
Spin the Groove: Speci�cation of Link Reversal

Routing via Graph Transformations

Giorgio Delzanno and Riccardo Traverso

DIBRIS, Università di Genova, Italy

Abstract. We present a formal speci�cation of the Gafni-Bertsekas al-
gorithm, a Link Reversal Routing protocol, via Graph Transformation
Systems (GTS) as provided in the GROOVE tool. Validation tools like
GROOVE can naturally exploit systems symmetries both at the speci-
�cation and state-exploration level. To exploit the most recent features
of the tool like data �elds, we study a height-based version of Gafni-
Bertsekas that requires both graph transformation and comparison and
updates of tuple of integers. Our case-study can be used as test-case to
compare graph-based tools like GROOVE with other validation methods
based on emunerative or symbolic search like SPIN and UPPAAL.

1 Introduction

Following a recently established connection between graph transformations and
algorithmic veri�cation [11,1,13], in this paper we explore the application of the
GROOVE tool [9], consisting of a visual speci�cation language, a simulator, and
a model checker, to validate an case-study taken from the class of Link Reversal
Routing algorithms. Link Reversal Routing (LRR) algorithms are one possible
choice for route maintenance in Ad Hoc Networks. These protocols localize the
e�ect of topology changes in order to react only when necessary. LRR protocols
are based on graph update sequences to ensure that, in case of link failures, new
routes to a given destination node can be automatically restored. Veri�cation
and validation of this class of protocols, and more in general of protocols for Ad
Hoc Networks, is a challenging problem both in the case of �nite- or in�nite-state
veri�cation [7,2,4,5,3,8,14,16,15].

GROOVE has been developed as a support for (object-oriented) program
(Java) and model (UML) transformations via the de�nition of executable graph
production rules. Although protocol validation is not a central application, it has
been considered e.g. in [12] a work presented at SPIN 2006. Indeed, GROOVE
provides a model checker for (CTL/LTL) temporal properties that can be checked
against the labelled transition system associated to (all possible derivations of)
a graph grammar.

The former is a typical modelling feature of GROOVE that must be hardcode
in languages like Promela/SPIN and UPPAAL. The latter can be modelled in
recent extensions of GROOVE with manipulation of data �elds, whereas it is a
built-in feature in Promela/SPIN and in the UPPAAL speci�cation language.



Our case-study represents a an trivial test-case for the usability and �exibility
of the GROOVE tool in the application domain of protocol validation.

Outline In Section 2 we introduce the main concepts underlying the GROOVE
tool. In Section 3 we describe Link Reversal Routing and the Gafni-Beserktas
protocol. In Section 4 we describe in detail the speci�cation of the protocol in
GROOVE and the results of our analysis. In Section 5 we draw some conclusions
and compare with other approaches for the speci�c classes of protocol considered
here.

2 The GROOVE Tool

GROOVE [9] consists of a graphical interface tool (Simulator) that allows graph-
ical editing of rules and graphs, and integrates the functionality of the Generator
and Model Checker. The state space is stored as a Labelled Transition System
(LTS), where each state is a graph and transitions are labelled by the rule ap-
plications. The strategy according to which the state space is explored can be
set as a parameter. The Model Checker veri�es properties expressed in branch-
ing or linear temporal logic in which propositions can be expressed via graph
patterns. If a property does not hold, the Model Checker returns a counter-
example. State space exploration in GROOVE is based on a graph representation
of system states and on graph transformations to represent the state updates.
Graphs transformations rule specify the following features: a pattern that must
be present in the host graph in order for the rule to be applicable, where graph
matching is used to select the pattern in the current con�guration; sub-patterns
that must be absent in the host graph in order for the rule to be applicable; nodes
and edges to be deleted/added/merged from/to/in the graph. In the following
section we formally de�ne graph transformation rules.

2.1 Basic Notions

To simplify the de�nition of graph transformation systems we follow the style
of [6,10]. A graph G = 〈N,E,L〉 consists of a �nite set N of nodes, a �nite set
E ⊆ N ×N of edges, and a labelling function L of nodes and edges. We use G
to denote the set of all graphs, ranged over by G,H, . . ..

De�nition 1. A graph matching m : G → G is a graph morphism that preserves
node and edge labels, i.e., for G = 〈N,E,L〉 and G′ = 〈N ′, E′, L′〉, if e =
〈n, n′〉 ∈ E, then e′ = 〈m(n),m(n′)〉 ∈ E′, L(n) = L′(m(n)), L(n′) = L′(m(n′)),
and L(e) = L′(e′).

A graph transformation rule speci�es how the system evolves when going from
one state to another.

De�nition 2. A graph transformation rule p ∈ R is identi�ed by its name
(Np ∈ N , where N is a global set of rule names) and consists of a left-hand-
side graph (Lp), a right-hand side graph (Rp), and a set of so-called negative
application conditions (NACp, which are super-graphs of Lp).

2



De�nition 3. A Graph Production System (GPS) P = 〈I,R〉 consists of a
graph I representing the initial state of the system and a set of graph transfor-
mation rules R.

The application of a graph transformation rule p transforms a graph G, the
source graph, into a graph H, the target graph, by looking for an occurrence
of Lp in G (speci�ed by a graph matching m that cannot be extended to an
occurrence of any graph in NACp) and then replacing that occurrence with Rp,
resulting in H. Such a rule application is denoted as G →p,m H. Each GPS
P = 〈R, I〉 speci�es a (possibly in�nite) state space which can be generated by
repeatedly applying the graph transformation rules on the states, starting from
the initial state I.

De�nition 4. A graph transition system T = 〈S,→, I〉 generated by P = 〈R, I〉
consists of a set S ⊆ G of states, an initial state I ∈ S, and a transition relation
→∈ S×R× [G → G]×S, such that 〈G, p,m,H〉 ∈→ i� there is a rule application
G→p,m H ′ with H ′ isomorphic to H.

2.2 Example

To illustrate how graph productions are speci�ed in the GROOVE visual lan-
guage we consider an example in which graphs represent dynamically created
linked lists with tail insertion (put) and head removal (get). In the initial con-
�guration we use two nodes as sentinels to denote the empty list. The �rst node
has two forward pointers (h=head, t=tail) both pointing to the second node.

The put operation inserts a new node pointed by the tail pointer. The GROOVE
visual language adopts colored nodes and egdes to denote deletion and addition
of edges, nodes, and label updates. Indeed, the rule is speci�ed as follows.

The dashed line denotes the deletion of the old t-edge. A deletion acts both as a
guard (the edge being removed has to exist) and as a postcondition (the edge is
removed from the graph). The thick lines denote the addition of two new edges.
This notation can be expanded into a graph production containing a graph Lp
with two nodes L and C connected via a t-edge in the left-hand side, and a graph
Rp with three nodes L, C and C, with an n-edge connecting the last two nodes
and a t-edge connecting the �rst and last node. The Lp graph is removed and
the nodes and edges of Rp are created at its place. The nodes of Rp are linked to
the nodes of Lp via a further graph morphism (usually denoted by using extra
numerical labels to put in relation nodes in the left- and right-hand side).

Deletion of a cell is speci�ed via the following rule.

3



Dashed lines denote removal of old h- and n-edges. The thick line denotes the
addition of a new h-edge. Clearly, the two productions assume that in the trans-
formed graph there exists only one h-edge and only one t-edge (this property is
invariant under applications of the productions).

In the initial con�guration the only �reable transition is put with the follow-
ing matching pattern (get requires at least two n edges).

The application of the put rule produces the following new con�guration.

We can now apply either put or get. The application of get (the whole graph is
a match) leads to the initial con�guration. Alternatively, a second application of
put produces the following graph.

Again both rules have matching patterns and the transformation can continue
either back to the previous state or to a list with an additional cell. Therefore,
the considered graph production system generates lists of arbitrary length.

2.3 Extensions

In the latest version of GROOVE there are several speci�cation facilities. Node
labels can either be node types or �ags. Tags are used to model a boolean
condition, which is true for a node if and only if the �ag is present.

Data Fields and Operations To specify data �elds ranging over basic types like
booleans, integers, and strings, we can use node attributes. Attributes are treated
as special edges that do not point to a standard node, but to a node that corre-
sponds to a data value. Operations over data �elds are speci�ed as node relations
(evaluated automatically in data �elds corresponding to the results).

4



Universal Quanti�cation Universal quanti�cation is another interesting feature
of the input language. A universally quanti�ed (sub)rule is a rule that is applied
to all sub-graphs that satisfy the relevant application conditions, rather than just
a single one as in the standard case. The use of universally quanti�ed rules allows
to naturally de�ne parametric transformations (thus saving space in both the
input model and in the state space). Universal quanti�cation can be nested with
existentially quanti�ed. The documentation of the feature is not very detailed,
so we used it in a restricted way.

Priorities and Control GROOVE provides di�erent form of control in the rewrit-
ing process. The �rst method is based on priorities. Low-priority rules may only
be applied if no higher-priority rule is applicable. A more sophisticated mech-
anism is to use in the control language. It can be used to de�ne an order of
application of the rules of that system (with constructs like looping, random
choice, recursive functions). We will illustrate some of the extended features of
GROOVE in the description of the speci�cation of our case-study.

2.4 Simulation and Model Checking

GROOVE provides a GUI with a Simulator for the step-by-step visualization
of the behaviour of a system, in which it is possible to highlight the matching
pattern for a speci�c rule. Rules are partitioned in accord to the associated pri-
orities. The simulator guides the execution via the corresponding rule ordering.

The veri�er built in the GROOVE Simulator builds the LTS of a given graph
production system in form of a reachability graph. Based on this representation
of the state-space, the GROOVE Model Checker supports veri�cation of CTL
and LTL speci�cations that can be de�ned over graph patterns. This is achieved
by using rule names as propositions. Speci�cally, the left-hand side of a for-
mula (and the corresponding NAC) is used to check for the presence of a given
sub-pattern in the current con�guration. Consider a rule with name bad, whose
left-hand side denotes a bad pattern (e.g. a cycle in a graph). Then, the �r-
ing of bad denotes the occurrence of the bad pattern in the reachability graph.
Formulas are built over predicates de�ned over rule names, temporal operators
like A, E (for CTL only), F , G, X (for CTL/LTL), and of their Boolean com-
binations (and/or/negation). A CTL formula like AG !bad can then be used
to specify the safety property "the bad pattern can never be reached". In our
linked list example we could specify bad patterns like self-loops with h- and
t-edges (unreachable in our model). As a �nal remark, since the state-space of
a model is potentially in�nite, the veri�er provides di�erent strategies to �nd
counterexamples like breadth-, depth-�rst, and bounded-depth search.

3 Link Reversal Routing Algorithms

Link Reversal Routing (LRR) algorithms are designed for large, dynamically
changing networks, in which topology changes are too frequent to make �ooding

5



of routing informations a viable solution. The main goal is to quickly repair a
corrupted route with a new valid, but not necessarily optimal, one. The adaptiv-
ity and scalability of LRR make them suitable for ad hoc networks. We assume
to work on networks in which nodes are connected via bidirectional channels
(i.e. the communication layer is an undirected graph). LRR works with an over-
lay network used to identify routes to a speci�c destination node. The overlay
network is de�ned via a Directed Acyclic Graph (DAG) with exactly one destina-
tion node (a node with only incoming links). Other nodes have either incoming
and outgoing links or just outgoing links. When the last outgoing link of a node
breaks, the node starts route maintenance, e.g., it reverses all incoming edges.
After reversing edges, the maintenance procedure is recursively applied to the
surrounding nodes. The algorithm stabilizes after �nitely many steps if the graph
is not partitioned. All the described algorithms are loop- and deadlock-free and
establish multiple routes to one destination.

3.1 The Gafni-Bertsekas algorithm

The Gafni-Bertsekas algorithm is an LRR protocol with two di�erent methods
to handle the nodes with no outgoing links. In the full reversal method, the
nodes which need to execute route maintenance reverse the direction of all their
links. Thus, after that the nodes have only outgoing links. In the partial reversal
method, reversal is done more e�ciently. Speci�cally, every node, except the
destination, keeps a list of the reversed links between it and its neighbour. When
a neighbour of a node reverses the direction of the link between the nodes, the
node writes the name of the neighbour down. As the node loses its last outgoing
link, all other links than the already reversed ones are reversed. After that the
list is emptied. If all the links have been reversed i.e. the list contains all the
neighbour nodes, all the links are transformed from incoming to outgoing and
the list is emptied. The reversals are informed by sending an update packet to
the neighbours. If the update causes the neighbour to lose its last outgoing link,
the reversing transaction continues with that node. The partial reversal method
is usually more e�cient than the full reversal method.

The partial reversal method can be implemented using heights. Every node
u has a tuple of values 〈αu, βu, u〉, where αu is a non negative integer, and βu
is an integer. Initially, αu is 0 for every node u. Tuples are totally ordered using
the lexicographic ordering. Virtual edges (i.e. pointing towards the destination
node) are directed from higher tuple to lower tuples, i.e., for every pair u and v
of nodes, (αu, βu, u) > (αv, βv, v) if and only if the virtual edge between them is
directed from u to v. Route maintenance is triggered when a node u has no more
incoming edges, i.e., the node is a local minimum. Let Nu be the set of neighbour
nodes of node u. The node tries to repair the con�guration by updating the value
of αu with a value that is larger than the minimum value of the α's for nodes in
Nu,

α′
u = (minv∈Nu

αv) + 1

The new value of α′
u may reverse edges directed towards nodes v s.t. αv is equal

to α′
u, i.e., edges reversed in a previous step. Thus, we also set the new value of

6



Fig. 1. Execution of Height-based Reversal.

βu to be strictly less than the minimum value of the β's for those nodes in Nu
with a value for α equal to α′

u, i.e.,

β′
u = (minv∈{v′∈Nu|αv′=α′

u}βv)− 1

This way the edges directed towards the those nodes will be left unchanged.
If the graph is connected then the ideal algorithm is ensured to terminate and
to produce a new DAG pointing to the destination node. As in the scenario
considered in the original algorithm, we assume here that route maintenance is
performed after the failure of a single link and terminated before the subsequent
link failure (the algorithm is designed for networks with such a relation between
the frequency of the two types of events). We show an example of reversal steps
in Figure 1.

We remark that the full reversal algorithm can be obtained by ignoring β
and changing the updates of α as follows:

α′
u = (maxv∈Nu

αv) + 1

This way all incoming edges of a sink node are reversed into outgoing edges.
Only when passing from informal speci�cations to formal ones, we can uncover
details that must be taken into account in a real implementation of the protocol.

7



Since the informal speci�cation of the LRR algorithm is based on graph trans-
formations, it seems a natural case-study for a tool like GROOVE in order to
fully exploit symmetries and compactness of graph production rules.

Fig. 2. Initial con�guration with four nodes.

4 Formal Speci�cation using GROOVE

In this section we describe a formal speci�cation of the Gafni-Bersektas algorithm
using the GROOVE input language. An initial con�guration (e.g., Figure 2)
for the protocol consists of a graph of init nodes, where pairs of adj edges
represent links between adjacent nodes. In this state, nodes still do not have
any identi�er, α or β. The purpose of the rules shown in Figures 3 through
5 is to initialize such values and choose a destination among the nodes. They
are all given the maximum priority level, in order to ensure no other rule will
match before the initialization of the system is complete. First, the rule INIT-

Fig. 3. INIT-COUNTER: Initialization of node states.

COUNTER introduces a new counter node (nodes with thick borders are added
as a side e�ect of �ring the rule, just like with thick edges) linked via a nextId
edge to a special value node labelled by the integer 0. When writing rules, a value
node can either hold a speci�c value from some supported data domain, or simply
state the associated data domain. In this case the node may assume any value
of that domain, depending on the matching. INIT-COUNTER may �re only if

8



the system is still uninitialized, i.e. both the counter and a destination node are
missing. This sort of negative preconditions (NAC) is expressed through nodes
with thick, dashed borders. The rule INIT-LOCALS �res for each init node,

Fig. 4. INIT-LOCALS: Initialization of local variables.

setting both alpha and beta to 0, and choosing the id of the node according to
the counter. The label of the node is changed to init1 to mark it as ready and
the counter is increased by 1. This is achieved by �rst removing label init and
then adding label init1. Labels added or removed as a postcondition of a rule
are respectively preceded by a plus or a minus sign. The increment, just like
any other expression on value nodes, has to be encoded with nodes and arcs.
The diamond-shaped nodes match as tuples whose values are speci�ed thanks to
projection arcs π1, π2, · · · , and they act as input arguments to operator edges.
The latter are used to match against value nodes, which are used to hold the
result of the operation. In Figure 4, rule INIT-LOCALS adds the constant 1
to the old value of nextId, matches an integer valued node against the result,
and sets it to be the new nextId as well as the identi�er of the node being
initialized. When INIT-LOCALS is done initializing the nodes (i.e. there are no

Fig. 5. INIT-DEST: Non-deterministic choice of destination node.

init nodes any more), INIT-DEST (Figure 5) non-deterministically picks one of
them as the destination of the routing protocol. Furthermore, every remaining
init1 node becomes an lrr, an active node running the LRR protocol, and the
counter node is removed. As in the case of edge removal, nodes being removed are
marked through a thin, dashed border. Because of the universal quanti�cation
in the ∀>0 node, the +lrr one is matched against every init1 node but the only

9



one chosen as destination. In general, however, nothing forbids for two di�erent
nodes of a rule to match against the same node of a con�guration. In INIT-DEST
we ensure to distinguish the lrr nodes w.r.t. dest with an inequality constraint
speci�ed via an edge with label ! =. The �ring of INIT-DEST marks the end
of the initialization phase and the beginning of the simulation of the Gafni-
Bertsekas LRR protocol. At �rst no virtual edges (labelled by next) towards the
destination exist, as the nodes did not interact with each other. In such a case

Fig. 6. NEW-LINK: Creation of a new link.

the preconditions to �re NEW-LINK (Figure 6) are satis�ed. The special syntax
lrr|destmatches against nodes labelled by either lrr or dest. Thick, dashed edges
are treated as negative preconditions. The rule may appear as a complex one to
understand, but all it does is to determine that the lrr|dest node on the left has
an height lexicographically greater than the height of the one on the right. When
the network is initialized and all of the next edges are ready, a con�guration with
four nodes may look like in Figure 7. This con�guration also exposes an example
of a sink (with id = 1), i.e., a node other than the destination without outgoing
next edges which triggers the route maintenance phase. The rules in this phase
have to �re in a speci�c order for the protocol to work, and some of them have to
be �red for every possible matching. By giving strictly decreasing priorities to the
rules in Figures 8 through 15 we capture exactly this behaviour. In a situation
such as in Figure 7, a new sink can be detected through rule SINK. Since we
model atomic updates to virtual edges through multiple updates to our model,
we ensure the rules will work only on a single sink at a time by introducing a

10



Fig. 7. Fully-initialized network with four nodes and next edges.

Fig. 8. SINK: Detection of a sink node.

Fig. 9. ALPHA-STEP: Search for the minimum alpha.

11



lock node upon detection: SINK may �re only if lock is not already present and
there are no sink nodes. Then, the node is marked with the sink label, and

Fig. 10. ALPHA-UPD: alpha is updated.

minAlpha is initialized to be the same as the alpha of some neighbour. We will
need this value later, as well as aminBeta at some point, in order to compute the
minimum values for alpha and beta among the eligible neighbours (as previously
described in Section 3). When a node o�cially becomes a sink, the �rst thing it

Fig. 11. BETA-INIT: Start the search for minBeta.

does is to search for the minimum value of alpha among his neighbours, via rules
ALPHA-STEP and ALPHA-UPD (Figures 9 and 10). ALPHA-STEP updates
minAlpha each time it is greater than the alpha of some neighbour (the gt
operator in the rule). ALPHA-UPD, which thanks to the smaller priority can
be �red only when ALPHA-STEP does not match any more, replaces the old
value of alpha with minAlpha + 1. Once alpha is updated, the LRR protocol
can proceed with the update of beta, which is performed via the rules BETA-
INIT, BETA-STEP, and BETA-UPD of Figures 11, 12, and 13. Di�erently from
alpha, beta has only to be compared w.r.t. the neighbours sharing the same
alpha as the sink. BETA-INIT searches for a neighbour with the same alpha

12



Fig. 12. BETA-STEP: Search for the minimum beta.

as the recently updated one in the sink, and initializes the minBeta edge. In

Fig. 13. BETA-UPD: beta is updated.

order to avoid repeating the initialization multiple times, the rule adds a beta
label to the lock node and makes sure that such a label was not present before
(negative preconditions on labels are preceded by an exclamation mark). Rule
BETA-INIT cannot be �red when there are no neighbours with the same alpha
as the sink: when it is the case, beta does not need to be updated. Without the
minBeta edge introduced by BETA-INIT, the following rules BETA-STEP and
BETA-UPD will skip too, as its presence is a precondition to both of them. Rule
BETA-UPD roughly corresponds to ALPHA-UPD, as it updates the value of
beta to minBeta − 1. At this point both alpha and beta in the sink have been
updated, so we can proceed with the reversal of all incoming next edges in the
sink which originate from neighbours with a smaller height. Rule REVERSAL
of Figure 14 works lexicographically w.r.t. the heights of the sink's neighbours,
exactly as NEW-LINK, except it changes the orientation of next edges instead
of adding new ones. Finally, when all next edges have been adjusted, the system
�res REVERSAL-END, deletes the sink label from the node, and removes the
lock (Figure 15). In the case of the example con�guration in Figure 7, a complete
run of link reversal in the sink node with id = 1 would result in the con�guration

13



Fig. 14. REVERSAL: Reversal of virtual edges according to the new height.

Fig. 15. REVERSAL-END: End of reversal.

Fig. 16. Example network without sinks.

14



of Figure 16. Its alpha has been updated from 0 to 1, beta is still 0 (since there
is no neighbour with alpha = 1), and all of its next edges have been reversed.

4.1 Automated Analysis

Based on our model, we have performed di�erent types of analysis using the
GROOVE Model Checker on the height-based model for con�gurations of �xed
size. In particular, we have introduced link deletion rules in order to trigger the
link reversal phases. On link deletions that lead to partitioning we have veri�ed
the possible non-termination of the algorithm (generation of strictly increasing
sequences of α values).

The introduction of locks for the speci�cation of reversal steps (i.e. updates
of heights) is necessary in order to avoid interferences between di�erent updates.
Real implementation has to take into consideration this kind of details in order
to avoid race conditions during operations like the computation of new α's and
β's.

Furthermore, with a preliminary bound on maximal values of α's, we have au-
tomatically checked the absence of loops (loop-freedom) using CTL properties in
which the bad pattern is a cycle of size less or equal than the size of the network.
To express these patterns, we need to specify several rules to be used as targets
for the exploration, one for each loop size. The logic has no spatial operators,
e.g., to express reachability properties on the structure or to express absence
of cycles in arbitrary topologies. Nevertheless, we can exploit sub-programs to
de�ne this kind of properties (i.e. propositions that express spatial navigation)
introducing however a possible overhead in the state-space generation.

For the con�guration with four nodes of Figure 2 and arbitrary link dele-
tions, veri�cation generates 1972 states and requires about 1 second1 with an
upper bound on α equal to 10. We considered also the automated generation
of arbitrary topologies of �xed size, by introducing a link creation rule which
may connect together previously disconnected nodes. With an upper bound on α
equal to 8 and a maximum number of dynamic changes to the topology equal to
8, starting from the same initial con�guration with four nodes as before, we ob-
tained 56395 states in about 3 minutes. Both of the considered variants satis�ed
loop-freedom.

5 Conclusion

Related Work Speci�cation and veri�cation of routing protocols dates back to
seminal work like the semi-automated correctness proof of AODV given in [2].
More recently, model checking tools (e.g. SPIN [8] and Uppaal[7]) and constraint-
based engines [14,15,16] have been applied to veri�cation of ad hoc and wireless
protocols. In these approaches executions of a �xed number of agents are ex-
plored with enumerative or symbolic methods [8,7], or generating positive/neg-
ative constraints on links in a lazy manner [14,15,16]. Parameterized veri�cation

1 On a common laptop with a 2.53GHz CPU and 4GB of RAM.

15



of this kind of protocols has been studied from a theoretical point of view in
[4,5,3], where decidability and complexity frontiers have been given for prob-
lems like control state reachability (reachability of a state in which a node has
a certain state). The use of graph transformation systems for automated vali-
dation of dynamic systems has been proposed in [12] using GROOVE, and [11]
via a symbolic backward exploration working on ideals generated by the graph
minor relation. Decidability of reachability problems for Graph Transformation
Systems are studied in [1].

Usability A comparison of the performance of GROOVE, used as a veri�ca-
tion tool for dynamical systems, and SPIN is considered in [12] (SPIN 2006)
for di�erent case-studies. Since tools like SPIN and UPPAAL are based on con-
solidated heuristics and optimizations, we believe that performance is not the
only measure to consider. In fact, in this section we will focus our attention on
the usability of the di�erent languages/tools using Gafni-Bertsekas as guiding
example.

As a �rst observation, we �rst remark that graph updates are typically de-
�ned modulo graph isomorphism. Therefore, GTS provide compact speci�cations
of dynamic systems based on structural modi�cations like LRR protocols (ab-
stractly LRR can be viewed as a graph operation). Negative conditions and
universal quanti�cation further simplify the speci�cation. Indeed, they allow
complex combinations of local and global modi�cations of a pattern in a single
rule. The visual language used in GROOVE hides the more operational view of
LTS adopted in Promela and UPPAAL which require some knowledge of C-like
programming languages.

Furthermore, the speci�cation of initial topologies (graphs) and of reachabil-
ity patterns using a visual language can facilitate the analysis of a protocol (and
the divulgation of the results). Graph productions can also be used to gener-
ate parametric initial and target con�gurations as we discussed in the previous
section.

The above presented features are peculiar of GTSs and are less common in
other speci�cation languages for distributed systems. Indeed in Promela/SPIN
and UPPAAL, it is often necessary to hardcode the network topology using
global shared data structures (e.g. an adjacency matrix). This introduces a lower
level of details with respect to the pure protocol logic. Similarly, selective (i.e.
restricted to neighbours) point-to-point or broadcast communication must be
simulated by adding conditions on send and receive operations de�ned on top
of the considered implementation of the network topology. These details are
completely abstracted away in GROOVE.

Concerning symmetries at the speci�cation level, Promela/SPIN and Up-
paal provide templates for de�ning parametric processes, e.g., by using arrays
of processes or by instantiating templates using spawning operators. However
GTS rules with negative conditions and nested universal/existential quanti�ca-
tion seem to provide a higher level of abstraction (i.e. exploit locality at the
structural level) w.r.t. to standard speci�cation constructs. For instance, to sim-

16



ulate universal quanti�cation, it seems necessary to use loops and iterations,
introducing however an overhead in the state-space exploration (and the need
of moving to a lower level of details).

Search strategies like di�erent types of visits, priorities, and con�uence (to
enforce sequentiality of blocks of rules) are also provided in other tools (eq.
deterministic constructs and committed/urgent locations in UPPAAL). The GUI
of the Simulator/Model Checker provided by GROOVE shares similarities with
those of UPPAAL or GUI interfaces for SPIN. However SPIN provides built-in
strategies to enforce weak fairness conditions.

Symbolic representation of data relation is typical of Promela and UPPAAL
speci�cations which also provide programming constructs like macros, while-
loops, conditionals and assignments. As shown in our case-study, the most recent
versions of GROOVE provide ways to specify data �elds (as node attributes) and
relations as well as control programs. Unfortunately, the speci�cation of updates
of data �elds like those required in state transitions of communication protocols
is quite complex in the input language of GROOVE (as shown in the rules for
updating α and β). This is related to the fact that GROOVE has not been
designed for protocol validation but to de�ne model transformations (e.g. in
UML and Java). This feature makes the speci�cation of protocols combining
structural and data updates quite di�cult to write and read.

Spin the Groove The previous considerations suggest future directions of re-
search for combining the SPIN/Promela speci�cation style (e.g. for individual
process components) inspired to programming languages like C with the level of
abstraction provided by GROOVE for specifying con�gurations and structural
update rules (e.g. providing symmetries at the level of speci�cation). The combi-
nation of the two paradigms could give the right balance to cover di�erent level
of abstractions to reason on distributed protocols. In particular the possibility
of decoupling the speci�cation of the structural level from the speci�cation of
the individual behaviour of components seems necessary to bene�t from the use
of visual languages like that used in GROOVE without losing the level of details
provided by Promela.

Furthermore, by exploiting the structural dimension of GTS, we believe that
a great improvement for the veri�cation task could be that of combining spatio-
and temporal-speci�cation. To be more speci�c, for properties involving reach-
ability within a state graph (not in the reachability graph) it would be natural
to consider more complex predicates than production rules, e.g., spatial navi-
gation modalities. This kind of properties can be simulated via ad hoc graph
productions however at the cost of a possible overhead for state-exploration.

As a �nal remark, lazy strategies for state-space exploration like those pro-
vided in [15] (based on constraints on presence/absence of edges) could be an
interesting heuristics to improve performance of the model checking engine (or-
thogonal to SPIN/UPPAAL ones).

17



References

1. N. Bertrand, G. Delzanno, B. König, A. Sangnier, and J. Stückrath. On the de-
cidability status of reachability and coverability in graph transformation systems.
In RTA, pages 101�116, 2012.

2. K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal veri�cation of standards
for distance vector routing protocols. J. ACM, 49(4):538�576, 2002.

3. G. Delzanno, A. Sangnier, R. Traverso, and G. Zavattaro. On the complexity
of parameterized reachability in recon�gurable broadcast networks. In FSTTCS,
pages 289�300, 2012.

4. G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized veri�cation of ad hoc
networks. In CONCUR, pages 313�327, 2010.

5. G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the
parameterized veri�cation of ad hoc networks. In FOSSACS, pages 441�455, 2011.

6. H. Ehrig and G. Rozenberg. Handbook of Graph Grammars and Computing by
Graph Transformations (Vol 1�3). World Scienti�c Publishing, 1997.

7. A. Fehnker, R. J. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and W. L.
Tan. Automated analysis of aodv using uppaal. In TACAS, pages 173�187, 2012.

8. A. Fehnker, L. van Hoesel, and A. Mader. Modelling and veri�cation of the lmac
protocol for wireless sensor networks. In IFM, pages 253�272, 2007.

9. A. H. Ghamarian, M. de Mol, A. Rensink, E. Zambon, and M. Zimakova. Modelling
and analysis using groove. STTT, 14(1):15�40, 2012.

10. R. Heckel. Graph transformation in a nutshell. Electronic Notes in Theoretical
Computer Science, 148(1):187�198, 2006.

11. S. Joshi and B. König. Applying the graph minor theorem to the veri�cation of
graph transformation systems. In CAV, pages 214�226, 2008.

12. H. Kastenberg and A. Rensink. Model checking dynamic states in groove. In SPIN,
pages 299�305, 2006.

13. B. König. Analysis and veri�cation of systems with dynamically evolving structure.
PhD thesis, Universität Stuttgart, 2004.

14. A. Singh, C. R. Ramakrishnan, and S. A. Smolka. A process calculus for mobile
ad hoc networks. In COORDINATION, pages 296�314, 2008.

15. A. Singh, C. R. Ramakrishnan, and S. A. Smolka. Query-based model checking of
ad hoc network protocols. In CONCUR, pages 603�619, 2009.

16. A. Singh, C. R. Ramakrishnan, and S. A. Smolka. A process calculus for mobile
ad hoc networks. Sci. Comput. Program., 75(6):440�469, 2010.

18


	Spin the Groove: Specification of Link Reversal Routing via Graph Transformations
	Giorgio Delzanno and Riccardo Traverso

