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Abstract. We present a systematic approach to the automatic genera-
tion of platform-independent benchmarks of tailored complexity for eval-
uating veri�cation tools for reactive systems. Key to this approach is
a tool chain that essentially transforms a set of automatically gener-
ated LTL properties into source code for various formats, platforms, and
competition scenarios via a sequence of property-preserving steps. These
steps go through dedicated representations in terms of Büchi Automata,
Mealy machines, Decision Diagram Models, Code Models, and �nally
the source code of the chosen scenario. The required transformations
comprise LTL synthesis, model checking, property-oriented expansion,
path condition extraction, theorem proving, SAT solving, and code mo-
tion. This combination allows us to address di�erent communities via
a growing set of programming languages, tailored sets of programming
constructs, di�erent notions of observation, and the full variety of LTL
properties - ranging from mere reachability over general safety prop-
erties to arbitrary liveness properties. The paper illustrates the whole
tool chain along accompanying examples, emphasizes the current state
of development, and sketches the envisioned potential and impact of our
approach.
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1 Motivation

Twenty years ago, at CAV 1993 in Elounda (Crete), the essence of the business
meeting could have been summarized as �We have developed numerous powerful
methods and tools, what we are missing are appropriate problems.� Since then,
numerous impressive case studies have been presented, competitions and chal-
lenges have been organized, and industrial cooperations have been conducted,



but all these initiatives remained very partial: they focused on very speci�c sce-
narios, thus limiting their potential for the generalization of the results and fair
comparison of technologies, let alone for establishing a clear application pro-
�le for the wealth of academic and industrial tools. What is needed instead for
an unbiased evaluation of the tools' application pro�les is an in�nite source of
benchmark problems of tailored complexity, with known properties, accessible
to everybody.4 Only this way can guarantee reproducibility and reveal solutions
that are too problem-speci�c - both very important properties when trying to
establish tool pro�les as a means for pro�le-based recommendation for a tool or
a technology. In short, what is missing are classi�ed benchmark suites that are
expressive enough to reveal the individual tools' strength and weaknesses both
at the conceptual and the pragmatic level.

In this paper, we present a systematic approach to the automatic generation of
platform-independent benchmarks of tailored complexity for evaluating veri�-
cation tools for reactive systems. In order to optimally clarify 1) the intuition
behind our approach, 2) the three major challenges, and 3) its technical ingredi-
ents we explain each dimension in a separate subsection. The overall benchmark
generation process has its own full section (cf. Sec. 2), followed by individual
sections on its steps (cf. Secs. 3-9.

1.1 The Intuition

The intuition behind our approach is quite similar to that of the now popular
outdoor game geocaching5: in geocaching, recognizing the points of interest once
one is there is trivial. In our case we simply leave a mark that is easily recogniz-
able by any tool. The point of the game is to reach the correct location despite
dedicated hurdles. Our corresponding �riddles� are of course program analysis
questions to be solved in the overall game. With this mindset, the intuition
behind our automatic benchmark generation process is easy to explain:

� We randomly place �treasures� and connect them with an envisioned feasible
path, i.e., a path that the player will have to follow. In our case, this results
in a Mealy machine that we obtain as a result of a synthesis process from a
more declarative speci�cation in terms of LTL properties.

� We randomly insert �riddles� along the path. In our case, these are ran-
domly generated program structures that need to be correctly analyzed to
win the game. The point is that the insertion of these obstacles is property
preserving. This is realized by applying a sequence of elementary, provably
property-preserving insertion/transformation steps.

Like in geocaching, even though recognizing the treasures is simple, it is possible
to construct problems of almost arbitrary complexity simply by changing the

4 Of course, dedicated real(-istic) problems are also extremely important, but because
of their �singularity� and a priori unknown properties, they are not suitable for a
careful, wide-range pro�le analysis.

5 in particular "mystery" and "multi" caches. See http://www.geocaching.com/



riddles. This could mean moving from simple reachability problems to safety,
liveness or even arbitrary LTL properties in program structures of increasing
complexity that may comprise complex conditions, data structures, loops, or as
new vision even polymorphism and virtual methods. The con�gurable scale and
randomization of the generation process guarantees that each of the problems is
entirely distinct from any other.

What is truly di�erent from geocaching is the fact that once given the com-
plexity pro�le, these problems are fully automatically generated without any
human interaction. Consequently, the solution can be kept secret even from the
organizers of a challenge/competition, enabling them to participate themselves
without any advantage � provided that the pro�le and the code/speci�cation of
the benchmark generator is made public.

1.2 The Three Major Challenges

Three quite general questions need to be answered when aiming at quality bench-
mark problem generation:

� Where and how to throw the dice: In order to get balanced benchmarks
of challenging size, one needs a �ne granular concept of randomization. Our
multi-step generation process (cf. Sec. 2) is explicitly designed for aspect-
speci�c randomization, as will be illustrated in the main sections of the
paper.

� How to impose/guarantee the properties: Obviously, this must be done
by construction, as extracting the properties from the �nal benchmark is
meant to be a challenging (open) problem. Central throughout the whole
process is therefore the fact that maintaining language inclusion wrt. the
ω-language of the Büchi automaton synthesized from the LTL formulas is
su�cient to guarantee property preservation. This simple principle is strictly
followed during the whole generation process depicted in Fig. 1, and it can
be applied straightforwardly to further enhance the program structure with
almost arbitrarily complex program elements.

� How to avoid generator footprints (hints): An important goal of bench-
mark generation must be that the generated problems are not biased (beyond
their abstract pro�le), and that it does not make sense to exploit any knowl-
edge about the generation process. Optimally, even the developers of the
benchmark generator should have no (signi�cant) advantage.

1.3 Summary of the Involved Technologies

Technical key to this approach is a tool chain that essentially transforms a set
of automatically generated (or hand-selected) LTL properties via a series of
property-preserving steps into source code for various formats, platforms, and
competition scenarios. These steps pass various phases characterized by repre-
sentations in terms of Büchi automata, Mealy machines, code models, and �nally
the source code of the chosen scenario. The required transformations are based on



LTL synthesis [1, 2], model checking [3], property-oriented expansion [4], path
condition extraction [5], theorem prover/SAT solver-based linking of pre and
post conditions [6, 7], and (semantic) code motion [8�12].

In order to make the benchmarks accessible by most tools and interesting for
di�erent communities, we aim at supporting

� a growing set of programming languages (e.g. Java, Scala, C/C++, C#,
Promela,...),

� a tailored use of programming constructs (loops, linear and non-linear arith-
metics, methods calls, virtual methods...) and diverse data structures (inte-
gers, arrays, lists, �oating-point numbers, ...),

� di�erent notions of observation: reaching program labels, exceptions being
thrown, output written to the console, method invocations, ...

� the full variety of LTL properties, ranging from mere reachability over general
safety properties to liveness properties and arbitrary mixtures thereof.

Section 2 sketches the process (cf. Fig. 1) connecting all these technologies to fully
automatically generate randomized benchmark problems of guaranteed property
pro�le (cf. Therorem 1).

Fig. 1. Overview of property-preserving steps

The paper illustrates the whole tool chain along accompanying examples, em-
phasizes the current state of development, discusses our experience with our



�rst version gained during the RERS Challenge 2012 [13], and sketches the envi-
sioned potential and impact of our approach. We will use the corresponding tool
to generate the problems for the RERS Challenge 2013, which will take place as
a satellite event of ASE 2013 in Mountain View (USA) in November.

We will now sketch the conceptual steps of the tool chain (cf. Fig. 1) each in
its own dedicated section. Subsequently, Sec. 10 discusses our conclusions and
perspectives.

2 The Generation Process from a Bird's Eye View

Our solution is centered around a property-driven benchmark generation process
(cf. Fig. 1). It starts with a randomized property selection that can be trans-
formed to Büchi automata using standard techniques, and then it successively
enriches/changes the representations via various property-preserving model and
code transformations to provide problems of almost arbitrary complexity and
size. Its characteristic conceptual steps, which will be discussed in more detail
in the remainder of the paper, can be sketched as follows from a bird's eye view:

Pattern-Based LTL Generation: In this step we randomly choose and then
instantiate LTL property speci�cation patterns [14] that we partition into a small
de�ning set used in the subsequent synthesis step, and a larger set of additional
properties whose validity is later checked on the synthesized model via model
checking. Typically, we generate around 100 properties, about ten of which can
be de�ning, in order to still allow for automated synthesis.

LTL Synthesis: Here we can apply any of the standard algorithms that trans-
late an LTL formula into a Büchi automaton representing all its models (satisfy-
ing paths). Our current implementation uses LTL2Buchi [2], but, e.g., LTL2BA [1]
could have been chosen as well.

From Büchi to Mealy: Completing the Property Pro�le: The point of
this step is the generation of a concrete reactive system model (e.g. a Mealy
machine) from the Büchi automaton that represents all words/paths satisfying
the de�ning properties. The construction of this Mealy machine is randomized
and can be customized in various dimensions, e.g., the size of the model, the
size of the input and output alphabets, the density of the transition graph etc..
The subsequent completion step for the property pro�le can straightforwardly
be realized by model checking the additional (non-de�ning) properties on the
generated Mealy machine. After this step the property pro�le for this benchmark
is �xed.

Mealy Machine Expansion: These Mealy Machines are then enlarged via ran-
domized property-oriented expansion (POE) [15] and by introducing unreachable



states. Both transformations are incremental and can be stopped at any moment,
e.g. when a certain threshold of states is reached.

Mealy-to-Program Model Transformation: The transformation is based
on viewing Mealy machines operationally as simple loops of guarded commands,
whose guards precisely check for the correct state identi�cation. The idea be-
hind the transformation is to replace this simple guard structure with a complex,
semantically equivalent decision structure in terms of a discrimination tree [6],
which essentially resembles a complex nested "if-then-else". The discrimination
tree itself is randomly generated both in its branching stucture and its node
labeling with predicates, which may well use multiple variables, arithmetics,
relations, and data structures. The states of the Mealy machine are modelled
by equivalence classes of a randomly constructed partition of the discriminta-
tion tree's leaves. Key to the required property preserving transformation is to
establish the correct wiring by means of adequate assignments that guarantee
that the postcondition of a transition implies the precondition of the target state,
and to extract corresponding complex guarded commands. Path condition gen-
eration and SAT solving/theorem proving provide a powerful basis for deriving
non-trivial conditional structures (cf. Sec. 7).

Elaboration of the Program Model Structure: We employ data-�ow anal-
ysis and transformation techniques to randomly elaborate the program model
structure along both the logical and the control structure:

� Overcoming the Simple Loop Structure: Up to here, the programs are still
reminiscent of Event Condition Action Systems [16, 17] or PLC programs
[18], a structure the 2012 RERS Challenge focused on [13]. Using randomized
property-oriented expansion [4], this structure can be generalized to obtain
quite general �while�-program-like structures[19].

� De-Localization of the Logical Reasoning: Our approach for establishing post-
conditions that match the required preconditions characterizing the subse-
quent state is local, i.e., a Mealy machine can be reconstructed essentially by
a pairwise check of the various preconditions and postconditions. We there-
fore employ code motion techniques [8, 10, 11, 20, 12, 9, 21] for de-localizing
the information and therefore require a global analysis for reconstructing the
transition relation.

Language Extraction: Currently we have implemented a simple template
mechanism which works for Java and C/C++ and maintains the behavioral
and structural properties of its argument code models. A wide variety of sup-
ported target languages is crucial to ful�ll the goal of serving the needs of as
many tool developers as possible, so this is going to change in the future.

As a consequence our our strict policy of property-preservation our benchmark
generation process guarantees the following theorem:



Theorem 1 (Correctness).
The language-speci�c code generated by our benchmark generation process is

guaranteed to satisfy the property pro�le established in Sec. 5.

This feature allows for cross-community challenges. The idea of a language spe-
ci�c export is quite general and was indeed used by the winner of the RERS
Challenge 2012 Jaco van de Pol to generate Promela input required for his tool
landscape. We aim at lowering the entry hurdle for participants by providing
them with various formats. It should be noted, however, that providing Promela
code is not quite the same as providing code of the other mentioned programming
languages as it requires non-trivial design decisions on the adequate abstraction.
Thus one may consider to provide a Promela generator instead, which is param-
eterized in the abstraction.

3 Property Generation

The goal of fully automatically generating a large set of interesting benchmarks
inevitably calls for the random generation not only of system models, but also of
their underlying properties. While this could be achieved by randomly generating
LTL syntax trees, the resulting formulae would most likely be very di�erent from
what real-life property speci�cations look like.

Instead of randomly generating whole formulae, we therefore randomly in-
stantiate speci�cation patterns, like for example those described in the seminal
work of Matthew Dwyer et al. [14]. Additionally to producing more realistic
properties, this approach also yields the bene�t that an intuitive textual de-
scription can be provided for each LTL formula. Such properties might include,
but are not limited to, the following:

� Absence, e.g. G¬bad: �Action bad does never occur�

� Existence, F good: �Eventually, action good will be performed�

� Response, G(a⇒ F b): �Whenever event a occurs, this will lead to action b

being observed eventually�

In a challenge scenario, each of these properties (plus dozens of others) would
have to be checked separately on the given system.

In the generation phase, however, a small subset of all properties is selected
to constrain the randomized on-the-�y construction of the initial Mealy machine
model [22].6 This step is prepared by synthesizing a Büchi automaton from the
selected properties, as the next section will detail.

6 We chose Mealy machines as our intermediate model structure because of their in-
put/output distinction. Of course also labeled transition systems [23] or IO automata
[24] could have been chosen as well.



4 Büchi synthesis

Formally, from the set Φ of all generated properties we select two subsets Φ+, Φ− ⊆
Φ of properties which should (resp. should not) hold by construction. A Büchi
automaton Aψ is created from the conjunct of the selected property sets

ψ =
∧
φ∈Φ+

φ ∧
∧
φ∈Φ−

¬φ,

Generating Büchi automata from LTL formulae is a very expensive task for larger
formulae, thus the choice of the size of the sets Φ+ and Φ− crucially depends
on how much computing power should be invested in this step. Usually, we
obtain fairly good results already with very small sets: the problems of the RERS
challenge 2012 were generated using between four and six de�ning properties.

In the example of the previous section, the conjunct of all non-negated spec-
i�cation formulae is

ψ = G¬bad ∧ F good ∧G(a⇒ F b).

Figure 2 shows the corresponding Büchi automaton, which already contains a
signi�cant number of transitions given the rather small and simple speci�cation
formula. This Büchi automaton was generated using the LTL2BA algorithm [1],
but other algorithms such as LTL2Buchi [2] could have been used as well. Note

Fig. 2. Resulting Büchi automaton for set ψ

that this automaton, as it is, is not a valid model ful�lling the given properties:
�rst, assuming a granularity of one action/observation per step, some of the
transitions such as !bad && good && b can never be realized, as either action



good or action b occurs. Similarly, transitions like !bad && b can be shortened
to just b. The second aspect regards the set of allowed input symbols (events).
The transition label !bad represents an otherwise unrestricted set of alphabet
symbols, although generally we assume that the set of observable events is con-
strained in one way or the other. Finally, there is no equivalent for accepting
states in a Mealy machine: in each concrete instantiation of a system it has to
be ensured that the re�exive transition labeled (!bad && !a) || (!bad && b)

of state init cannot be taken in�nitely often in a row.
In the next section, we will describe how to construct a Mealy machine whose

in�nite runs all satisfy the constraints imposed by this Büchi automaton.

5 From Büchi to Mealy: Completing the Property Pro�le

The construction of a concrete Mealy machine from a constraining Büchi au-
tomaton is based on the idea of constructing on-the-�y a product automaton.
Starting with the initial state of the Büchi automaton and a freshly created
initial state of the Mealy machine, successor states are either newly generated
or taken from the set of existing Mealy machine states. This has to be done
consistently with the Büchi automaton, i.e., a transition between two states in
the Mealy machine needs to match a transition between the associated Büchi
states. When creating states in the Mealy machine, several Büchi states might
be eligible for being associated with the new state due to non-determinism. In
this case, one can be chosen at random. This selection might eliminate accepting
runs during the model construction, but does not a�ect correctness.

Special care has to be taken when transitions to existing states in the Mealy
machine are created: this introduces loops. The Büchi acceptance criterion re-
quires every loop in the model includes at least one accepting state. At �rst,
this can be easily achieved by creating back edges only to accepting states. As
the model construction proceeds, a set of safe states gradually emerges: these
are states where all the outgoing in�nite paths are accepting. These safe states
can be used as targets for cross edges. If no back or cross edge to a safe state
can be created even if some given hard limit on the number of states is reached,
the transition is completely discarded and we may need to backtrack in order
to ensure that there are no states with zero outdegree. Again, this does not af-
fect correctness, as diminishing the set of (in�nite) traces preserves ω-language
inclusion.

Obviously, each formula φ ∈ Φ+ is satis�ed on the resulting Mealy machine
by construction, whereas each formula in Φ− is unsatis�ed. However, at this point
it is unknown whether the remaining properties in Φ \ (Φ+ ∪ Φ−) hold as well,
and this cannot be deduced from the construction itself.

The property pro�le therefore has to be completed by model checking the
remaining properties on the model. This is a comparatively quite easy task:
whereas generating a Büchi automaton for the conjunct of all formulae in Φ is
beyond tractability, an automaton A¬φ for each single φ ∈ Φ can be synthesized
quite e�ciently. Using A¬φ to model check the generated Mealy machine is



straightforward and can be achieved by standard techniques [3]. We currently
use our own implementation, which performs a language emptiness test on the
product automaton by analyzing reachability of strongly connected components
with accepting states, but of course one could also resort to an external LTL
model checker.

6 Mealy Machine Expansion

Once the Mealy machine is constructed from the LTL/Büchi speci�cation, we
increase its size (i.e. number of states) arti�cially while preserving the properties.
This is done by iteratively applying the following steps:

� addition of unreachable nodes and model structures,
� splitting nodes with POE according to some randomly set property,
� pruning outgoing transitions.

Adding unreachable stuctures. The �rst operation simply adds nodes or even
arbitrary new Mealy machines over the same alphabet into the original model. To
increase the analysis complexity, the states of those newly added model fragments
may have transitions into the original Mealy machine. As no transition leads from
the original model into the newly added parts, the new nodes remain unreachable
and therefore do not alter the original models' behavior.

a

b c

d

1

1 1

0 1

a

b c

d d'

1

1 1

0 1

0 1 a

b c

d d'

a'

1

1 1

0 1

1

0

0

1 a

b c

d d'

a'

b'

1

1 1

0 1

1

0

0

0

1

Fig. 3. Property-Oriented Expansion (POE) with random boolean property (0/1)

Splitting under Property-Oriented Expansion. The second operation introduces
new reachable states by splitting existing ones. This is done by de�ning arbitrary
new properties and assigning them randomly to every transition. Figure 3 illus-
trates it using a simple coin toss, i.e., a single boolean property that randomly
assumes the values 0 or 1 to each transition. Whenever a node is reached via
incoming transitions that have di�erent values for this property, it is duplicated.



Figure 3 shows the e�ects in detail: the highlighted state d is reached from b with
property value 0 and from c with property value 1, causing it to be split into
states d and d′, connected to the same successor states of the original d (here a)
via transitions that inherit the resp. property value. Now a becomes reachable
with property values 0 and 1 respectively, so it must be split too. This introduces
a new transition from a′ to b with a di�erent property value, so �nally also b
is split. Already from this small example it becomes apparent that randomized
property-oriented expansion is a �exible way to signi�cantly increase a model
while preserving the set of its traces.

Pruning. These two steps a�ect only the structure of the model, but not its be-
havior: the set of traces remains unchanged, and hence a minimization operation
would result in the original Mealy machine. This trivially guarantees property
preservation, but on the other hand does not truly increase the state space.

A way to overcome this is to prune arbitrary transitions in the intermediate
model. Looking at the same example, pruning the dashed transition from a′ to
c would truly distinguish a′ from a, as only in one case there is a transition to c.
This transformation is legal (i.e., property preserving) as it only reduces the set
of all in�nite traces in the model, hence it is impossible to introduce unsatisfying
paths by pruning outgoing transitions.

7 Mealy-to-Program Model Transformation

This transformation is based on viewing Mealy machines operationally as simple
loops of guarded commands, whose guards precisely check for the correct state
identi�cation. Its aim is to replace this simple guard structure with a complex,
semantically equivalent decision structure in terms of a discrimination tree [6],
which essentially resembles a complex nested "if-then-else". This is achieved in
two steps.

Fig. 4. Discrimination Tree over Mealy machine



In the �rst step, a discrimination tree is randomly generated both in its
branching stucture and its node labeling with predicates. The idea is to rep-
resent the states of the Mealy machine by equivalence classes of a randomly
constructed partition of the discrimintation tree's leaves. This step is illustrated
in Fig. 4 which shows a three state Mealy machine in part (a) and a correspond-
ing discrimination tree in part (b). In this tree, p1 . . . pn represent arbitrary
predicates, and, e.g., the state s is represented by by the leaves labeled s1 to s4.

Fig. 5. Code model construction

The point of the second step is to maintain property preservation during the
transformation step, which essentially requires to establish the correct' wiring'
by means of adequate assignments that guarantee that the postcondition of a
transition implies the precondition of the target state, and to extract corre-
sponding complex guarded commands. This steps also leaves a lot of room for
randomization:

� As there are multiple ways of using the members of the equivalences classes
associated to the states, we can �rst randomly select adequate represen-
tations for each transition of the Mealy machine. The dotted lines at the
bottom of Fig. 4(b) show the representation of just one such transition: the
b/1 transition from u to s.

� Fig. 5 sketches an excert of a program model which may have been derived
from the discrimintation tree (including the dotted lines) shown in Fig. 4(b).
The big box summarizes the condition required at leave u2 to properly im-
plement the b/1 transition from u to s: in response to b, the output 1 needs
to be generated and either s1 or s3 needs to be reached. In our setting this
means that the required reachability constraint must be realized by inserting
a statement S that make the correctness assertion/Hoare triple

{p1 ∧ p2 ∧ ¬p4 ∧ ¬p9}S{(p1 ∧ p2 ∧ p4 ∧ ¬p8) ∨ (p1 ∧ ¬p2 ∧ ¬p5 ∧ p11)}



valid [25, 26], or equivalently, that sati�es the following implication:

JSK(p1 ∧ p2 ∧¬p4 ∧¬p9) ⇒ (p1 ∧ p2 ∧ p4 ∧¬p8)∨ (p1 ∧¬p2 ∧¬p5 ∧ p11)

The selection of S also leaves plenty of room for random choices.

A deeper discussion of this step, which involves SAT solving/theorem proving
[7, 6] is beyond the scope of this paper. Of course, the deeper the analysis the
more sophisticated conditional structures can be built. For the RERS Challenge
2012 we �rst considered a quite simple setting which only uses integers and no
arithmetik. As this turned out to be too easy to be truly discriminating, we added
arithmetic in the second round. This, from the generation point of view minor
change, had a dramatical e�ect. E.g., it excluded exhaustive symbolic execution,
which was still successful in round one. This shows the power of being able to
�ne-tune the benchmarks' pro�les.

8 Elaboration of the Program Model Structure

Program models constructed from Mealy machines and discrimination trees are
still quite cycle-oriented and may allow for a reconstruction of the de�ning Mealy
machine, as introduced conditions are locally checkable leaving the transition
"wiring" transparent. This can be overcome by applying known global program
analysis and transformation techniques:

� Applying randomized POE [4, 27] together with some pruning heuristics al-
lows one to almost arbitrarily �obfuscate� the original cycle orientation, and
it provides room for

� a subsequent application of (global) code motion techniques, ranging from
merely syntactical analyses reminiscent of partial redundancy elimination [8,
28, 11, 20, 12, 29�31] to more semantic transformations in terms of semantic
code motion [10, 9, 32, 33, 21], which shifts the orginal local reasoning prob-
lem to the global level.

9 Language-Speci�c Export

The last step in the benchmark generation process is the process of generat-
ing language-speci�c code. The basis for that is the fully developed abstract
code representation that resulted from the previous step. Some of the supported
languages are

� Java
� C/C++/C#
� Promela [34]

Ideally the abstract code representation does not contain any real code snippets
yet, as this would immediately restrict the generation process to a speci�c set of



programming languages. Even the semantics of simple operations like boolean
operators may di�er slightly from one language to another. However, as long
as the operation semantics are well de�ned on an abstract level, it is possible
to map these operations to concrete language constructs. Adding support for
another programming language simply amounts to de�ning in a template �le
instantiating patterns for the abstract operations in the target language.

if((((((((178 < a12) && (395 >= a12)) && ((95 < a23) && (264 >= a23)) )

&& a26) && (a1==2)) && (a19==11)) && a13)){

throw new IllegalStateException( "error_48" );

}

Fig. 6. Java code fragment from problem 13 of RERS 2012

The bene�ts of template-based code generation were used in the course of the
2012 RERS challenge, where we were able to adapt the problems for the speci�c
needs of some of the contestants' tools in order to attract a larger community.
An example is the support of C code along with the speci�cs of the language. For
example, considering the Java code in Figure 6, it makes use of boolean variables
and exceptions, both of which are not part of the C language. However, by the C
template those constructs are automatically translated to 0/1 integer variables
and assert statements with corresponding labels, respectively. The resulting
code fragment is shown in Figure 7.

if((((((((178 < a12) && (395 >= a12)) && ((95 < a23) && (264 >= a23)) )

&& (a26==1)) && (a1==2)) && (a19==11)) && (a13==1))){

error_48: assert(0);

}

Fig. 7. C code using integers and assert

10 Conclusion and Perspectives

We have presented a systematic approach to automatically generating platform-
independent benchmarks of tailored complexity. Key to this approach is a tool
chain that essentially transforms a set of automatically generated LTL properties
in property-preserving steps into source code for various formats, platforms, and
competition scenarios. We have illustrated the whole tool chain, which allows us
to address di�erent communites via a growing set of programming languages,



tailored sets of programming constructs, di�erent notions of observation, and
the full variety of LTL properties, along a accompanying examples.

Central throughout the whole process is the fact that maintaining language
inclusion wrt. the ω-language of the Büchi automaton synthesized from the LTL
formulae is su�cient to guarantee property preservation. This simple preserva-
tion principle has been strictly followed during the whole generation process
depicted in Fig. 1, which, in fact, generated very challenging problems for the
RERS Challenge 2012, and which will be used with slight extensions for the
RERS Challenge 2013. In the future, we plan to release our benchmark gener-
ation framework to the public. This will allow research groups across the world
to generate benchmarks tailored to their speci�c needs and pro�le, and provides
a constant source of problems for further development and improvement of their
respective tools.

As the preservation principle is not bound to the current �while program�-like
structure, it can also be followed when introducing almost arbitrary language
and data structure extensions. Those might include, but are not limited to, the
procedural abstraction-based construction of methods, pattern-based generation
of object structures, or the introduction of further (structured) data types like
arrays, lists, structs, as well as object-oriented principles like polymorphism
and virtual methods. Of course, each of these extensions needs its own reasoning
for keeping up to the principle, and therefore introduce their own line of research.

We are currently developing a service-oriented framework for graphically
modeling tailored benchmark problems on the basis of a library for property pre-
serving transformations, on top of our service-oriented process modeling frame-
work jABC [35]. Based on this development we envisage to be able to provide
a �rst open version of our benchmark generator early next year. Its �exibility
should allow us to address di�erent communities via a growing set of program-
ming languages, tailored sets of programming constructs, di�erent notions of
observation, and the full variety of LTL properties, ranging from mere reacha-
bility, over general safety properties to arbitrary liveness properties.
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