so the variable set Vs(t) = {1, 2, 3}. The read set Rs(t) = ∅ (since s[1] = 0), but
simple static analysis may over-approximate it as {1}.

3 Partial Order Reduction with Stubborn Sets

We now rephrase partial order reduction theory based on stubborn sets. We fol-
low the definitions from Godefroid’s thesis [9], but avoid the notion of processes.

4

To distinguish which transitions may interfere with one another we use the
dependency relation. Recall that MT = (ST , s0, ∆) is a fixed state space.

Definition 7 (dependency relation). A dependency relation D ⊆ T × T for
ST is a symmetric, reflexive relation such that (t1, t2) /∈ D implies that for all
states s ∈ ST , the following hold:
1. If s t1−→ s′, then s t2−→ iff s′ t2−→

(independent transitions neither enable nor disable each other).
2. If s t1t2−−→ s′ and s t2t1−−→ s′′ then s′ = s′′

(commutativity of enabled independent transitions).

The following is a sufficient condition for a dependency relation [9]:

(t1, t2) ∈ D if Ws(t1) ∩Vs(t2) 6= ∅ or Ws(t2) ∩Vs(t1) 6= ∅

Two transitions t, t′ are independent if (t, t′) /∈ D. The dependency relation
enables the definition of a persistent set (See Figure 2), which is a condition to
preserve deadlocks in the reduced state space.

Definition 8 (persistent set [9]). A set of transitions T enabled in state s ∈
ST is persistent in s iff for all non-empty sequences of transitions s t1,...,tn−1−−−−−−→ sn−1
tn−→ including only transitions ti /∈ T , 1 ≤ i ≤ n, tn is independent with all

transitions in T . Contrary to Godefroid, we also require T = ∅ ⇐⇒ en(s) = ∅.

By limiting exploration of each state s to a subset of en(s) which a persistent
set, the state space is reduced. Researchers have attempted to weaken this theo-
retical definition as much as possible allowing it to include more sets, increasing
the chance to find one which yields a larger reduction [31, Sec. 7.4].

s
t1

t2

t3

T

t1

t2

t3

Fig. 2. Persistent set

Example 2. Suppose T is a persistent set in some state
s. All transitions outside the persistent set, are in-
dependent with all transitions in the persistent set.
Hence, by Definition 7 of dependence, it is possible
to swap the order of execution of the transitions in
the persistent set, with the transitions not in the per-
sistent set, without disabling any of the transitions
in the persistent set. Therefore, after the sequence
t1, t2, t3 6∈ T , all transitions in the persistent set are
still enabled, and, because T is not empty, no dead-
locks can occur in between. Hence any (gray) dead-
lock state reachable after t1 is also reachable after a
T -successor of s.

The theoretical notion of a persistent set is not suitable to compute persistent
sets by itself; its reference to future parts of the exploration would still cause
the whole state space to be explored. Therefore, we now preset the notion of a
(static) stubborn set, as developed by Valmari. While this definition is stronger
than the persistent set, it can be computed more efficiently.

5

Definition 9 (may be co-enabled [9]). A symmetric, reflexive relation MC ⊆
T × T is a valid may be co-enabled relation, if it contains all transitions pairs
(t1, t2) enabled in the same state: (∃s ∈ ST : t1, t2 ∈ en(s)) =⇒ (t1, t2) ∈ MC .

Definition 10 (necessary enabling set [9]). Let t ∈ T be a disabled transi-
tion in state s ∈ ST , t /∈ en(s). A necessary enabling set for t in s is a set of
transitions Nt, such that for all sequences of the form s t1,...,tn−−−−−→ s′ t−→ , there is
at least one transition ti ∈ Nt (for some 1 ≤ i ≤ n).

Note that it is allowed to over-approximate the may be co-enabled relation.
Typically, transitions within a sequential system component can never be enabled
at the same time. They never interfere with each other, even though their test
and write sets share at least the program counter. Using necessary enabling sets,
the dependency relation and the may be co-enabled relation, we can define a
stubborn set as follows:

Definition 11 (stubborn set [9]). A set Ts of transitions is a stubborn set
in a state s if Ts ∩ en(s) = ∅ ⇐⇒ en(s) = ∅, and for all transitions t ∈ Ts, the
following conditions hold:
1. If t is disabled in s, then all transitions in some necessary enabling set for t

are also in Ts;
2. If t is enabled in s, then all transitions t′ that are dependent and may be

co-enabled with t are also in Ts.

Weaker definitions of (static) stubborn sets exists [30,31]. These require how-
ever more dependencies, e.g. writeup sets. For the sake of a simpler interface we
chose the above. The following theorem states how stubborn sets help to identify
a persistent set:

Theorem 1 (from stubborn set to persistent set [9]). Let Ts be a stubborn
set in state s. Then T := Ts ∩ en(s) is a persistent set in s.

Algorithm 1 from [9] implements the closure method from [31, Sec. 7.4]. It
builds a stubborn set incrementally by making sure that each new transition
added to the set fulfills the stubborn set conditions (Definition 11). Starting
with some enabled transition, it adds all dependent and possibly co-enabled
transitions to a work set. For each new transition in the work set it, either adds
a necessary enabling set if it is disabled, or in case of an enabled transition it
adds all dependent transitions that may be co-enabled.

Example 3. Suppose Figure 2 is a partial run of the algorithm, and transition
t3 is dependent with some transition t ∈ T . At some point, when a stubborn set
for a state s is calculated, the algorithm will process t and add all dependent
transitions, including t3 to the work set. Since t3 is disabled in state s, we add
the necessary enabling set for t3 to the work set. This could for instance be {t2},
which is then added to the work set. Again, the transition is disabled and a
necessary enabling set for t2 is added, for instance, {t1}. Since t1 is enabled in s,
and has no other dependent transitions in this example, the algorithm finishes.
Note that in this example, t1 now should be part of the persistent set.

6

1 function stubborn(s)
2 Twork = {t̂} such that t̂ ∈ en(s)
3 Ts = ∅
4 while Twork 6= ∅ do
5 Twork = Twork − t, Ts = Ts ∪ {t} for some t ∈ Twork

6 if t ∈ en(s) then
7 Twork = Twork ∪ {t′ ∈ Σ | (t, t′) ∈ D ∩MC} \ Ts
8 else
9 Twork = Twork ∪N \ Ts where N ∈ find nes(t, s)

10 return Ts

Algorithm 1: The stubborn set algorithm

To find a necessary enabling set for a disabled transition t (i.e. find nes(t, s)),
Godefroid uses fine-grained analysis, which depends crucially on program coun-
ters. The analysis can be roughly described as follows:

1. If t is not enabled in global state s, because some local program counter has
the “wrong” value, then use the set of transitions that assign the “right”
value to that program counter as necessary enabling set;

2. Otherwise, if some guard g for transition t evaluates to false in s, take all
transitions that write to the test set of that guard as necessary enabling set.
(i.e. include those transitions that can possibly change g to true).

In the next section, we will show how we get around program counters in
guard-based partial order reduction.

4 Computing Necessary Enabling Sets for Guards

The current section investigates how necessary enabling sets can be computed
purely based on guards, without reference to program counters. We proceed by
introducing necessary enabling and disabling sets on guards, and a heuristic
selection function. Next, it is shown how the Pins interface can be extended
to support guard-based partial order reduction. Finally, we devise an optional
extension for language modules to provide fine-grained structural information.
Providing this optional information further increases the reduction power.

4.1 Guard-based Necessary Enabling Sets

We refer to all guards in the state space MT = (ST , s0, ∆) as: GT :=
⋃
t∈T Gt.

Definition 12 (may be co-enabled for guards). The may be co-enabled
relation for guards, MC g ⊆ GT × GT is a symmetric, reflexive relation. Two
guards g, g′ ∈ GT may be co-enabled if there exists a state s ∈ ST where they
both evaluate to true: ∃s ∈ ST : g(s) ∧ g′(s) =⇒ (g, g′) ∈ MC g.

7

Given MC g, a concrete may be co-enabled relation on transitions in the sense
of Definition 9 can be retrieved by defining:

MC := {(t1, t2) | ∀g ∈ Gt1 , g′ ∈ Gt2 : (g, g′) ∈ MC g}

Proof. According to Definition 3, we have: t ∈ en(s)⇔
∧
g∈Gt g(s). Assume that

there is ∃s ∈ ST : t1, t2 ∈ en(s) and (t1, t2) 6∈ MC . According to the definition of
MC there must be guards g ∈ Gt1 , g′ ∈ Gt2 such that (g, g′) 6∈ MC g. However,
according to Definition 12 this contradicts our assumption. ut

Note that the above definition introduces an imprecision, for instance: let
g1 := x < 1,g2 := x > 0 and g′ := x = 1 ∨ x = 3, now a transition t =
(a, {g1, g2}) will be defined co-enabled with t′ = (a, {g′}) because (g1, g

′) ∈
MC g and (g2, g

′) ∈ MC g, whereas (t, t′) 6∈ MC . This might be avoided by only
splitting a conjunctive g into separate guards if the conjuncts are independent,
e.g. Ts(g1) ∩ Ts(g2) = ∅. Though, we did not implement this yet.

Example 4. An example of two guards that can never be co-enabled is: g1 :=
v = 0 and g2 := v ≥ 5. In a language like Promela, these guards could imple-
ment the channel empty and full operations, where v is some variable that the
number of messages in the channel. In a language like mCRL2, the conditions
in a summand can be implemented as guards.

We delegate the computation of MC g to the language front-end (Section 4.4).

Definition 13 (necessary enabling set for guards). Let g ∈ GT be a guard
that is disabled in some state s ∈ ST , i.e. ¬g(s). A set of transitions Ng is a nec-

essary enabling set for g in s, if for all states s′ with some sequence s t1,...,tn−−−−−→ s′

and g(s′), for at least one transition ti (1 ≤ i ≤ n) we have ti ∈ Ng.

Given Ng, a concrete necessary enabling set on transitions in the sense of
Definition 10 can be retrieved as follows (notice the non-determinism):

find nes(t, s) ∈ {Ng | g ∈ Gt ∧ ¬g(s)}

Proof. Let t be a transition that is disabled in state s ∈ ST , t /∈ en(s). Let there
be a path where t becomes enabled, s t1,...,tn−−−−−→ s′ t−→ (for some 1 ≤ i ≤ n), On
this path, all of t’s disabled guards, g ∈ Gt ∧ ¬g(s), need to be enabled, for t to
become enabled (recall that Gt is a conjunction). Therefore, any Ng is a Nt. ut
Example 5. Let ch be the variable for a rendez-vous channel in a Promela
model. A channel read can be modeled as a Promela statement ch? in some
process P1, guarded by some process counter, e.g. P1.pc = 1. A channel write
can be modeled as a Promela statement ch! in some process P2, guarded by
some process counter, e.g. P2.pc = 10. The set of all transitions that assign
P1.pc := 1, are a valid necessary enabling set for both statements (transitions).
So is the set of all transitions that assign P2.pc := 10.

Instead of computing the necessary enabling set on-the-fly, we statically as-
sign each guard a necessary enabling set by default. Only transitions that write
to state vector variables used by this guard need to be considered (as in [20]):

Nmax
g := {t ∈ T | Ts(g) ∩Ws(t) 6= ∅}

8

4.2 Necessary Disabling Sets

Consider the computation of a stubborn set Ts in state s along the lines of
Algorithm 1. If a disabled t gets in the stubborn set, a necessary enabling set
is required. This typically contains a predecessor of t in the control flow. When
that one is not yet enabled in s, its predecessor is added as well, until we find a
transition enabled in s. So basically a whole path of transitions between s and t
ends up in the stubborn set.

P1 P2

t1

t2· · ·t5

t6

t7

t8

D,MC

Example 6. Assume two parallel processes P1 and P2,
with D(t1, t7) and D(t6, t7). Initially en(s0) = {t1, t7};
both end up in the stubborn set, since they are dependent
and may be co-enabled. Then t7 in turn adds t6, which
is disabled. Now working backwards, the enabling set for
t6 is t5, for t5 it is t4, etc, eventually resulting in the fat
stubborn set {t1, . . . , t7}. ut

How can this lengthy deduction be avoided? The cru-
cial insight is that to enable a disabled transition t, it is
necessary to disable any enabled transition t′ which cannot
be co-enabled with t. Quite likely, t′ could be a successor
of the starting point s, leading to a slim stubborn set.

Example 7. Consider again the situation after adding {t1, t7, t6} to Ts, in the
previous example. Note that t1 and t6 cannot be co-enabled, and t1 is enabled in
s0. So it must be disabled in order to enable t6. However, t1 is disabled by itself.
From this it can be concluded that t1 is a necessary enabling set of t6, and the
algorithm can directly terminate with the stubborn set {t1, t7, t6}. Clearly, using
disabling information can save time and can lead to smaller stubborn sets. ut

Definition 14 (necessary disabling set for guards). Let g ∈ GT be a guard
that is enabled in some state s ∈ ST , i.e. g(s). A set of transitions N g is a nec-
essary disabling set for g in s, if for all states s′ with some sequence s t1,...,tn−−−−−→ s′

and ¬g(s′), for at least one transition ti (1 ≤ i ≤ n) we have ti ∈ N g.

The following disabling set can be assigned to each guard. Similar to enabling
sets, only transitions that change the state indices used by g are considered.

Nmax

g := {t ∈ T | Ts(g) ∩Ws(t) 6= ∅}

Using disabling sets, we can find an enabling set for the current state s:

Theorem 2. If N g is a necessary disabling set for guard g in state s with g(s),
and if g′ is a guard that may not be co-enabled with g, i.e. (g, g′) /∈ MC g, then
N g is also a necessary enabling set for guard g′ in state s.

Proof. Guard g′ is disabled in state s, since g(s) holds and g′ cannot be co-
enabled with g. In any state reachable from s, g′ cannot be enabled as long as
g holds. Thus, to make g′ true, some transition from the disabling set of g must
be applied. Hence, a disabling set for g is an enabling set for g′. ut

9

Given Ng and N g, we can find a necessary enabling set for a particular
transition t = (G, a) ∈ T in state s, by selecting one of its disabled guards.
Subsequently, we can choose between its necessary enabling set, or the necessary
disabling set of any guard that cannot be co-enabled with it. This spans the
search space of our new find nes algorithm, which is called by Algorithm 1:

find nes(t, s) ∈ {Ng | ¬g(s)} ∪
⋃

g′∈GT

{N g′ | g′(s) ∧ (g, g′) 6∈ MC g}

4.3 Heuristic Selection for Stubborn Sets

Even though the static stubborn set of Definition 11 is stronger than the per-
sistent set or the dynamic stubborn set, its non-determinism still allows many
different sets to be computed, as both the choice of an initial transition t̂ at
Line 2 and the find nes function in Algorithm 1 are non-deterministic. In fact,
it is well known that the resulting reductions depend strongly on a smart choice
of the necessary enabling set [32]. Known approaches to resolve this problem
either search for SCCs in the complete search space [31], or use even more com-
plicated means (like the deletion algorithm in [34]). The complexity of these
solutions can be somewhat reduced by choosing a ‘scapegoat’ for t̂ [34].

We propose here a practical solution that does neither; using a heuristics, we
explore all possible scapegoats, while limiting the search by guiding it towards
a local optimum. (This makes the the algorithm deterministic, which has other
benefits, cf. Section 7). An effective heuristics for large partial order reductions
should select small persistent sets [9]. To this end, we define a heuristic function
h that associates some cost to adding a new transition to the stubborn set. Here
enabled transitions weigh more than disabled transitions. Transitions that do
not lead to additional work (already selected or going to be processed) do not
contribute to the cost function at all. Below, Ts and Twork refer to Algorithm 1.

cost(t, s) =

1 if t /∈ en(s) and t /∈ Ts ∪ Twork
n if t ∈ en(s) and t /∈ Ts ∪ Twork
0 otherwise

Here n is the maximum number of outgoing transitions (degree) in any state,
n = max

s∈S
(|en(s)|), but it can be over-approximated (for instance by |T |).

h(N , s) =
∑
t∈N

cost(t, s)

We restrict the search to the cheapest necessary enabling sets:

find nes ′(t, s) ∈ {N ∈ find nes(t, s) | ∀N ′ ∈ find nes(t, s) : h(N , s) ≤ h(N ′, s)}

4.4 A Pins Extension to Support Guard-based POR

In model checking, the state space graph of Definition 4 is constructed only
implicitly by iteratively computing successor states. A generic next-state inter-
face hides the details of the specification language, but exposes some internal
structure to enable efficient state space storage or state space reduction.

10

The Partitioned Interface for the Next-State function, or Pins [2], provides
such a mechanism. The interface assumes that the set of states S consists of
vectors of fixed length N , and transitions are partitioned disjunctively in M
partition groups T . Pins also supports state predicates L for model checking. In
order to exploit locality in symbolic reachability, state space storage, and incre-
mental algorithms, Pins exposes a dependency matrix DM, relating transition
groups to indices of the state vector. This yields orders of magnitude improve-
ment in speed and compression [2,1]. The original functionality of Pins is:
– InitState: S
– NextStates: S × T → 2S and
– StateLabel: S × L→ B
– DM: BM×N

The functions of Pins are implemented by the language front-end and used by
the exploration algorithms. Note that the POR layer both uses and provides
the Pins interface, since it is a state space transformer, i.e. a Pins2Pins wrap-
per in Figure 1.

Extensions to Pins. We introduced three essential extensions of the Pins con-
cept to support guard-based partial order reduction:
– StateLabel additionally exports GT ,
– DM is refined to expose the affect sets Ts, Rs and Ws, and
– The May be Co-enabled matrix MC g is introduced, filled by the front-end

(see Example 4), which may over-approximate it (Definition 12).

Tailored Necessary Enabling/Disabling Sets. We can statically derive Nmax and
Nmax

via the refined Pins interface. In order to obtain the maximal reduction
performance, we extend the Pins interface with two optional matrices, called
N pins
g and N pins

g . The language front-end can now provide more fine-grained de-
pendencies by inspecting the syntax as in Example 5 and filling in these matrices.
The stubborn set algorithm actually uses the following intersections:

Ng := Nmax
g ∩N pins

g N g := Nmax

g ∩N pins

g

A simple insight shows that we can compute both N pins
g and N pins

g using one
algorithm. Namely, for a transition to be necessarily disabling for a guard g,
means exactly the same as for to to be necessarily enabling for the inverse: ¬g.
Or by example: to disable the guard pc = 1, is the same as to enable pc 6= 1.

5 Partial Order Reduction for On-The-Fly LTL Checking

Liveness properties can be expressed in Linear Temporal Logic (LTL) [25]. An
example LTL property is �♦p, expressing that from any state in a trace (� =
generally), eventually (♦) a state s can be reached s.t. p(s) holds, where p is a
predicate over a state s ∈ ST , similar to our definition of guards in Definition 2.

In the automata-theoretic approach, an LTL property ϕ is transformed into
a Büchi automaton Bϕ whose ω-regular language L(Bϕ) represents the set of all

11

Table 1. POR provisos for the LTL model checking of MT with a property ϕ

C2 No a ∈ stubborn(s) is visible, except when stubborn(s) = en(s).

C3 @a ∈ stubborn(s) : a(s) is on the DFS stack, except when stubborn(s) = en(s).

infinite traces the system should adhere to. Bϕ is an automaton (MB, Σ,F) with
additionally a set of transition labels Σ, made up of the predicates, and accepting
states: F ⊆ SB. Its language is formed by all infinite paths visiting an accepting
state infinitely often, due to its finiteness these are all lasso-formed with an
accepting state on the cycle. The system MT is likewise interpreted as a set of
infinite traces representing its possible executions: L(MT). The model checking
problem is now reduced to a language inclusion problem: L(MT) ⊆ L(Bϕ).

However the number of cycles in MT is exponential in its size, therefore it is
more efficient to invert the problem and look for error traces. The error traces
are captured by the negation of the property: ¬ϕ. The new problem is a language
intersection and emptiness problem: L(MT)∩L(B¬ϕ) = ∅. The intersection can
be solved by computing the synchronous cross product MT ⊗ B¬ϕ The states
of SMT⊗B¬ϕ are formed by tuples (s, s′) with s ∈ SMT

and s′ ∈ S¬ϕ, with
(s, s′) ∈ F iff s′ ∈ F¬ϕ. The transitions in TMT⊗B¬ϕ are formed by synchronizing
the propositions Σ on the states s ∈ SMT

. For an exact definition of TMT⊗B¬ϕ ,
we refer to [33]. The construction of the cross product can be done on-the-
fly, without computing (and storing!) the full state space MT . Therefore, the
NDFS [4] algorithm is often used to find accepting cycles (= error traces) as it
can do so on-the-fly as well. No trace implies language emptiness.

NDFS emptiness check

LTL crossproduct

Partial order reduction

Language module

system specification ϕ

MT

MR
T

MR
T ⊗ B¬ϕ

Σ,G,Ts
MCg,N pins

g

Tvis

@a ∈ stubborn(s)
: s ∈ stack

Pins

Pins

Pins

Fig. 3. Pins w. LTL POR

To combine partial order reduction with LTL
model checking, the reduced state space MR

T is con-
structed on-the-fly, while the LTL cross product and
emptiness check algorithm run on top of the reduced
state space [24]. Figure 3 shows the Pins stack with
POR and LTL as Pins2Pins wrappers.

To preserve all traces that are captured by the
LTL formula, POR needs to fulfill two additional
constraints: the visibility proviso ensures that traces
included in B¬ϕ are not pruned from MT , the cycle
proviso ensures the necessary fairness. The visible
transitions Tvis are those that can enable or disable
a proposition of ϕ (p ∈ Σ). Table 1 shows sufficient
conditions to ensure both provisos ([31] presents
weaker conditions). These can easily be integrated
in Algorithm 1, which now also requires Tvis and access to the DFS stack.

We extend the NextStates function of Pins with a boolean, that can be
set by the caller to pass the information needed for C3. For C2, we extend Pins
with Tvis , to be set by the LTL wrapper based on the predicates Σ in ϕ:

Tvis := {t ∈ T |Ws(t) ∩
⋃
p∈Σ

Ts(p) 6= ∅}

Peled [22, Sec. 4.1] shows how to prove this. However, this is a coarse over-
approximation, which we can improve by inputting ϕ to the language module,

12

so it can export Σ, i.e. Σ ⊆ G, and thereby obtain N/N for it:

Tmax
vis :=

⋃
p∈Σ
N (p) ∪N (p) ∩ Tvis

We could also make this definition dynamic, by only selecting N in states where
a p is disabled and N where it is enabled, but we did not implement this yet.
Finally, we can improve the heuristic (Section 4.3) to avoid visible transitions:

cost ′(t, s) =

{
n2 if t ∈ en(s) ∩ Tvis and t /∈ Ts ∪ Twork
cost(t, s) otherwise

To summarize, we can combine guard-based partial order reduction with
on-the-fly LTL model checking with limited extensions to Pins: a modified
NextStates function and a visibility matrix Tvis : T → B. For better reduction,
the language module needs only to extend the exported state labels from G to
G ∪Σ and calculate the MC (and N pins/ N pins

) for these labels as well.

6 Experimental Evaluation

Experimental Setup The LTSmin toolset implements Algorithm 1 as a language-
independent Pins layer since version 1.6. We experimented with BEEM and
Promela models. To this end, first the DiVinE front-end of LTSmin was
extended with the new Pins features in order to export the necessary static
information. In particular, it supports guards, R/W-dependency matrices, the
co-enabled matrix, disabling- and enabling sets; see [20] for details. Later the
Promela front-end SpinS [1] was extended, with relatively little effort.

We performed experiments and indicate performance measurements with
LTSmin 2.01 and Spin version 6.2.12. All experiments ran on a dual Intel E5335
CPU with 24GB RAM memory, restricted to use only one processor, 8GB of
memory and 3 hours of runtime. None of the models exceeded these bounds.

We compared our guard-based stubborn method with the ample set method,
both theoretically and experimentally. For the theoretical comparison the same
BEEM models were used as in [7] to establish the best possible reduction with
ample sets. For the experimental comparison, we used a rich set of Promela
models3, which were also run in Spin with partial order reduction.

BEEM Models Table 2 shows the results obtained on those models from the
BEEM database [21] that were selected by Geldenhuys, Hansen and Valmari [7].
The results in Table 2 are ordered by the best theoretical ample set reduction
(best first). These numbers (column ample) are taken from their paper [7, col-
umn ample2 Df/Rf]. They indicate the experimentally established best possible
reduction that can be achieved with the deadlock preserving ample set method,
while considering conditional dependence and full information on the state space.

1 http://fmt.cs.utwente.nl/tools/ltsmin/
2 http://spinroot.com
3 http://www.albertolluch.com/research/promelamodels

13

http://fmt.cs.utwente.nl/tools/ltsmin/
http://spinroot.com
http://www.albertolluch.com/research/promelamodels

Table 2. Comparison of guard-based POR results with [7] (split in two columns)

ample nes nes nes

Model +h h+d

cyclic scheduler.1 1% 58% 1% 1%

mcs.4 4% 16% 16% 16%

firewire tree.1 6% 8% 8% 8%

phils.3 11% 14% 16% 16%

mcs.1 18% 87% 85% 85%

anderson.4 23% 58% 46% 46%

iprotocol.2 26% 19% 17% 16%

mcs.2 34% 64% 64% 64%

phils.1 48% 60% 48% 48%

firewire link.2 51% 24% 21% 19%

krebs.1 51% 94% 93% 93%

leader election.3 54% 13% 12% 6%

telephony.2 60% 95% 95% 95%

leader election.1 61% 23% 22% 11%

szymanski.1 63% 68% 65% 65%

production cell.2 63% 26% 24% 24%

at.1 65% 96% 95% 95%

szymanski.2 66% 66% 64% 64%

leader filters.2 66% 57% 53% 53%

lamport.1 66% 95% 95% 95%

protocols.2 68% 18% 13% 13%

collision.1 68% 88% 59% 56%

ample nes nes nes

Model +h h+d

driving phils.1 69% 99% 68% 78%

protocols.3 71% 13% 7% 7%

peterson.2 72% 82% 82% 82%

driving phils.2 72% 99% 45% 45%

collision.2 74% 75% 40% 39%

production cell.1 74% 23% 19% 19%

telephony.1 75% 95% 95% 95%

lamport.3 75% 96% 95% 96%

firewire link.1 79% 42% 37% 33%

pgm protocol.4 81% 93% 56% 55%

bopdp.2 85% 90% 73% 73%

fischer.1 87% 87% 87% 87%

bakery.3 88% 99% 96% 96%

exit.2 88% 94% 94% 94%

brp2.1 88% 95% 80% 79%

public subscribe.1 89% 81% 79% 76%

firewire tree.2 89% 84% 63% 47%

pgm protocol.2 89% 96% 72% 72%

brp.2 96% 76% 42% 42%

extinction.2 96% 25% 24% 21%

cyclic scheduler.2 99% 46% 28% 27%

synapse.2 100% 93% 93% 93%

The amount of reduction is expressed as the percentage of the reduced state
space compared to the original state space (100% means no reduction). The next
three columns show the reduction achieved by the guard-based stubborn ap-
proach, based on necessary enabling sets only (nes), the heuristic selection func-
tion (nes+h), and the result of including the necessary disabling sets (nes+h+d).

The results vary a lot. For instance, the best possible ample set reduction
in cyclic scheduler.1 is far better than the actual reduction achieved with
stubborn sets (nes). However, for cyclic scheduler.2 the situation is reversed.
Other striking differences are mcs.1 versus leader election. Since we compare
best case ample sets (using global information) with actual stubborn sets (using
only static information), it is quite interesting to see that guard-based stubborn
sets can provide more reduction than ample sets. One explanation is that the
ample set algorithm with a dependency relation based on the full state space
(Df/Rf, [7]) is still coarse. However, further comparison reveals that many models
yield also better reductions than those using dynamic relations (Dd/Rd, [7]),
e.g. protocols.3 with 7% vs 70%. This prompted us to verify our generated
stubborn sets, but we found no violations of the persistent set definition. So we
suspect that either the relations deduced in [7] are not entirely optimal or the
POR heuristic of selecting the smallest ample set fails in these cases.

We also investigated the effects of the necessary disabling sets (Sec. 4.2)
and heuristic selection (Sec. 4.3). Heuristic selection improves reductions (col-
umn nes+h). For instance, for cyclic scheduler.1 it achieves a similar reduc-
tion as the optimal ample set method. The reduction improves in nearly all
cases, and it improves considerably in several cases. Using Necessary Disabling
Sets (nes+nds) in itself did not yield an improvement compared to plain nes,

14

Table 3. Guard-based POR in LTSmin vs ample set POR in Spin

No Partial-Order Reduction Guard-based POR Ample-set POR

LTSmin Spin

Model States |ST | Trans |∆| Time %|ST | %|∆| Time %|ST | %|∆| Time

garp 48,363,145 247,135,869 95.6 3% 1% 35.5 18% 9% 15.5

i-protocol2 14,309,427 48,024,048 15.5 16% 10% 22.7 24% 16% 4.5

peterson4 12,645,068 47,576,805 13.8 3% 1% 2.4 5% 2% 0.3

i-protocol0 9,798,465 45,932,747 17.3 6% 2% 12.5 44% 29% 8.7

brp.prm 3,280,269 7,058,556 3.7 100% 100% 13.5 58% 39% 1.6

philo.pml 1,640,881 16,091,905 5.2 5% 2% 3.3 100% 100% 6.3

sort 659,683 3,454,988 1.9 1660 1660 0.0 112 112 0.0

i-protocol3 388,929 1,161,274 0.6 14% 7% 0.5 26% 16% 0.1

i-protocol4 95,756 204,405 0.2 28% 18% 0.2 38% 28% 0.0

snoopy 81,013 273,781 0.2 13% 5% 0.3 17% 7% 0.0

peterson3 45,915 128,653 0.1 8% 3% 0.0 10% 4% 0.0

SMALL1 36,970 163,058 0.1 18% 9% 0.1 48% 45% 0.0

SMALL2 7,496 32,276 0.0 19% 10% 0.0 48% 44% 0.0

X.509.prm 9,028 35,999 0.1 8% 4% 0.0 68% 34% 0.0

dbm.prm 5,112 20,476 0.0 100% 100% 0.1 100% 100% 0.0

smcs.promela 5,066 19,470 0.0 18% 7% 0.1 25% 11% 0.0

hence we didn’t include the results in the table. Combined with the heuristic
selection, necessary disabling sets provide an improvement of the reduction in
some cases (column nes+h+d). In particular, for leader election the reduction
doubles again. Also some other examples show a small improvement.

We can explain this as follows: Although nds allows smaller stubborn sets
(cf. Example 7), there is no reason why the eager algorithm would find one.
Only with the heuristic selection, the stubborn set algorithm tends to favour
small stubborn sets, harvesting the potential gain of nds.

We conclude that, the heuristic selection is more important to improve re-
ductions, than the necessary disabling sets. In terms of computation time the
situation is reversed: the selection heuristics is costly, but the disabling sets lower
the computation time. In the next section, we investigate computation times.

Promela Models Additionally, we compared our partial order reduction results
to the ample set algorithm as implemented in Spin. Here we can also compare
time resource usage. We ran LTSmin with arguments --strategy=dfs -s26

--por, and we compiled Spin with -O3 -DNOFAIR -DNOBOUNDCHECK -DSAFETY,
which enables POR by default. We ran the pan-verifier with -m10000000 -c0 -n

-w26. To obtain the same state counts in Spin, we turned had to turn off control
flow optimizations (-o1/-o2/-o3) for some models (see ltsmin/spins/test/).

Table 3 shows the results we obtained. Overall, we witness consistently better
reductions by the guard-based algorithm (using nes+h+d). The only exception
being sort and brp. The former is a synthetic example that uses multiple pro-
cesses and channels to sort an array and can be reduced to a single path in Spin,
while the latter models a protocol and also yields little reduction in Spin. The
reductions are significantly larger than the ample set approach in the cases of
garp, peterson, dining philosophers (philo.pml) and iprotocol. As a conse-
quence, guard-based partial order reduction in LTSmin uses considerably less
memory than ample-based partial order reduction in Spin (it makes little sense

15

Table 4. Reductions (%|ST |) and runtimes (sec) obtained for LTL model checking

LTSmin (%|ST |) Spin LTSmin (sec) Spin (sec)

Model States |ST | Tvis Tmax
vis color %|ST | NoPOR Tvis Tmax

vis color NoPOR POR

garp 72,318,749 21.8% 14.5% 3.8% 18.3% 1,162 421 262 71 2,040 127

i-protocol 20,052,267 100.0% 29.7% 28.8% 41.4% 193 271 86 87 103 37

leader 89,771,572 100.0% 0.6% 0.4% 1.2% 3,558 4,492 18 14 1,390 5

to compare the memory usage in our setting, as the state vector representation
in Pins can be several times larger than in Spin).

On the other hand, the additional computational overhead of our algorithm is
clear from the runtime figures. The was expected, as the stubborn-set algorithm
considers all transitions whereas the ample-set algorithm only choses amongst
components of the system and there might be far fewer processes than transi-
tions. Moreover, the heuristic search still considers all possible initial transitions
– we do not select a scapegoat – so a considerable portion of the transitions
might still be evaluated. Finally, the choice the store the information on a guard
basis requires our implementation to iterate over all guards of a transition at
times. This unfortunately cannot be mitigated by combining this information on
a transition basis, as enabled guards are treated differently than disabled guards.

However, the runtimes never exceed the runtimes of benchmarks without
partial order reduction by a great margin. This is achieved by backtracking in
the heuristic search space as soon as en(s) ⊆ Ts.
LTL Model Checking To compare the reductions under LTL model checking with
Spin, we used 3 models that were verified for absence of livelocks, using an LTL
property �♦progress. Implementation details still caused in a slight difference
in state counts, so we included these numbers for both tools in Table 4.

In LTSmin, we used both implementations of the visibility matrix (see Sec-
tion 5) and the color proviso [6] (--proviso=color). To obtain Tvis , we defined
progress with a predicate referencing the right program counters (Proc. pc = 1).
For Tmax

vis , we exported a np label through pins and defined ϕ := �♦¬np . Spin
also predefines this label, hence we used the same property (though negated [13]).

The results in Table 4 show that Tvis is indeed too coarse an over-approximation.
Reductions with Tmax

vis are much better and even lower than in Spin. The color
proviso shows even better results.

7 Conclusions

We proposed guard-based partial order reduction, as a language-agnostic stub-
born set method. It extends Valmari’s stubborn sets for transition systems [30]
with an abstract interface (Pins) to language modules. It also generalizes pre-
vious notions of guards [32], by considering them as disabling conditions as
well. The main advantage is that a single implementation of partial order re-
duction can serve multiple specification languages front-ends and multiple high-
performance model checking back-ends. This requires only that it exports guards,

16

guarded transitions, affect sets, and the MC g matrix. Optional extensions are

matrices N pins and N pins
(computing the latter merely requires negating the

guards), which expose more static information to yield better reduction.
We implemented these functions for the Dve and Promela front-ends in

LTSmin. It should now be a trivial exercise to add partial order reduction to the
mCRL2 and UPPAAL language front- ends. Since the linear process of mCRL2
is rule-based and has no natural notion of processes, our generalization is crucial.

We introduced two improvements to the basic stubborn set method. The
first uses necessary disabling sets to identify necessary enabling sets of guards
that cannot be co-enabled. This allows for the existence of smaller stubborn
sets. Most of the reduction power of the algorithm is harvested by the heuristic
selection function, which actively favors small stubborn sets.

Compared to the best possible ample set with conditional dependencies, the
stubborn set can reduce the state space more effectively in a number of cases.
Compared to Spin’s ample set, LTSmin generally provides more reduction, but
takes more time to do so, probably because of the additional complexity of the
stubborn set method, but also due to overhead in the guard-based abstraction.

Comparing our stubborn set computation against earlier proposals, we see the
following. While other stubborn set computation methods require O(c|T |) [31,
Sec. 7.4] using scapegoat selection and resolving the dependencies of find nes
arbitrarily (where c depends on the modeling formalism used), our algorithm
resolves non-deterministic choices heuristically potentially reducing the search
space. It would therefore be interesting to compare our heuristic algorithm to
approaches other like the deletion algorithm [34], selecting a scapegoat [34] and
the strongly connected components method [31], or one of these combined with
heuristic. This would provide more insight in the trade-off between time spend
on finding stubborn sets and state space reductions.

Finally, we note that heuristic selection algorithm makes POR determinis-
tic. With re-explorations, different persistent sets for the same state can cause
probelms [15]. While for NDFS, this problem has been solved efficiently [26], for
parallel algorithms, like CNDFS [5], it still plays a role. Previously, we already ex-
ploited deterministic POR in the parallel DFSFIFO algorithm [17, end of Sec. 5].

Acknowledgments. We are grateful to Antti Valmari, Patrice Godefroid and
Dragan Bošnački for their useful feedback on this paper.

References

1. F.I. van der Berg and A.W. Laarman. SpinS: Extending LTSmin with Promela
through SpinJa. In PDMC 2012, London, UK, ENTCS. Spinger, September 2012.

2. S.C.C. Blom, J.C. van de Pol, and M. Weber. LTSmin: Distributed and symbolic
reachability. In CAV, volume 6174 of LNCS, pages 354–359, Berlin, 2010. Springer.

3. Edmund M. Clarke. The birth of model checking. In 25 Years of Model Checking,
pages 1–26. Springer, Berlin, Heidelberg, 2008.

4. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory Efficient
Algorithms for the Verification of Temporal Properties. In CAV, volume 531 of
LNCS, pages 233–242. Springer, 1990.

17

5. S. Evangelista, A. Laarman, L. Petrucci, and J. van de Pol. Improved Multi-core
Nested Depth-First Search. In ATVA, LNCS 7561, pages 269–283. Springer, 2012.

6. S. Evangelista and C. Pajault. Solving the Ignoring Problem for Partial Order
Reduction. STTF, 12:155–170, 2010.

7. J. Geldenhuys, H. Hansen, and A. Valmari. Exploring the scope for partial order
reduction. In ATVA’09, LNCS, pages 39–53, Heidelberg, 2009. Springer.

8. P. Godefroid. Using Partial Orders to Improve Automatic Verification Methods.
In CAV, volume 531 of LNCS, pages 176–185. Springer, 1990.

9. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer, Secaucus, NJ, USA, 1996.

10. P. Godefroid and D. Pirottin. Refining dependencies improves partial-order verifi-
cation methods. In CAV, volume 697 of LNCS, pages 438–449. Springer, 1993.

11. P. Godefroid and P. Wolper. Using partial orders for the efficient verification of
deadlock freedom and safety properties. FMSD, 2:149–164, 1993.

12. J.F. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stappers, C. Tankink,
Y. Usenko, M. van Weerdenburg, W. Wesselink, T. Willemse, and J. van der Wulp.
The mCRL2 toolset. WASDeTT, 2008.

13. G.J. Holzmann. The model checker SPIN. IEEE TSE, 23:279–295, 1997.
14. G.J. Holzmann and D. Peled. An Improvement in Formal Verification. In IFIP

WG6.1 ICFDT VII, pages 197–211. Chapman & Hall, Ltd., 1995.
15. G.J. Holzmann, D Peled, and M. Yannakakis. On Nested Depth First Search. In

SPIN, pages 23–32. American Mathematical Society, 1996.
16. S. Katz and D. Peled. An efficient verification method for parallel and distributed

programs. In REX Workshop, volume 354 of LNCS, pages 489–507. Springer, 1988.
17. A.W. Laarman and Fárago D. Improved On-The-Fly Livelock Detection. In NFM,

accepted for publication in LNCS. Springer, 2013.
18. A.W. Laarman, J.C. van de Pol, and M. Weber. Multi-Core LTSmin: Marrying

Modularity and Scalability. In NFM, LNCS 6617, pages 506–511. Springer, 2011.
19. W.T. Overman. Verification of concurrent systems: function and timing. PhD

thesis, University of California, Los Angeles, 1981. AAI8121023.
20. E. Pater. Partial Order Reduction for PINS, Master’s thesis, March 2011.
21. R. Pelánek. BEEM: Benchmarks for explicit model checkers. In Proc. of SPIN

Workshop, volume 4595 of LNCS, pages 263–267. Springer, 2007.
22. D. Peled. All from One, One for All: on Model Checking Using Representatives.

In CAV, pages 409–423. Springer, 1993.
23. D. Peled. Combining partial order reductions with on-the-fly model-checking. In

CAV, LNCS, pages 377–390, London, UK, 1994. Springer.
24. D. Peled. Combining Partial Order Reductions with On-the-Fly Model-Checking.

In CAV, volume 818 of LNCS, pages 377–390. Springer, 1994.
25. Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE

Computer Society, 1977.
26. S. Schwoon and J. Esparza. A Note on On-the-Fly Verification Algorithms. In

TACAS, volume 3440 of LNCS, pages 174–190. Springer, 2005.
27. A. Valmari. Error Detection by Reduced Reachability Graph Generation. In APN,

pages 95–112, 1988.
28. A. Valmari. Eliminating Redundant Interleavings During Concurrent Program

Verification. In PARLE, volume 366 of LNCS, pages 89–103. Springer, 1989.
29. A. Valmari. A Stubborn Attack On State Explosion. In CAV, LNCS, pages 156–

165. Springer, 1991.
30. A. Valmari. Stubborn Sets for Reduced State Space Generation. In

ICATPN/APN’90, pages 491–515, London, UK, 1991. Springer.

18

31. A. Valmari. The State Explosion Problem. In LPN, pages 429–528. Springer, 1998.
32. A. Valmari and H. Hansen. Can Stubborn Sets Be Optimal? In J. Lilius and

W. Penczek, editors, ATPN, volume 6128 of LNCS, pages 43–62. Springer, 2010.
33. M.Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Pro-

gram Verification. In LICS, pages 332–344. IEEE, 1986.
34. Kimmo Varpaaniemi. On the Stubborn Set Method in Reduced State Space Gener-

ation. PhD thesis, Helsinki University of Technology, 1998.

19

	Guard-based Partial Order Reduction

