
Error-Completion in Interface Theories?

Stavros Tripakis1, Christos Stergiou1, Manfred Broy2, and Edward A. Lee1

1 University of California, Berkeley
2 TU Munich

Abstract. Interface theories are compositional theories where compo-
nents are represented as abstract, formal interfaces which describe the
component’s input/output behavior. A key characteristic of interface the-
ories is that interfaces are non-input-complete, meaning that they allow
specification of illegal inputs. As a result of non-input-completeness, in-
terface theories use game-theoretic definitions of composition and re-
finement, which are both conceptually and computationally more com-
plicated than standard notions of composition and refinement that work
with input-complete models. In this paper we propose a lossless transfor-
mation, called error-completion, which allows to transform a non-input-
complete interface into an input-complete interface while preserving and
allowing to retrieve completely the information on illegal inputs. We show
how to perform composition of relational interfaces on the error-complete
domain. We also show that refinement of such interfaces is equivalent to
standard implication of their error-completions.

1 Introduction

Interface theories such as the theory of interface automata are compositional the-
ories proposed by Alfaro and Henzinger in the early 2000s [9,10], and since then
studied extensively (e.g., see [7,11,20,22,12]). Generally speaking, an interface
theory provides the following:

– A notion of interface which is an abstract, formal description of a compo-
nent’s interface behavior. Different notions of interfaces exist in the liter-
ature, e.g., in [9] interfaces are automata, while in [22] they are static or
dynamic logical formulas.

– One or more composition operators which allow to compose interfaces and
form new interfaces. Different notions of composition are available depending
on the theory, e.g., asynchronous composition in [9], synchronous composi-
tion in [22].

– A refinement relation which is a binary relation between interfaces.

? This work was supported in part by the iCyPhy Center (supported by IBM and
United Technologies), the CHESS Center (supported by awards NSF #0720882
(CSR-EHS: PRET) and #0931843 (ActionWebs), NRL #N0013-12-1-G015, Bosch,
National Instruments, and Toyota), and by the NSF Expeditions in Computing
project ExCAPE: Expeditions in Computer Augmented Program Engineering.

– A set of theorems, typically including:

• Preservation of refinement by composition, e.g., if A′ refines A and B′

refines B, then the composition of A′ and B′ refines the composition of
A and B.

• Preservation of certain properties by refinement, e.g., if A′ refines A and
A satisfies, say, a safety property p, then A′ also satisfies p.

Theorems such as the above support incremental design methodologies and re-
configurability. For instance, if we have shown that a certain system consisting
of the composition of A and B satisfies p, and later A needs to be replaced by A′,
proving that A′ refines A is sufficient to ensure that p will not be compromised
by such a replacement, i.e., it will continue to hold on the new system composed
of A′ and B.

A key characteristic of interface theories such as interface automata [9] and
relational interfaces [22] is that interfaces in these theories are generally non-
input-complete, that is, they may specify that certain inputs are illegal.3 This is
in contrast with other compositional theories such as I/O automata [16], FO-
CUS [5,6], and reactive modules [2], where specifications are assumed to be input-
complete. As argued in [22], non-input-completeness is essential to obtain a the-
ory which allows a lightweight verification methodology, akin to type-checking.
In particular, non-input-completeness allows to define semantic or behavioral no-
tions of interface compatibility. These go beyond syntactic compatibility notions
like correct port matching.

As a result of non-input-completeness, and the fact that components are
generally non-deterministic (meaning that for a given input they may produce
different outputs) the definitions of composition and refinement in interface the-
ories are game-theoretic in nature.

Although game-theoretic notions such as demonic composition and alternat-
ing refinement are relatively well-understood, they are more complex than the
corresponding standard notions, and generally involve computing strategies in
a two-player game [3,10,8,22]. It makes sense, then, to ask whether there exists
a transformation from non-input-complete to input-complete interfaces, which
allows to reduce the above operations into standard composition and refinement.

In this paper we answer the above question in the affirmative for the setting
of relational interfaces of [22]. In particular, we propose a lossless transforma-
tion called error-completion. Given a (generally non-input-complete) interface φ,
error-completion returns an input-complete interface EC(φ), with an additional
boolean output variable which captures illegal inputs. The main results of the
paper are:

– We show that EC(φ) does not lose any information contained in φ, by pro-
viding an inverse transformation EC−1 and showing that EC−1(EC(φ)) ≡ φ
for all φ.

3 We use the term input-complete following [22]. Other terms used in the literature
are input-enabled, receptive, or total.

– We show that serial and parallel composition of relational interfaces can be
performed in the error-complete domain, and the result can be transformed
backwards using EC−1 to obtain the equivalent composition in the original
domain.

– We show that the (alternating) refinement relation φ1 v φ2 is equivalent to
the standard implication EC(φ1)→ EC(φ2).

We point out that error-completion is discussed in [22]. However, the defi-
nition of error-completion given in [22] is not satisfactory because, as already
observed in [22], it does not allow to reduce refinement checking of general re-
lational interfaces to checking standard implication on their error-completed
versions. In this paper we propose a new definition of error-completion which
achieves this, among other properties. We also provide an in-depth discussion of
error-completion and possible alternatives.

The rest of the paper is organized as follows. Section 2 summarizes the the-
ory of [22]. Section 3 describes error-completion. Section 4 discusses possible
extensions. Section 5 presents related work. Section 6 concludes the paper.

2 Preliminaries

In this section we summarize the relational interface framework developed in [22].

2.1 Relational Interfaces

Let V be a finite set of variables. A property over V is a first-order logic formula
φ such that any free variable of φ is in V . We write F(V) for the set of all
properties over V . Assuming that every variable is associated with a certain
domain, an assignment over V is a function mapping every variable in V to a
certain value in the domain of that variable. The set of all assignments over V
is denoted by A(V).

Assume a component with inputs X and outputs Y . We identify states with
observational histories, i.e., a state of the component is an element of A(X∪Y)∗.

Definition 1 (Relational interface). A relational interface (RI) is a tuple
(X,Y, f) where X and Y are two finite and disjoint sets of input and output
variables, respectively, and f is a function from states to contracts, i.e., for
every s ∈ A(X ∪ Y)∗, f(s) ∈ F(X ∪ Y).

Note that we allow X or Y to be empty. If X = ∅ then the interface is a
source. If Y = ∅ then the interface is a sink.

In order to simplify the presentation we will restrict the definitions and the
rest of the formalization to the case of stateless interfaces, i.e. interfaces that
specify the same contract for each state or input-output history. We also often
omit the term relational and speak simply of interfaces, for the sake of brevity.

Definition 2 (Stateless interface). An interface I = (X,Y, f) is stateless iff
for all s, s′ ∈ A(X ∪ Y)∗, f(s) = f(s′).

For the sake of simplicity, we will specify a stateless interface as a triple
(X,Y, φ), where φ ∈ F(X ∪ Y).

An example of a stateless relational interface is shown in Figure 1. This
interface, called Div, is the interface of a component that is supposed to perform
division. The component has two inputs x1 and x2 and produces the result
y = x1

x2
on its output. There are different properties of this component that one

might want to capture in its interface Div. Two possible contracts for Div, φ1
and φ2, are shown in Figure 1. Both specify that input x2 has to be different
than 0. Note that the first contract φ1 completely determines the behavior of
the component; it is an example of a deterministic contract: given legal inputs,
outputs are unique. Contract φ2, on the other hand, only provides guarantees
about the sign of the output.

Div
y

x1

x2

φ1 : x2 6= 0 ∧ x1 = y · x2
φ2 : x2 6= 0 ∧ (y ≥ 0 ≡ (x1 ≥ 0 ∧ x2 > 0))

Fig. 1. Component Div outputs at y the division of its inputs x1/x2

The theory does not separate requirements on inputs from guarantees on the
outputs. A single formula on input and output variables captures the behavioral
specification of a stateless interface. We can however extract the requirements
a contract makes on the inputs by existentially quantifying over the output
variables.

Definition 3 (Input requirement). Given a contract φ ∈ F(X ∪ Y), the
input requirement of φ is the formula in(φ) := ∃Y : φ.

A note on notation: if φ is a formula over a set of variables V , and U ⊆ V ,
with U = {u1, u2, ..., uk}, then ∃U : φ is shorthand notation for ∃u1, u2, ..., un : φ.
Note that U is allowed to be empty. If U = ∅, then (∃U : φ) ≡ φ.

in(φ) is a property over X only, and represents the requirements that the
contract places on the component inputs. For example, for the division com-
ponent with contract φ ≡ (x2 6= 0 ∧ x2 · y = x1), the input requirement is
in(φ) ≡ (∃y : x2 6= 0 ∧ x2 · y = x1) ≡ x2 6= 0. Note that if φ belongs to a source
(that is, if X = ∅), and φ is satisfiable, then in(φ) ≡ true. If φ belongs to a sink
(i.e., if Y = ∅), then in(φ) ≡ φ. In all cases, φ→ in(φ).

Definition 4 (Input-completeness). An interface I = (X,Y, φ) is input-
complete iff in(φ) is valid.

Going back to the examples of Figure 1, note that in(φ1) ≡ in(φ2) ≡ x2 6= 0.
Therefore, both φ1 and φ2 are not input-complete. If, however, the contract was
specified as φ3 ≡ (x2 6= 0 → x2 · y = x1), then in(φ3) would be true. φ3 is thus
an example of an input-complete contract.

Definition 5 (Well-formedness). An interface I = (X,Y, φ) is well-formed
iff φ is satisfiable.

At this point it is worth making the following remark. Syntactically, rela-
tional interfaces are represented by formulas. Semantically, they are relations
between input and output assignments, that is, subsets of A(X ∪ Y) (hence the
term relational). Clearly, different formulas correspond to the same relation. For
example, both x ∧ ¬x and false represent the same relation (in this case the
empty set). What we are mainly interested in is the semantics, not the syntax.
For formulas φ1 and φ2, we can check whether they represent the same relation
by checking whether they are equivalent, φ1 ≡ φ2.

Based on the above discussion, the canonical non-well-formed interface can
be represented by false.

C

I = (X,Y, φ)

E

X Y

Fig. 2. Component C specified by interface I in feedback with environment E.

A relational interface I = (X,Y, φ) can be seen as specifying a game between
a component and its environment. In Figure 2, the component and the environ-
ment are represented by blocks C and E respectively. The game proceeds in a
sequence of rounds. At the end of each round, an assignment a ∈ A(X ∪ Y) is
chosen. Typically, the environment plays first and chooses an assignment for the
inputs X of the component, aX ∈ A(X). If aX does not satisfy in(φ) then this
is not a legal input and the environment loses. Otherwise, the component plays
by choosing an assignment for the outputs Y , aY ∈ A(Y). If (aX , aY) does not
satisfy φ then this is not a legal output for this input, and the component loses
the game. Otherwise, the round is complete, and the game moves to the next
round.

2.2 Composition

We can compose two interfaces I1 and I2 in series by connecting some of the
output variables of I1 to some of the input variables of I2. Variables that have
the same name are implicitly connected. As it was argued in [22], composition by
conjunction of the interface contracts is not sufficient, and instead a “demonic”
definition of serial composition needs to be used.

Definition 6 (Serial composition). Let I1 = (X1, Y1, φ1) and I2 = (X2, Y2, φ2)
be two interfaces. I1 and I2 are said to be composable if X1 ∩X2 = X1 ∩ Y2 =

Y1 ∩ Y2 = ∅. If I1 and I2 are composable, then we can define the serial composi-
tion of I1 and I2, denoted I1 I2, as the interface I = (X,Y, φ1 φ2) where
X = X1 ∪ (X2 \ Y1), Y = Y2 ∪ Y1 and

φ1 φ2 := φ1 ∧ φ2 ∧ ∀Y1 :
(
φ1 → in(φ2)

)
(1)

It is often convenient to automatically hide the connected outputs Y1 ∩X2 right
after the composition. For that purpose, we introduce the additional operator
of serial composition with hiding, denoted I1 ∗ I2, which defines interface
I ′ = (X,Y ′, φ1 ∗ φ2), where X is as above, Y ′ = Y2 ∪ (Y1 \X2), and

φ1
∗ φ2 := ∃(Y1 ∩X2) : (φ1 φ2) (2)

Note that in the definition above, Y1 and X2 could also be disjoint, which
means that no connections exist between I1 and I2. This can be used to model
the parallel composition of I1 and I2, which then becomes a special case of serial
composition.

Four serial composition examples are shown in Figure 3. In all of them, a
component C with different guarantees is connected to a component D that is
expecting its second input, x2, to be different than zero.

In case (a), the contract of C guarantees that its output x2 will be non-
zero, and indeed, the composite interface contract is equal to true and thus
well-formed.

In cases (b) and (c), where the contracts of C are x2 = 0 and true, the
resulting contract of the composition is false, i.e., C D is not well-formed in
these two cases. In case (b) this is not surprising since we know that x2 = 0 is
an illegal input for D. In case (c), the contract of C is too weak, therefore it
cannot be guaranteed that the input to D will be legal.

Case (d) presents a more interesting example. In this case the interface of C
is ({z}, {x2}, x2 ≥ z). The requirement that x2 6= 0 induces a new requirement
in the resulting contract, namely, that input z be strictly positive. This is the
weakest requirement on z that allows to ensure x2 6= 0.

Definition 7 (Compatibility). Let I1 = (X1, Y1, φ1) and I2 = (X2, Y2, φ2) be
two composable interfaces. We say that I1 and I2 are compatible if I1 I2 is
well-formed.

In Figure 3, in examples (a) and (d), the interfaces of C andD are compatible,
whereas in examples (b) and (c) they are not.

We remark that we view compatibility as a key differentiating aspect of input-
complete theories and interface theories. Compatibility is a local correctness
property, akin to type checking. As the examples of Figure 3 illustrate, we can
speak of compatibility between components without proving any property about
the entire system. We view this as more lightweight than full system verification.
In addition, example (d) illustrates how composition can be used to induce new
input constraints, which is akin to type inference.

The difference between and standard composition, i.e., conjunction, lies
in the last conjunct of Formula (1), namely ∀Y1 :

(
φ1 → in(φ2)

)
. The latter is

x2 6= 0

C
x2 6= 0

D
y

x1

x2

(a) φ1 ∗ φ2 ≡ true

x2 = 0

C
x2 6= 0

D
y

x1

x2

(b) φ1 ∗ φ2 ≡ false

true

C
x2 6= 0

D
y

x1

x2

(c) φ1 ∗ φ2 ≡ false

x2 ≥ z

C
x2 6= 0

D
y

x1

x2

z

(d) φ1 ∗ φ2 ≡ z > 0

Fig. 3. Four examples of serial composition of relational interfaces.

a condition on the free inputs of the composite interface (because φ1 → in(φ2)
is a formula on X1 ∪ Y1 ∪ X2). This conjunct states that, for a given input to
the composite interface, any outputs that satisfy φ1 will be legal inputs for φ2.
It can be easily seen that if φ2 is input-complete, then this conjunct evaluates
to true, so φ1 φ2 becomes equivalent to φ1 ∧ φ2. The same holds when φ1 is
deterministic, so standard composition is a special case of .

Theorem 1 (Special cases of composition [22]). Let I1 = (X1, Y1, φ1) and
I2 = (X2, Y2, φ2) be two composable interfaces. If I2 is input-complete or I1 is
deterministic, then φ1 φ2 ≡ φ1 ∧ φ2.

2.3 Refinement

Definition 8 (Refinement). We say that an interface I ′ = (X ′, Y ′, φ′) refines
an interface I = (X,Y, φ), written I ′ v I, iff X ′ ⊆ X, Y ′ ⊇ Y , and the following
formula is valid:

in(φ)→
(
in(φ′) ∧ (φ′ → φ)

)
(3)

The condition can be written as the conjunction of two conditions:

in(φ)→ in(φ′) (4)

(in(φ) ∧ φ′)→ φ (5)

The first condition guarantees that any input assignment that is legal in I
will also be legal in I ′. The second states that for every input assignment that
is legal in I, all output assignments that can be possibly computed by I ′ from
that input, can also be produced by I.

Theorem 2 (Refinement preserves well-formedness [22]). Let I, I ′ be
stateless interfaces such that I ′ v I. If I is well-formed, then I ′ is well-formed.

Theorem 3 (Composition preserves refinement [22]). Let I1, I2, I
′
1, and

I ′2 be interfaces such that I ′1 v I1 and I ′2 v I2. Then I ′1 I ′2 v I1 I2.

We can conclude from Theorems 2 and 3 that refinement preserves compat-
ibility:

Corollary 1 (Refinement preserves compatibility [22]). Let I1, I2 be com-
patible interfaces. Let I ′1, and I ′2 be interfaces such that I ′1 v I1, I ′2 v I2. Then
I ′1 and I ′2 are also compatible.

3 Error-Completion

Error-completion is a lossless transformation from (possibly non-input-complete)
relational interfaces to input-complete relational interfaces. The idea is to cap-
ture illegal inputs using an extra boolean output variable. This has already been
proposed in [22]. However, the way in which error-completion is defined in [22] is
too strict, and does not allow us to reduce checking refinement of RIs to checking
implication of their error-completed versions. We explain this further below.

In this paper we provide a less restrictive version of error-completion:

Definition 9 (Error-completion). Let I = (X,Y, φ) be an interface. Let e be
a new output variable, such that e 6∈ X ∪ Y . The error-completion of φ is the
formula EC(φ) over X ∪ Y ∪ {e}, defined as follows:

EC(φ) := in(φ)→ (φ ∧ ¬e) (6)

It is easy to verify that EC(φ) is input-complete, for any φ. Also note that if
φ is input complete, then EC(φ) ≡ (φ ∧ ¬e).

In the example of the division component in Figure 1 where φ ≡ (x2 6=
0 ∧ x1 = y · x2), the error-completion of φ is:

EC(φ) ≡ x2 6= 0→ (x1 = y · x2 ∧ ¬e)

Definition 10 (Inverse transformation). Let I = (X,Y, φ) be an interface
and let φe = EC(φ) be the error-completion of φ. We can retrieve φ from φe
using the following transformation:

EC−1(φe) := (∃e : φe) ∧ (∀Y ∪ {e} : φe → ¬e) (7)

It can be shown that the two conjuncts of the definition of EC−1 correspond
to φ∨¬in(φ) and in(φ), respectively. Intuitively ∃e : φe adds all illegal inputs to
the domain of φ and ∀Y ∪ {e} : φe → ¬e removes them. Formally, EC−1 is a left
inverse of EC:

Lemma 1. Any formula φ over X ∪ Y is equivalent to EC−1(EC(φ)), i.e.:

φ ≡ EC−1(EC(φ)) (8)

Proof. If we expand the definitions of EC and EC−1, EC(EC−1(φ)) is equal to:

EC(EC−1(φ)) ≡ (∃e : (in(φ)→ (φ∧¬e)))∧ (∀Y ∪{e} : (in(φ)→ (φ∧¬e))→ ¬e).

We examine the two conjuncts separately. The first conjunct is:

∃e : (in(φ)→ (φ ∧ ¬e)) = in(φ)→ (φ ∧ ∃e : ¬e)
= in(φ)→ φ.

Let Φ be the formula (in(φ)→ (φ ∧ ¬e))→ ¬e.
For e = true, Φ is equal to (in(φ)→ false)→ false ≡ in(φ).
For e = false, Φ is equal to (in(φ)→ φ)→ true ≡ true.
Therefore the second conjunct is equivalent to ∀Y : in(φ) or in(φ) since the

latter does not depend on Y variables.
Going back to EC−1(EC(φ)), we get:

EC−1(EC(φ)) ≡ (in(φ)→ φ) ∧ in(φ) ≡ φ ∧ in(φ) ≡ φ.

ut

It can be easily shown that any function that has a left inverse is injective.
Therefore, φ1 6≡ φ2 implies EC(φ1) 6≡ EC(φ2).

Lemma 1 is an important result, as it proves that the transformations EC,EC−1

are lossless. In addition, as we shall show next, Lemma 1 allows to prove that
EC forms a bijection between relational interfaces and an appropriate subclass
of error-complete interfaces.

3.1 Meaningful ECI

We have seen that EC−1 is a left inverse of EC. Note, however, that it is not
the case that EC−1 is a right inverse of EC, that is, EC(EC−1(φe)) is not always
equivalent to φe. For example, if φe := (y = e) where y is an output, then:

EC−1(φe) ≡ (∃e : y = e) ∧ (∀Y ∪ {e} : (y = e)→ ¬e) ≡ true ∧ false ≡ false

while

EC(EC−1(φe)) ≡ EC(false) ≡ in(false)→ (false ∧ ¬e) ≡ false→ false ≡ true.

The same can be shown for less elementary contracts. For instance, if φe :=
(x = 0→ ¬e) ∧ (x = 1→ e), then EC−1(φe) = (x = 0) but EC(x = 0) 6= φe.

In fact we can prove that φe is generally stronger than EC(EC−1(φe)).

Lemma 2. Any formula φe over X ∪ Y ∪ {e} is equivalent or stronger than
EC(EC−1(φe)):

φe → EC(EC−1(φe)) (9)

As the above results show, even though, by Lemma 1, EC is injective, it is not
surjective. This means that there are error-complete interfaces which do not cor-
respond to any meaningful relational interfaces. However, note that it was never
our intention to handle arbitrary error-complete interfaces, that is, arbitrary for-
mulas over X ∪ Y ∪ {e}. Instead, what we are interested in is a transformation
from contracts over X ∪ Y to input-complete contracts over X ∪ Y ∪ {e}. We
are thus only interested in the subclass of error-complete interfaces which are
obtained from relational interfaces via EC. That is, we are only interested in the
image of EC. We call this subclass the class of meaningful error-complete inter-
faces (MECI). MECI is a strict subset of the set of all input-complete interfaces
over X ∪ Y ∪ {e}, which we denote by ECI.

Definition 11 (Meaningful error-complete interfaces). Let φe be a for-
mula over X ∪ Y ∪ {e}. φe is said to be meaningful iff there exists a formula φ
over X ∪ Y such that EC(φ) ≡ φe.

Theorem 4. Let φe be a formula over X ∪ Y ∪ {e}. φe is meaningful iff
EC(EC−1(φe)) ≡ φe.

Proof. Suppose EC(EC−1(φe)) ≡ φe. By definition of EC−1, EC−1(φe) is a for-
mula over X ∪ Y . Therefore, setting φ := EC−1(φe), we have EC(φ) ≡ φe, thus
φe is meaningful.

In the other direction, suppose φe is meaningful. Then there is a formula φ
over X∪Y such that EC(φ) ≡ φe. EC(φ) ≡ φe implies EC−1(EC(φ)) ≡ EC−1(φe).
By Lemma 1, EC−1(EC(φ)) ≡ φ, therefore, φ ≡ EC−1(φe). This implies EC(φ) ≡
EC(EC−1(φe)). Since EC(φ) ≡ φe, we get φe ≡ EC(EC−1(φe)). ut

Theorem 4 is an important result which shows that EC, restricted to the class
MECI, is a bijection. This is illustrated in Figure 4. Note that we interpret the
spaces RI, ECI, MECI, and so on, as containing semantic rather than syntactic
objects, that is, relations rather than formulas. Alternatively, and equivalently,
a point in each of these spaces represents the equivalence class of all equivalent
formulas.

3.2 Composition in the ECI domain

Beyond merely having a lossless transformation from relational interfaces to
error-complete interfaces and back, we are interested in using the error-completion
to perform operations on relational interfaces more efficiently. In this section we
show how error-completion can be used to compute serial composition of rela-
tional interfaces by avoiding the universal quantification formula ∀Y1 :

(
φ1 →

in(φ2)
)

used in the definition of . The idea is to delay computing the game-
theoretic demonic composition as much as possible. In that sense, we can perform
serial composition on the error-complete domain, and use the inverse transfor-
mation EC−1 (which introduces the universal quantification) to return to the
non-input-complete domain whenever necessary. To achieve this, we define a

serial composition operator
e

on error-completions:

RI ECI

MECI

EC

EC−1
x2 6= 0→ ¬e

x2 6= 0

y = e

Fig. 4. Meaningful error-complete interfaces

Definition 12. Let I1 = (X1, Y1, φ1), I2 = (X2, Y2, φ2) be two composable in-
terfaces. Let e1, e2 be two fresh variables, i.e., e1, e2 /∈ X1 ∪ Y1 ∪ X2 ∪ Y2. Let
ψ1, ψ2 be two predicates over X1 ∪ Y1 ∪ {e1} and X2 ∪ Y2 ∪ {e2} respectively,
such that ψ1 = EC(φ1)[e/e1] and ψ2 = EC(φ2)[e/e2] where ξ[e/ei] denotes the
formula ξ′ obtained by ξ by replacing e with ei. We define the composition of ψ1

and ψ2 as:

ψ1
e
ψ2 := ∃e1, e2 :

(
ψ1 ∧ ψ2 ∧ e = (e1 ∨ e2)

)
(10)

The operator
e

is illustrated in Figure 5 for the simple case of single-
input/single-output components.

EC(φ1) EC(φ2)
x y z

e1
e2 e

Fig. 5. Illustration of serial composition in the error-complete domain.

We can now state a main result which allows to compute serial composition
losslessly on the error-complete domain:

Theorem 5. Let I1 = (X1, Y1, φ1), I2 = (X2, Y2, φ2) be two composable inter-
faces. Then the following is true:

EC−1
(
EC(φ1)

e
EC(φ2)

)
≡ φ1 φ2 (11)

Examples Let us look at the composition examples of Figure 3 and see how serial
composition is performed in the error-complete domain. We first look at example
(c) and compute the error-completion of the contracts of the two components:

ψ1 := EC(true)[e/e1] ≡ true→ (true ∧ ¬e1) = ¬e1

ψ2 := EC(x2 6= 0)[e/e2] ≡ in(x2 6= 0)→ (x2 6= 0 ∧ ¬e2)

≡ x2 6= 0→ (x2 6= 0 ∧ ¬e2)

≡ x2 6= 0→ ¬e2
The serial composition contract in the error-complete domain is:

ψ1
e
ψ2 ≡ ∃e1, e2 : true ∧ (x2 6= 0→ ¬e2) ∧ (e = e1 ∨ e2)

≡ ∃e1, e2 : (x2 6= 0→ ¬e2) ∧ (e = e1 ∨ e2)

≡ true

If we apply the EC−1 operator, we indeed get back the serial composition contract
we had computed before:

EC−1(true) ≡ (∃e : true) ∧ (∀x2∀e : true→ ¬e)
≡ (∀x2∀e : ¬e)
≡ false

In case (d) of Figure 3, the error-completion of the contract of the division
component, ψ2, is the same as before, and for component C we get:

ψ1 := EC(x2 ≥ z)[e/e1] ≡ in(x2 ≥ z)→ (x2 ≥ z ∧ ¬e1)

≡ (∃x2 : x2 ≥ z)→ (x2 ≥ z ∧ ¬e1)

≡ x2 ≥ z ∧ ¬e1
The serial composition contract in the error-complete domain is:

ψ := ψ1
e
ψ2 ≡ ∃e1, e2 : (x2 ≥ z ∧ ¬e1) ∧ (x2 6= 0→ ¬e2) ∧ (e = e1 ∨ e2)

≡ (x2 ≥ z ∧ ¬e) ∨ (x2 ≥ z ∧ x2 = 0 ∧ e)
≡ x2 ≥ z ∧ (¬e ∨ (x2 = 0 ∧ e))

We examine the two conjuncts of EC−1 separately:

∃e : ψ ≡ ∃e : (x2 ≥ z ∧ (¬e ∨ (x2 = 0 ∧ e)))
≡ x2 ≥ z ∧ ∃e : (¬e ∨ (x2 = 0 ∧ e)) ≡ x2 ≥ z

∀x2∀e : ψ → ¬e ≡ ∀x2∀e : (x2 ≥ z ∧ (¬e ∨ (x2 = 0 ∧ e)))→ ¬e
≡ ∀x2 : (x2 ≥ z ∧ (false ∨ (x2 = 0 ∧ true)))→ false

≡ ∀x2 : ¬(x2 ≥ z ∧ x2 = 0)

≡ ¬∃x2 : (x2 ≥ z ∧ x2 = 0)

≡ z > 0

Thus EC−1(ψ1
e
ψ2) ≡ x2 ≥ z ∧ z > 0, and if we hide the connected input x2

we get ∃x2 : (x2 ≥ z ∧ z > 0) ≡ z > 0 which is equal to φ1 ∗ φ2.

3.3 Refinement in the ECI domain

In the previous section we showed how to perform composition on the error-
complete domain. In this section we show that checking refinement of rela-
tional interfaces can be reduced to checking standard implication on their error-
completions.

Theorem 6. Let I1 = (X1, Y1, φ1), I2 = (X2, Y2, φ2) be two interfaces such that
X1 ⊆ X2 and Y1 ⊇ Y2. Then I1 v I2 iff EC(φ1)→ EC(φ2) is valid.

Proof. (only if) We repeat Formula (3) for convenience:

in(φ2)→
(
in(φ1) ∧ (φ1 → φ2)

)
We need to show that if Formula (3) is valid then(

in(φ1)→ (φ1 ∧ ¬e)
)
→
(
in(φ2)→ (φ2 ∧ ¬e)

)
(12)

is also valid. To show that Formula (12) is valid, consider a valuation a that
satisfies

(
in(φ1) → (φ1 ∧ ¬e)

)
∧ in(φ2). We need to show that a also satisfies

φ2 ∧ ¬e. Because a satisfies in(φ2) and Formula (3) is valid, a also satisfies
in(φ1) ∧ (φ1 → φ2). Because a satisfies in(φ1) and also

(
in(φ1) → (φ1 ∧ ¬e)

)
, it

also satisfies φ1 ∧ ¬e. And because it satisfies φ1 and φ1 → φ2 it also satisfies
φ2. Thus, it satisfies φ2 ∧ ¬e.

(if) We need to show that if Formula (12) is valid then Formula (3) is also
valid. It suffices to show that if the negation of Formula (3) is satisfiable then
the negation of Formula (12) is also satisfiable.

The negation of Formula (3) is

in(φ2) ∧
(
¬in(φ1) ∨ (φ1 ∧ ¬φ2)

)
(13)

The negation of Formula (12) is(
in(φ1)→ (φ1 ∧ ¬e)

)
∧ in(φ2) ∧ (¬φ2 ∨ e) (14)

Suppose a satisfies Formula (13). Notice that a is an assignment over variables
in X2 ∪ Y1. In particular, a does not assign a value to e. There are two cases:

1. a satisfies in(φ2) ∧ ¬in(φ1): We extend assignment a to assignment a′ over
X2∪Y1∪{e}, such that a′ sets e to true and keeps the values of a for all other
variables. Clearly, a′ satisfies the last conjunct ¬φ2∨e of Formula (14). Also,
because a satisfies the first two conjuncts of Formula (14) and because these
conjuncts do not refer to e, a′ satisfies them as well. Therefore, a′ satisfies
Formula (14).

2. a satisfies in(φ2)∧φ1∧¬φ2: As before we extend a to a′ but now a′ sets e to
false. It can be seen that this a′ satisfies the consequent of the first conjunct
and the last two conjuncts of Formula (14) and thus satisfies Formula (14).

Thus, in both cases Formula (14) is satisfiable. ut

We can now fulfill our promise to explain why the error-completion transfor-
mation defined in [22] is not satisfactory. The definition given in [22] is:

ECstrict(φ) := (¬in(φ) ∧ e) ∨ (φ ∧ ¬e) (15)

Unfortunately, Theorem 6 does not hold if we replace EC by ECstrict. Intu-
itively, this is because ECstrict is too strict. It requires that the error variable
is true when an input is given that does not satisfy in(φ). This demand goes
against the contravariant definition of refinement: a refinement of φ can accept
more inputs than φ. To give a concrete example, consider two interfaces I, I ′

with contracts φ ≡ x > 0 and φ′ = true respectively. true accepts more inputs
than x > 0, therefore we have I ′ v I. Indeed if we consider the error-completions
ψ := EC(φ) and ψ′ := EC(φ′) we get:

ψ ≡ x > 0→ ¬e and ψ′ ≡ ¬e

and it is true that ψ′ → ψ.
However, if we consider the strict error-completions we get:

ψstrict := ECstrict(φ) ≡ (x > 0 ∧ ¬e) ∨ (x ≤ 0 ∧ e)
ψ′strict := ECstrict(φ

′) ≡ ¬e

and it is not the case that ψ′strict → ψstrict.

4 Discussion

4.1 Extension to stateful

We first discuss how the ideas of error-complete interfaces can be applied in
the case of stateful interfaces. For the sake of brevity, we do this by means of
an example. Nonetheless, we are confident that the results in the paper extend
without problem to the general case of stateful interfaces.

¬(R∧S)∧¬Q ¬(R ∧ S) ∧Q

¬S ¬RS

R

R

S

Q

Fig. 6. Stateful interface example

Stateful interfaces can be represented as extended automata whose states
are annotated with contracts. Figure 6 shows the stateful interface of an SR
flip-flop. An SR flip-flop has two inputs, S for set, R for reset, and an output Q
which is equal to the current flip-flop state. When neither S nor R are present,
the flip-flop maintains its state. When S is present and R is not, the output
Q is set to true. When R is present and S is not, the output Q is set to false.
The combination of both S and R being present is illegal; in that case, in real
implementations, the output depends on gate propagation delays, and hence it
is considered an error state. In the game interpretation of interfaces, after the
environment decides on the values of R and S, the interface will move to the
correct state and produce an output Q that satisfies the contract of that state.

Performing error-completion on stateful interfaces is straightforward: it
amounts to perform error-completion on the contract of every state. In the case
of the SR flip-flop interface shown above, it amounts to adding a new boolean
output variable e and modifying its two contracts as follows:

EC(¬(R ∧ S) ∧ ¬Q) ≡ in(¬(R ∧ S) ∧ ¬Q)→ (¬(R ∧ S) ∧ ¬Q ∧ ¬e)
≡ ¬(R ∧ S)→ (¬(R ∧ S) ∧ ¬Q ∧ ¬e)
≡ ¬(R ∧ S)→ (¬Q ∧ ¬e)

EC(¬(R ∧ S) ∧Q) ≡ ¬(R ∧ S)→ (Q ∧ ¬e)

4.2 Value-completion

An alternative way to achieve a notion of error-completion is to introduce error
values in the domains of the original output variables, without adding new error
variables. Let us discuss this alternative.

Let φ be a formula over input and output variables X∪Y . In this subsection,
we assume that Y is non-empty. For each variable v, let Dv denote the domain of
v, i.e., the set of all possible values that v can take. Let ⊥ be a new value, not in
Dv, for any v. Let D⊥v := Dv∪{⊥}. The value-completion of φ is a formula VC(φ)
over X ∪Y , where every output variable y is assumed to range over domain D⊥y .
VC(φ) is defined as follows:

VC(φ) := in(φ)→ (φ ∧
∧
y∈Y

y 6= ⊥) (16)

As with EC(φ), it is easy to verify that VC(φ) is input-complete, for any φ.
For example, the contract φ ≡ (x2 6= 0 ∧ x2 · y = x1) has the following

value-completion:

VC(φ) ≡ x2 6= 0→ (x2 · y = x1 ∧ y 6= ⊥)

Consider a value-complete formula φb. Interpreting φb as a relation, we can
define the inverse operation VC−1 which yields a formula over X ∪ Y , where
each output variable y ranges over Dy. VC−1(φb) will contain all valuations

(aX , aY) over A(X ∪ Y), such that (aX , aY) ∈ φb and if there exists a′Y such
that (aX , a

′
Y) ∈ φb, then for all y ∈ Y , a′Y (y) 6= ⊥. Formally:

VC−1(φb) := {(aX , aY) ∈ A(X∪Y) | (aX , aY) ∈ φb ∧
∀a′Y : (aX , a

′
Y) ∈ φb → ∀y ∈ Y : a′Y (y) 6= ⊥ }

We can show that VC−1 is a left inverse of VC:

VC−1(VC(φ)) ≡ φ

In a similar way that we used to define MECI, we can now define a space of
meaningful value-complete interfaces, or MVCI, which is a subclass of VCI, the
set of all value-complete interfaces. Doing so, we obtain a bijection, VC, between
RI and MVCI. We also have the bijection EC between RI and MECI. Therefore,
there exists a bijection between MECI and MVCI, which means that MECI and
MVCI are isomorphic. This is illustrated in Figure 7, which expands our previous
Figure 4.

RI ECI

MECI

EC

EC−1

VC

VC−1

VCI

MVCI

Fig. 7. Meaningful value-complete and error-complete interfaces

5 Related Work

Component-based design is one of the holy grails of computer science, and as
a result, a large number of compositional specification and design frameworks
exist in the literature. See, for instance, [21,1,15,17,4], and the related work dis-
cussion in [22]. As mentioned in the introduction, our work follows the approach
of interface theories [9,10], where specifications can be non-input-complete. This
is in contrast with other compositional theories such as I/O automata [16], FO-
CUS [5,6], and reactive modules [2], where specifications are assumed to be
input-complete.

Input-completion of finite automata is a folklore technique. Given a finite au-
tomaton with a partial transition function, input-completion consists in adding
one extra, non-accepting, state to the automaton, and directing all missing tran-
sitions to that state. This results in an equivalent automaton which accepts the

same language as the original one. Moreover, the resulting automaton has a
total transition function, thus can be seen as being “input-complete”. Input-
completion can be adapted to interface automata [10] in a straightforward way:
add an error state, direct all missing inputs to that state, and add a self-loop
for any possible (input or output, and assuming no internal) action to the error
state. This transformation appears to correctly reduce the alternating refinement
relation between interface automata to a standard simulation relation, however,
we were unable to find a reference in the literature to corroborate this.

In the context of viewing programs as predicates or relations [19,14], the
question arises whether these relations should be total or partial. This question
naturally arises in sequential programs that contain “while” loops, and where
modeling program (non-)termination is a concern. The question has received a lot
of attention in the literature (see [18] for a survey) and has also generated some
controversy [13]. In this paper we accept as a fact that partial relations (i.e., non-
input-complete interfaces) are useful, so non-input-completeness is our starting
point. An extensive argument on the usefulness of non-input-completeness can
be found in [22], which also introduces the framework of relational interfaces
used in this paper.

Finally, as already mentioned in the introduction, the error-completion op-
erator introduced in [22] is different from the one defined in this paper, which
we believe is the right one.

6 Conclusions and Future Work

We presented a set of transformations EC,EC−1, which allow to transform non-
input-complete relational interfaces into input-complete ones, so that compo-
sition and refinement can be computed using standard methods on the error-
complete domain. We emphasize that we do not propose error-complete inter-
faces as a new interface theory. We merely suggest them as convenient equiva-
lent representations of non-input-complete relational interfaces, which can make
computation of composition and refinement easier.

Regarding future work, a number of algorithmic issues need to be resolved to
make the relational interface theory (with or without error-completion) practical,
including effective procedures for formula simplification and quantifier elimina-
tion. Another interesting question is raised in [22]: can feedback composition be
defined for general interfaces, rather than for a subclass of stateful interfaces?
This question remains open. Another issue is how to extend the relational in-
terface theory to liveness properties. Finally, value-completion also deserves a
more thorough study. In particular, it is not entirely obvious how to perform
value-completion on sink components, that is, those with no outputs.

References

1. J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, New York, NY, USA, 1996.

2. R. Alur and T. Henzinger. Reactive modules. Formal Methods in System Design,
15:7–48, 1999.

3. R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement rela-
tions. In CONCUR’98, volume 1466 of LNCS. Springer, 1998.

4. R-J. Back and J. Wright. Refinement Calculus. Springer, 1998.
5. M. Broy. Compositional refinement of interactive systems. J. ACM, 44(6):850–891,

1997.
6. M. Broy and K. Stølen. Specification and development of interactive systems: focus

on streams, interfaces, and refinement. Springer, 2001.
7. A. Chakrabarti, L. de Alfaro, T. Henzinger, and F. Mang. Synchronous and bidi-

rectional component interfaces. In CAV, LNCS 2404, pages 414–427. Springer,
2002.

8. L. de Alfaro. Game models for open systems. In Nachum Dershowitz, editor, Veri-
fication: Theory and Practice, volume 2772 of Lecture Notes in Computer Science,
pages 192–213. Springer, 2004.

9. L. de Alfaro and T. Henzinger. Interface automata. In Foundations of Software
Engineering (FSE). ACM Press, 2001.

10. L. de Alfaro and T. Henzinger. Interface theories for component-based design. In
EMSOFT’01. Springer, LNCS 2211, 2001.

11. L. Doyen, T. Henzinger, B. Jobstmann, and T. Petrov. Interface theories with
component reuse. In 8th ACM & IEEE International conference on Embedded
software, EMSOFT, pages 79–88, 2008.

12. M. Geilen, S. Tripakis, and M. Wiggers. The Earlier the Better: A Theory of Timed
Actor Interfaces. In 14th Intl. Conf. Hybrid Systems: Computation and Control
(HSCC’11). ACM, 2011.

13. E.C.R. Hehner and D.L. Parnas. Technical correspondence. Commun. ACM,
28(5):534–538, 1985.

14. C. A. R. Hoare. Programs are predicates. In Proc. of a discussion meeting of the
Royal Society of London on Mathematical logic and programming languages, pages
141–155, Upper Saddle River, NJ, USA, 1985. Prentice-Hall, Inc.

15. B. Liskov. Modular program construction using abstractions. In Abstract Software
Specifications, volume 86 of Lecture Notes in Computer Science, pages 354–389.
Springer, 1979.

16. N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2:219–246, 1989.

17. B. Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.
18. G. Nelson. A generalization of dijkstra’s calculus. ACM Trans. Program. Lang.

Syst., 11(4):517–561, 1989.
19. D.L. Parnas. A generalized control structure and its formal definition. Commun.

ACM, 26(8):572–581, 1983.
20. J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and R. Passerone.

A modal interface theory for component-based design. Fundam. Inf., 108(1-2):119–
149, January 2011.

21. J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

22. S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee. A theory of synchronous
relational interfaces. ACM Transactions on Programming Languages and Systems
(TOPLAS), 33(4), July 2011.

	Error-Completion in Interface Theories

