
Automatic Equivalence Checking of UF+IA
Programs

Nuno P. Lopes and José Monteiro

INESC-ID / IST - TU Lisbon

Abstract. Proving the equivalence of programs has several important
applications, including algorithm recognition, regression checking, com-
piler optimization verification, and information flow checking.
Despite being a topic with so many important applications, program
equivalence checking has seen little advances over the past decades due
to its inherent (high) complexity.
In this paper, we propose, to the best of our knowledge, the first algo-
rithm for the automatic verification of partial equivalence of two pro-
grams over the combined theory of uninterpreted function symbols and
integer arithmetic (UF+IA). The proposed algorithm supports, in par-
ticular, programs with nested loops.
The crux of the technique is a transformation of uninterpreted functions
(UFs) applications into integer polynomials, which enables the summa-
rization of loops with UF applications using recurrences. The equivalence
checking algorithm then proceeds on loop-free, integer only programs.
We implemented the proposed technique in CORK, a tool that automati-
cally verifies the correctness of compiler optimizations, and we show that
it can prove more optimizations correct than state-of-the-art techniques.

1 Introduction

Proving the equivalence of programs has several important applications, includ-
ing, but not limited to, algorithm recognition [2], regression checking [11,13,25],
compiler optimization verification [18, 24] and validation [31, 33, 41, 44, 47, 48],
and information flow proofs [5, 43].

The objective of algorithm recognition is to identify known algorithms (such
as a sorting algorithm, or even a specific algorithm like quicksort) out of large
and complex programs. This can be useful, for example, to improve code com-
prehension and for automatic documentation generation. Algorithm recognition
can be accomplished by searching for an equivalent algorithm in a database.

Regression verification aims at tracking the functional differences in a pro-
gram in each code change. The idea is that a tool that performs regression
verification can pinpoint the parts of the program where the semantics were
changed since the previous code revision, so that the developer can manually
confirm if those were the intended changes. Additionally, these tools can help
the developer confirm if some code refactoring or manual optimization preserved
the semantics or not.

Compiler optimization verification consists in verifying that a given optimiza-
tion is semantic preserving for all allowed code inputs, i.e., that the original and
optimized code templates are equivalent. Optimization validation verifies that
an optimization ran correctly by checking the original and optimized pieces of
code for equivalence (after the optimization was run).

In the domain of information flow, proofs for the non-existence of informa-
tion leaks can be accomplished by establishing the equivalence of the program
with itself (self-composition). Since the programs have some non-determinism
associated (the private information), a program will not be equivalent to itself
if some of the non-determinism may be observable (meaning that it may leak
secure information).

Uninterpreted function symbols (UFs) are frequently used in software ver-
ification tasks, including in the applications mentioned above. UFs are quite
appealing because they allow certain details of the programs to be abstracted
out by replacing with UFs the parts whose specifics are irrelevant to the proof
being done.

Despite being an important area with several applications, state-of-the-art
software verification tools, such as ARMC [34], Blast [20,21], CPAchecker [9],
FSoft [22], HSF [15], Impact [28], and Slam [3], are unable to prove equiv-
alence of most programs containing loops. These tools are usually not able to
automatically derive sufficiently strong loop invariants to complete equivalence
proofs of looping programs, even if just considering the theory of integer arith-
metic, let alone the combined theory of uninterpreted function symbols and
integer arithmetic (UF+IA).

In this paper, we present, to the best of our knowledge, the first algorithm to
automatically prove the equivalence of programs consisting of integer arithmetic
operations and applications of UFs. The proposed algorithm is applicable, in
particular, to programs containing zero or more (nested) loops.

Applications of UFs are first rewritten to integer arithmetic expressions
(polynomials over the inputs of the applications), and then our equivalence
checking algorithm works on purely integer manipulating programs. Loops are
summarized as recurrences, for which we compute the closed-form solution. The
provably correct conversion of UF applications to integer expressions makes pos-
sible the representation of loops with UF applications using recurrences.

We have implemented the proposed algorithm in CORK, a tool that verifies
the correctness of compiler optimizations, and we show that CORK can prove
more optimizations correct than state-of-the-art techniques.

The rest of the paper is organized as follows. Section 2 gives an intuition of
how our algorithm proves the equivalence of programs with a simple example.
Section 3 presents the program model that we consider and gives preliminary
definitions. Section 4 describes our algorithm for automatic partial equivalence
checking of programs over the UF+IA theory. Section 5 presents CORK, a tool
that verifies the correctness of compiler optimizations automatically, and pro-
vides an evaluation on how CORK compares with PEC [24], a state-of-the-art
tool for compiler optimization verification. Section 6 presents the related work.

i := 0
while i < N do

k := UF(k, i)
i := i + 1

i := N
while i ≥ 1 do

k := UF(k, N − i)
i := i− 1

if N ≤ 0 then
i := 0

else
i := N

Fig. 1. Example of two equivalent programs.

2 Illustrative Example

We illustrate our algorithm for program equivalence checking on a simple exam-
ple. Figure 1 shows two equivalent example programs. Our objective is to prove
that these two programs are indeed equivalent.

The first step of the algorithm is to replace the applications of uninterpreted
functions (UFs) with expressions over integers. In the left program, we replace
the UF application with the following expression (a polynomial of degree one):

a× k + b× i+ c

where a, b, and c are free variables not occurring in the input programs, and
are associated with this specific UF symbol. Other UF symbols occurring in the
program would have different sets of free variables associated with each input
parameter. Similarly, for the UF application of the right program we obtain:

a× k + b× (N − i) + c

Intuitively, these expressions (polynomials) have a unique value for each set of
UF symbol and input parameters (since variables a, b, and c are free). Therefore,
no other sequence of commands can produce the same value without doing the
same UF application with the same inputs, meaning we do not lose information
with this abstraction.

As we shall see later, the degree of the polynomials that replace UF applica-
tions is not always one. We give a lower bound for this degree in Section 4.2.

The second step that the algorithm performs is removing the loops. This is
accomplished by replacing each loop with a set of assignments to the variables
modified in the loop. The expressions assigned to each variable are expressed
over the closed-form solution of a system of recurrences that summarizes the
loop.

For the left program, we obtain the following system of recurrences:

Ri(n) = Ri(n− 1) + 1
Ri(0) = 0
Rk(n) = a×Rk(n− 1) + b×Ri(n− 1) + c

Rk(0) = k0

i := 0
if i < N then

assume Ri(n−1) < N ∧ Ri(n) ≥ N
k := Rk(n)
i := Ri(n)

i := N
if i ≥ 1 then

assume Vi(n−1) ≥ 1 ∧ Vi(n) < 1
k := Vk(n)
i := Vi(n)

if N ≤ 0 then
i := 0

else
i := N

Fig. 2. Programs of Figure 1 with loops and UF applications removed.

where n represents the loop iteration number, and k0 is the (arbitrary) value
of k when the program starts (required since k is not initialized before its first
usage). A recurrence for N is not needed, since it is not modified in the loop.

The recurrence Rx(y) represents the value of variable x at iteration number
y. For example, the recurrence Ri(n) defined previously means that the value of
i in any given iteration is equal to the value of i in the previous iteration plus
one. Moreover, before the loop starts, i has the value zero.

Similarly, for the right program we obtain the following system of recurrences:

Vi(n) = Vi(n− 1)− 1
Vi(0) = N

Vk(n) = a× Vk(n− 1) + b× (N − Vi(n− 1)) + c

Vk(0) = k0

Figure 2 shows the programs of Figure 1 after both transformations (elimi-
nation of loops and UF applications) have been applied.

The assume command ensures that its input boolean expression is satisfi-
able, or the program execution is blocked otherwise. We use this command to
implicitly compute the trip count of loops.

Intuitively, if m is the number of iterations performed by a loop, in the
iterations numbered 0 . . . (m − 1) the loop guard is true, and it is false in the
following iteration (m). Therefore, m is the first iteration when the loop guard
becomes false.

After the assume command in the example is evaluated, the value of n is
the number of times that the corresponding loop would have been executed and
therefore Rx(n) represents the value of the variable x after the loop terminates.

We can now compute the closed-form solution of the previously given systems
of recurrences. For the left program we obtain the following solution (computed
by Wolfram Mathematica 8):

Ri(n) = n

Rk(n) =
b (an − an+ n− 1) + (a− 1) (an((a− 1)k0 + c)− c)

(a− 1)2

assume i = ī ∧ k = k̄ ∧ N = N̄

i := 0
if i < N then

assume Ri(n− 1) < N ∧ Ri(n) ≥ N
k := Rk(n)
i := Ri(n)

ī := N̄
if ī ≥ 1 then

assume Vi(n̄− 1) ≥ 1 ∧ Vi(n̄) < 1
k̄ := Vk(n̄)
ī := Vi(n̄)

if N̄ ≤ 0 then
ī := 0

else
ī := N̄

assert i = ī ∧ k = k̄ ∧ N = N̄

Fig. 3. Sequential composition of the programs of Figure 2. The right program is
renamed, so that each variable v becomes v̄.

For the right program, the solution for Vk(n) is equal to Rk(n) of the left
program, and for Vi is:

Vi(n) = N − n

The final step of the algorithm is to prove equivalent the transformed pro-
grams (that are now only over integer arithmetic and loop-free). To accomplish
this, we first do the sequential composition of the two programs, where the sec-
ond is renamed to operate over a distinct set of variables from the first program.
We then add an assertion at the end of the composed program to verify that
the value of the corresponding variables of the two programs are equal when the
programs terminate.

The sequential composition of the programs of Figure 2 is shown in Figure 3.
The references to recurrences were not replaced by their closed-form solutions
to avoid cluttering the example.

If we prove that the composed program is safe, i.e., that the condition of the
assert command is true for all inputs, then we have proved that the two input
programs are equivalent.

To prove program safety, we can use standard software verification techniques
(e.g., software model checking [23]). Since the number of symbolic paths of the
composed programs is always finite (as we remove the loops), we can use a simple
algorithm that enumerates all paths and checks if the assertion is violated in any
of them.

e ::= n | v | e1 ⊕ e2 | UF(e1, . . . , en)

b ::= e ≤ 0 | b1 ⊗ b2

c ::= skip | v := e | c1 ; c2 | if b then c1 else c2 | while b do c1 | assume b

| assert b

Fig. 4. WHILE language syntax. n is an integer number, v is a variable name, UF is
an uninterpreted function symbol, ⊕ is a binary operator over integer expressions (e.g.,
+, −), and ⊗ is a binary operator over boolean expressions (e.g., ∧, ∨).

3 Program Model

We assume that programs are specified in the WHILE language, whose syntax
is given in Figure 4, and with customary semantics. The expressions are over
the combined theory of uninterpreted function symbols and integer arithmetic
(UF+IA). The evaluation of expressions is parameterized on an interpretation
for each UF symbol.

For the sake of ease of reading, in the examples given throughout the paper,
we relax the syntax of expressions (e.g., to accept more operators than ≤), but
those examples can be trivially converted to the WHILE language we present.

Let σ be a program state, which is a valuation of the program variables.
Let σ(v) be the value of the variable v in the program state σ. This notation is
extended for expressions, such that σ(e) is the expression e with each variable
replaced with its value in state σ. Let σ[v 7→ n] be a program state that is
identical to state σ, except for the value of variable v, which is n. Let σ0 be the
initial state of an execution of a program. We have that σ0(v) = v0 for each
variable v used in the program, with variable v0 being fresh.

A configuration 〈c, σ〉 is a pair where c is a command and σ is a state. Let
〈c, σ〉 → 〈c′, σ′〉 be the reduction of the configuration 〈c, σ〉 to the configura-
tion 〈c′, σ′〉 in one step. Let 〈c, σ〉 → σ′ be the reduction in one step of the
configuration 〈c, σ〉 to the state σ′ when there are no further commands left to
execute. Finally, let 〈c, σ〉 →∗ σ′ be the reduction in one or more steps of the
configuration 〈c, σ〉 to the state σ′.

Let Vars(P) be the set of variables of program P (a command). A variable v
is fresh in program P if v /∈ Vars(P). Let Out(P) ⊆ Vars(P) be the set of output
observable variables of a program P. Let σ ↓ V be the projection of the state σ
over the set of variables V and let σ ↓ Out(P) be the observable state of σ of
program P.

Two programs are considered partially equivalent iff starting in the same
arbitrary state, they terminate in the same observable state for all possible UF
interpretations, i.e., P1 and P2 are partially equivalent iff the following holds:

〈P1, σ0〉 →∗ σ1 ∧ 〈P2, σ0〉 →∗ σ2 =⇒ σ1 ↓ Out(P1) = σ2 ↓ Out(P2)

with Out(P1) = Out(P2).

4 Program Equivalence Checking

In this section, we present the new algorithm to check if two programs over the
UF+IA theory are partially equivalent.

4.1 Restrictions

We impose the following restrictions on the programs that our equivalence check-
ing algorithm can handle:

1. UFs must have exactly one output parameter.
2. There can be no branching (i.e., if statements) inside loops. Nested loops,

however, are allowed.
3. The trip count of inner loops may not depend on the outer loops, i.e., the

number of times that inner loops iterate is constant relative to outer loops.
4. Loop conditions cannot involve UF applications.

Restriction 1 can be lifted by splitting UFs with more than one output into
newly created UFs (one per output). Restriction 2 can be relaxed by allowing
branching conditions that always evaluate to the same value in all loop iterations.
In that case, the program can be rewritten to move the branches out of the loop.

4.2 Algorithm

The algorithm runs in three steps:

1. Eliminate UF applications.
2. Replace loops with recurrences.
3. Check resulting programs for equivalence.

Applications of UFs are abstracted using polynomials, in order to obtain
programs with integer operations only. This allows us to compute the closed-
form of loops using recurrences.

Although our algorithm is sound and complete, computing the closed-form
solution of recurrences is undecidable, and so the overall method is incomplete.

In the following sections, we describe each step of the algorithm separately.

Eliminate UF applications The first step of the algorithm is to eliminate
UF applications. This is accomplished by replacing each UF application with a
polynomial over its inputs, as defined by the transformation T:

T (e) =
n∑

i=1

u(UF,i)∑
j=0

UFi,j × (T(ei))j , if e = UF(e1, . . . , en)

The other trivial (do nothing) cases are omitted for brevity.

The function u(f, i) used by transformation T defines the degree of the poly-
nomial that replaces an UF application. The value of u(f, i) is the maximum
number of times that the given UF f is applied with distinct values in the ith
parameter in each and every program path minus one. Only function applications
whose value is possibly used in a boolean expression need to be considered.

Intuitively, two programs with UF applications are equivalent iff, for each
possible input and for each observable output, the number of times the UFs are
applied is equal in both programs, and the values of the input parameters of
each application are equal as well.

Transformation T captures this information precisely by replacing each UF
application with a polynomial over the inputs of the application. Each UF symbol
is assigned a set of fresh variables UFi,j that is used only by applications of that
symbol. Therefore, the value of an UF application cannot be reproduced by any
sequence of commands that does not include exactly the same UF application.

For example, the following boolean expression

f(x) = 0 ∧ f(y) = 1 ∧ f(z) = 2 ∧ g(x) ≤ 0 ∧ y < z ∧ z < x

is translated to (assuming no more applications of f nor g in the rest of the
program):

f1,2 × x2 + f1,1 × x+ f1,0 = 0 ∧ f1,2 × y2 + f1,1 × y + f1,0 = 1 ∧
f1,2 × z2 + f1,1 × z + f1,0 = 2 ∧ g1,0 ≤ 0 ∧ y < z ∧ z < x

where f1,2, f1,1, f1,0, and g1,0 are fresh variables. These variables are never
written by the program, and are only read by transformed expressions that
originally contained the same UF symbols (f and/or g).

The applications of the uninterpreted function f were transformed into poly-
nomials of degree two, since we have three applications of f with (possibly)
different input parameters.

A polynomial with a lower degree would not be sufficient to represent this
boolean expression without imposing constraints on the input parameters that
did not exist in the original expression with UFs. For example, if we use a
polynomial of degree one for the applications of f , we obtain (excluding the
constraint with g):

f1,1 × x+ f1,0 = 0 ∧ f1,1 × y + f1,0 = 1 ∧ f1,1 × z + f1,0 = 2 ∧ y < z ∧ z < x

This formula is not satisfiable, while its original UF form is. A polynomial of
degree two (as shown above) or of higher degree, however, is guaranteed to yield a
satisfiable formula for all distinct x, y, and z (by the Unisolvence Theorem [42]).

Computing the value of u(f, i) as defined is hard, and may require prior static
analysis. This value can, however, be safely over-approximated by the number
of applications of f in the whole program, at the expense of generating more
complex expressions.

For example, the optimal values for u in the following program excerpt are
u(f, 1) = 1 and u(f, 2) = 0 (assuming no other UF applications in the rest of

while i < n do
k := 2× k
j := 0
while j < m do

k := k + j
j := j + 1

i := i + 1

Rj(x) = Rj(x− 1) + 1

Rj(0) = 0

Rk(x) = Rk(x− 1) + Rj(x− 1)

Rk(0) = 2 · Vk(y − 1)

Vi(y) = Vi(y − 1) + 1

Vi(0) = i0

Vk(y) = Rk(x)

Vk(0) = k0

Fig. 5. An example program and the corresponding system of recurrences that sum-
marizes the two loops, where Rj and Rk represent the behavior of the inner loop on
the variables j and k, respectively, and Vi and Vk represent the outer loop.

the program). Although there are three applications of f with a different first
parameter, only two applications are ever encountered and used in a boolean
expression in a single path.

if . . . then
j := f(y, 3)

else
k := f(z, 3)

if f(x, 3) ≤ 0 ∧ j ≤ 0 ∧ k ≤ 0 then
. . .

The value of u(f, i) must be computed over the composed program (and
not over each of the two input programs independently), including the assert
command that is added at the end of it (Section 4.2).

The proof of correctness of transformation T is given in Appendix A.

Replace loops with recurrences The second step of the algorithm is to
eliminate loops, by replacing each loop with a system of recurrences. The trans-
formation is carried out as follows. Each variable that is assigned in the loop
gets a recurrence over a newly introduced variable that represents the loop trip
count. For nested loops, the initial value of a recurrence in an inner loop is the
value of the previous iteration of the outer loop.

An example program and its system of recurrences is shown in Figure 5.
The recurrence Rv(n) represents the value of the variable v at the inner loop
iteration n, and Vv(n) in the outer loop. For example, the value of variable k
in the iteration x of the inner loop, Rk(x), is equal to the sum of the values of
variables k and j of the previous (inner loop) iteration. The value of k in the
beginning of the first inner loop iteration, Rk(0), is equal to twice the value of
k in the previous outer loop iteration.

The closed-form solution for the system of recurrences is the following:

Rj(x) = x Rk(x) =
4 · Vk(y − 1) + x2 − x

2

Vi(y) = i0 + y Vk(y) =
k0 · 2y+1 + (x− 1) · x · (2y − 1)

2

We note that while the solution of Rk(x) still includes a reference to a recur-
rence — Vk(y − 1) — it is only used to compute the solution of Vk(y) and it is
never used directly by the next steps of the algorithm. We only need the value
of k after the outer loop terminates, which is represented by Vk(y).

After computing the closed-form solution for the system of recurrences, each
loop of the form “while b do c” is replaced with the following code:

if b then
assume σn−1(b) ∧ σn(¬b)
vi := σn(vi)

else
assume n = 0

The fresh variable n represents the number of iterations performed by the
loop. σn is a state where each variable maps to the closed-form solution of its
corresponding recurrence at point n, or to itself if the variable is not modified in
the loop body c. Variable vi ranges over all variables that are possibly modified
in the loop body. For the previous example, we have for the inner loop, e.g.,
σx(j) = Rj(x) = x and σx(n) = n.

Intuitively, a loop executes n times if the loop guard is true for the first n
iterations (iterations 0 . . . (n− 1)) and false in the following iteration (iteration
n). The number of iterations is implicitly computed when the assume command
is evaluated. Its expression states that the loop guard of iteration n− 1 should
be true, and that at iteration n the guard should be false instead.

We note that there can be multiple solutions for the expression given to
the assume command if the loop guard is non-linear. In this case, the number
of loop iterations is the smallest positive n that makes the formula satisfiable.
Computing the smallest n can be achieved, for example, by using an optimizing
solver or by doing multiple calls to an SMT solver.

For the example in Figure 5, the program after removing the loops is shown
in Figure 6. The command “assume y = 0” at the end can be removed as an
optimization, since there are no further uses of y afterward.

Equivalence Checking The third and final step of the algorithm is to prove the
equivalence between the two programs after they undergo the transformations
previously described.

We do this by sequentially composing the first program with a renamed
version of the second. The second program is renamed so that it operates over
a different set of variables from the first.

if i < n then
assume Vi(y − 1) < n ∧ Vi(y) ≥ n
j := 0
if j < m then

assume Rj(x− 1) < m ∧ Rj(x) ≥ m
j := Rj(x)

else
assume x = 0

k := Vk(y)
i := Vi(y)

else
assume y = 0

Fig. 6. Program of Figure 5 after replacing the loops with a set of assignments over
the system of recurrences including Vi(n), Vk(n), and Rj(n).

Let P ′1 and P ′2 be, respectively, the programs P1 and P2 after removing the
UF applications and the loops. The composed program is as follows.

assume ∀v ∈ Vars(P ′1) ∩ Vars(P ′2) : v = v̄

P ′1

P̄ ′2
assert ∀v ∈ Out(P ′1) : v = v̄

Program P̄2
′ is the same as the program P ′2, but where each variable v was

renamed to v̄. Moreover, Out(P ′1) = Out(P ′2).
If the composed program is safe, i.e., if the condition of the assert command

is true for all inputs, then the two original programs are partially equivalent.
To prove program safety, we can use standard software verification techniques

(e.g., model checking [23]). Since the number of paths is finite, we can also use an
algorithm that enumerates all paths and test if any of those makes the condition
of the assert command false.

Note that the value of u(f, i) defined in Section 4.2 for the composed program
above must take into account the paths that pass through programs P1 and P2,
as well as the assert command (which takes a boolean expression by itself).

5 Verification of Compiler Optimizations

To evaluate the proposed algorithm, we implemented a prototype to prove the
correctness of compiler optimizations. This is an important topic, since all main-
stream compilers were shown recently to have several bugs in the optimization
passes [46]. Moreover, if the compiler is not proved correct, properties verified
on the source-code level of a program are not carried to the binary code, since
the compiler may introduce bugs during the translation process.

while I < N do
S
I := I + 1

⇒

while (I + 1) < N do
S
I := I + 1
S
I := I + 1

if I < N then
S
I := I + 1

Fig. 7. Loop unrolling: the source template is on the left, and the transformed template
on the right. Template statement S cannot modify template variables I and N .

5.1 From Compiler Optimizations to Program Equivalence

We specify a compiler optimization as a transformation function from a source
template program to a target template program. These template programs can
be modeled as UF+IA programs, where UFs represent arbitrary statements, or
expressions that should be matched within a program under optimization.

We show an example optimization (loop unrolling) in Figure 7. This optimiza-
tion transforms a loop into a new loop that performs only half of the iterations
of the original loop, but where each iteration of the new loop performs twice the
work of an iteration of the original loop.

The template statement S is a placeholder for an arbitrary statement (e.g.,
variable assignments, function calls, or other loops) that may be present in a loop
under optimization. Template variables I and N are placeholders for arbitrary
program variables. The transformation function states how each template state-
ment/expression is transformed (e.g., moved, duplicated, eliminated) to produce
the optimized program.

As an example, we apply loop unrolling to the following program.

while i < n do
x := i+ 2
i := i+ 1

Running the optimization with S instantiated to “x := i+ 2”, I to “i”, and
N to “n” yields the following program:

while i < n do
x := i+ 2
i := i+ 1
x := i+ 2
i := i+ 1

if i < n then
x := i+ 2
i := i+ 1

To verify a compiler optimization correct, we split the transformation func-
tion into two programs (the source and target templates), and then we convert
the template programs into UF+IA programs. Finally, we use the proposed
equivalence checking algorithm to prove that the source and target templates
are equivalent, which implies that the optimization is correct.

The conversion of a template program to an UF+IA program is done by
replacing each template statement S with a set of assignments of the following
form:

vi := Si(r1, . . . , rn)

where vi ∈ W (S) and R(S) = {r1, . . . , rn}. The transformation of template
expressions is done similarly.

Preconditions of optimizations are specified as read and write sets of the
template statements/expressions, which contain the variables that the template
statements/expressions may read and write, respectively. For example, the read
set of S in loop unrolling is R(S) = {c1, I,N}, and the write set is W (S) = {c1},
since the precondition is that S cannot modify variables I and N .

In the loop unrolling example, S is replaced with a single assignment (with
S1 being a fresh UF symbol):

c1 := S1(c1, I,N)

Variable c1 is what we call a context variable. These fresh variables ci repre-
sent the variables that are possibly in scope where a template may be instantiated
(possibly none) and that do not appear in the template function.

In our example, c1 represents the effects of S in x. While variable x does not
appear explicitly in the transformation function, S does indeed modify x in the
example instantiation.

The values computed for the function u are the following: u(S1, 1) = 1 and
u(S1, 2) = 1, since there are two applications of S1 with possibly different values
that are used in a boolean expression (the assert command); and u(S1, 3) = 0,
since N is constant.

At least one context variable is added to each program. Moreover, the read
and write sets of each template statement must include at least one context
variable, unless the precondition of the optimization states that, e.g., a given
statement does not read any other variable than x. Similarly, template expres-
sions may read a variable that is not present in the transformation function
(again, unless stated otherwise in the precondition), and therefore their read set
must include a context variable.

We may add more than one context variable to a program to express certain
preconditions over template statements. For example, if a statement S is idem-
potent, we have that R(S) ∩W (S) = ∅. Therefore, we have to have at least two
distinct context variables c1 and c2 to have, e.g., R(S) = {c1} and W (S) = {c2}
to state that S cannot read a variable that it writes to, nor vice versa.

Similarly, to state that template statements S and T commute, we have
W (S)∩R(T) = W (T)∩R(S) = W (S)∩W (T) = ∅. In this case, we also need at
least two distinct context variables.

5.2 Evaluation

We implemented a prototype named CORK1, which stands for Compiler Opti-
mization coRrectness checKer. CORK is implemented in OCaml (∼ 1,100 LoC),
and uses Wolfram Mathematica 8.0.4 for both constraint and recurrence solving.

CORK takes as input a transformation function in the format of the exam-
ple in Figure 7. CORK then derives two programs over the UF+IA theory as
described in the previous section, and subsequently checks if they are equiva-
lent. The equivalence check is done by enumerating each path of the composed
program, since the number of paths is finite and small. If the equivalence check
fails, CORK prints a counterexample path.

CORK performs three optimizations to improve the performance. First, CORK
discharges by itself equality tests of syntactically equal expressions. Second,
CORK performs equality propagation on the satisfiability queries sent to Math-
ematica. Finally, CORK checks the equality of program variables (arising from
the assert command at the end of the composed program) one-by-one, instead
of just one satisfiability query per path. CORK then uses the established equal-
ities in the following queries. Moreover, variable equality checks are ordered so
that first are checked the induction variables, and the remaining variables are
ordered by the length of their value expressions. Establishing first the equality of
expressions involving induction variants improves the performance significantly.

We ran CORK over a set of optimizations (mostly loop-manipulating). The
experiments were run on a machine running Linux 3.6.2 with an Intel Core 2
Duo 3.00 GHz CPU, and 4 GB of RAM. The results are shown in Table 1.

We first note that the number of recurrence solving queries is higher than
expected (more than one per loop), since we compute the recurrences per path
and we do not cache any information across paths. Optimizations that do not
manipulate loops explicitly do not generate any recurrence.

We compare the results of CORK with the state-of-the-art tool PEC [24].
Since PEC is not publicly available, we compare only with the published results.

The table is divided in four sets of optimizations (described in, e.g., [1]). The
first part is a set of optimizations that do not manipulate loops explicitly, which
are trivially proven correct by both CORK and PEC. The second part is a set
of optimizations that PEC can prove correct without the help of heuristics. The
third part is a set of optimizations that PEC can only prove correct by using
the permute heuristic [14, 48], since otherwise it could not find a bisimulation
relation automatically. The fourth and last part of the table contains a set of
optimizations that PEC cannot prove correct, since it cannot find a bisimulation
automatically, even with the permute heuristic. CORK, on the other hand, is
able to prove correct the loop strength reduction and loop tiling optimizations.
CORK fails to prove correct the loop flattening optimization, since Mathematica
is unable to compute the closed-form solution of recurrences with integer division.

The execution time of PEC and CORK is within the same order of magnitude,
but CORK advances the state-of-the-art by being able to prove correct more
optimizations than PEC.
1 Prototype and tests freely available from http://xx/cork/.

Optimization PEC # Sat. queries # Recurrences Time

Code hoisting X 2 0 0.32s
Constant propagation X 0 0 0.33s
Copy propagation X 0 0 0.33s
If-conversion X 2 0 0.34s
Partial redundancy elimin. X 2 0 0.34s

Loop invariant code motion X 7 5 3.48s
Loop peeling X 9 5 3.26s
Loop unrolling X 13 8 12.17s
Loop unswitching X 14 14 8.19s
Software pipelining X 9 5 8.02s

Loop fission Xp 10 12 23.45s
Loop fusion Xp 10 12 23.34s
Loop interchange Xp 15 24 29.30s
Loop reversal Xp 7 5 8.41s
Loop skewing Xp 16 24 8.50s

Loop flattening × — — FAIL
Loop strength reduction × 6 4 5.63s
Loop tiling × 7 9 10.94s

Table 1. List of compiler optimizations [1], how PEC performs (Xp means PEC needs
the permute heuristic), the number of satisfiability and recurrence solving queries issued
to Mathematica, and the time that CORK took to prove each optimization correct.

6 Related Work

Proving the equivalence of programs is undecidable. However, there has been
advances over the last decades to solve the problem under certain assumptions.

Several alternative approaches exist to prove the equivalence of programs,
namely manual or semi-automated (with the help of an iterative theorem prover)
approaches, bisimulation relation synthesis, symbolic execution, recurrence equiv-
alence, and software model checking based techniques (including invariant and
interpolant generation, loop trip counting, and so on).

Manual and Semi-Automated Proofs Relational Hoare logic [7] is a proof
system that enables the verification of equivalence between two programs. The
system only supports the verification of structurally equivalent programs (yet,
for example, many compiler optimizations do not obey this constraint). Barthe
et al. [4] lift some of the restrictions of this work through the usage of product
programs. The set of structural differences that the programs under equivalence
checking may exhibit is still dependent on the set of built-in proof rules. Liang
et al. [26] adapted relational Hoare logic to the setting of concurrent programs.

Bisimulation Parameterized equivalence checking (PEC [24]) is a technique
to verify the correctness of compiler optimizations automatically. It works by
automatically finding a bisimulation relation [38] between the original and the

optimized template programs. For structurally different loops, PEC relies on a
set of heuristics inspired in [14,48].

Recurrence Equivalence Barthou et al. [6] and Shashidhar et al. [40] present
different algorithms to prove the equivalence of systems of affine recurrence equa-
tions that are structurally similar. Verdoolaege et al. [45] propose an algorithm
to prove the equivalence of integer affine programs where loops are described as
recurrences. The algorithm does not compute the closed-form solution for the
recurrences, but instead uses widening to reach a fixed point. The algorithm
handles commutative operators by trying all possible permutations.

Symbolic Execution Matsumoto et al. [27] and Person et al. [32] present dif-
ferent techniques to detect differences between two programs that are mostly
equal. Ramos and Engler [35] present an algorithm to check for program equiv-
alence automatically up to a bounded number of loop unrollings.

Software Verification and Invariant Synthesis State-of-the-art software
verification tools are unable to prove equivalence of most programs containing
loops, since they are usually unable to automatically derive sufficiently strong
loop invariants to complete the proof, even if just considering the theory of
integer arithmetic, let alone the UF+LIA theory.

Beyer et al. [8] present an algorithm to synthesize loop invariants over the
UF+LIA theory, and Rybalchenko and Stokkermans [37] present an algorithm
to synthesize interpolants over the same theory. McMillan [29] introduced an
algorithm to generate interpolants from the unsatisfiability proofs of Z3 [12].
However, the language of interpolants/invariants supported by these algorithms
is not able to express an unbounded number of UF applications, which is often
required to prove equivalence of programs that have UF applications inside loops.

Polynomial loop invariant generation techniques (e.g., [30, 36, 39]) can only
generate invariants with bounded exponents, which is not sufficient for the verifi-
cation of the integer programs we generate (after removing the UF applications),
since these programs often require loop invariants with unbounded exponents.

Gupta et al. [19] present an algorithm to solve recursion-free Horn clauses in
the theory of UF+LIA. Grebenshchikov et al. [15] extend this work to recursive
Horn clauses in order to support the verification of programs with loops and
recursive functions. The interpolation algorithm used by the corresponding tool
suffers from the same limitations as the others.

Gulwani and Tiwari [17] present an algorithm for the verification of programs
over the UF+LIA theory. However, only equalities over UF applications are
supported, and conditional branches are abstracted non-deterministically, which
is too weak for the application of equivalence checking.

Blanc et al. [10] and Gulwani et al. [16] present algorithms to compute sym-
bolic bounds of loop trip counts. However, the computed trip counts may not
be sufficiently precise for equivalence checking proofs.

7 Conclusion

In this paper we presented, as far as we know, the first algorithm for the equiv-
alence checking of looping programs over the combined theory of uninterpreted
function symbols and integer arithmetic (UF+IA).

For evaluation purposes, we developed CORK, a tool that proves the cor-
rectness of compiler optimizations, which is based on the proposed equivalence
checking algorithm. CORK proves correct more optimizations than other tools
known as state-of-the-art.

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques, and Tools (2nd Edition). Addison-Wesley, 2006.

[2] C. Alias and D. Barthou. On the recognition of algorithm templates. In COCV,
2003.

[3] T. Ball and S. K. Rajamani. The SLAM project: debugging system software via
static analysis. In POPL, 2002.

[4] G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product
programs. In FM, 2011.

[5] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In CSFW, 2004.

[6] D. Barthou, P. Feautrier, and X. Redon. On the equivalence of two systems of
affine recurrence equations. In Euro-Par, 2002.

[7] N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In POPL, 2004.

[8] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant synthesis
for combined theories. In VMCAI, 2007.

[9] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In CAV, 2011.

[10] R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács. ABC: algebraic bound
computation for loops. In LPAR, 2010.

[11] S. Chaki, A. Gurfinkel, and O. Strichman. Regression verification for multi-
threaded programs. In VMCAI, 2012.

[12] L. de Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS, 2008.
[13] B. Godlin and O. Strichman. Regression verification. In DAC, 2009.
[14] B. Goldberg, L. Zuck, and C. Barrett. Into the loops: Practical issues in translation

validation for optimizing compilers. Electron. Notes Theor. Comp. Sci., 132, 2005.
[15] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing

software verifiers from proof rules. In PLDI, 2012.
[16] S. Gulwani, K. K. Mehra, and T. Chilimbi. SPEED: precise and efficient static

estimation of program computational complexity. In POPL, 2009.
[17] S. Gulwani and A. Tiwari. Assertion checking over combined abstraction of linear

arithmetic and uninterpreted functions. In ESOP, 2006.
[18] S.-y. Guo and J. Palsberg. The essence of compiling with traces. In POPL, 2011.
[19] A. Gupta, C. Popeea, and A. Rybalchenko. Solving recursion-free horn clauses

over LI+UIF. In APLAS, 2011.
[20] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from

proofs. In POPL, 2004.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
POPL, 2002.

[22] F. Ivancic, Z. Yang, M. K. Ganai, A. Gupta, I. Shlyakhter, and P. Ashar. F-Soft:
Software verification platform. In CAV, 2005.

[23] R. Jhala and R. Majumdar. Software model checking. ACM Comput. Surv.,
41:21:1–21:54, Oct. 2009.

[24] S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations correct using param-
eterized program equivalence. In PLDI, 2009.

[25] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo. SymDiff: A language-
agnostic semantic diff tool for imperative programs. In CAV, 2012.

[26] H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for verifying
concurrent program transformations. In POPL, 2012.

[27] T. Matsumoto, H. Saito, and M. Fujita. Equivalence checking of C programs by
locally performing symbolic simulation on dependence graphs. In ISQED, 2006.

[28] K. L. McMillan. Lazy abstraction with interpolants. In CAV, 2006.
[29] K. L. McMillan. Interpolants from Z3 proofs. In FMCAD, 2011.
[30] M. Müller-Olm and H. Seidl. Computing polynomial program invariants. Inf.

Process. Lett., 91:233–244, Sept. 2004.
[31] G. C. Necula. Translation validation for an optimizing compiler. In PLDI, 2000.
[32] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu. Differential symbolic

execution. In SIGSOFT, 2008.
[33] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In TACAS, 1998.
[34] A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model

checking with abstraction refinement. In PADL, 2007.
[35] D. A. Ramos and D. R. Engler. Practical, low-effort equivalence verification of

real code. In CAV, 2011.
[36] E. Rodŕıguez-Carbonell and D. Kapur. Generating all polynomial invariants in

simple loops. J. Symb. Comput., 42:443–476, Apr. 2007.
[37] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpola-

tion. In VMCAI, 2007.
[38] D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Pro-

gram. Lang. Syst., 31(4):15:1–15:41, May 2009.
[39] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear loop invariant

generation using Gröbner bases. In POPL, 2004.
[40] K. C. Shashidhar, M. Bruynooghe, F. Catthoor, and G. Janssens. Verification of

source code transformations by program equivalence checking. In CC, 2005.
[41] M. Stepp, R. Tate, and S. Lerner. Equality-based translation validator for LLVM.

In CAV, 2011.
[42] G. Strang. Linear Algebra and Its Applications (2nd Ed.). Academic Press, 1980.
[43] T. Terauchi and A. Aiken. Secure information flow as a safety problem. In SAS,

2005.
[44] J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating value-graph translation

validation for LLVM. In PLDI, 2011.
[45] S. Verdoolaege, G. Janssens, and M. Bruynooghe. Equivalence checking of static

affine programs using widening to handle recurrences. In CAV, 2009.
[46] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in C

compilers. In PLDI, 2011.
[47] A. Zaks and A. Pnueli. CoVaC: Compiler validation by program analysis of the

cross-product. In FM, 2008.
[48] L. Zuck, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and Y. Hu. Translation

and run-time validation of loop transformations. Form. Methods Syst. Des., 27,
2005.

A Proof of Soundness and Completeness

Lemma 1. Transformation T preserves the value of boolean expressions, i.e.,
〈b, σ0〉 → 〈t1, σ1〉 ∧ 〈T(b), σ0〉 → 〈t2, σ2〉 =⇒ t1 = t2.

Proof. (Sketch) If b does not contain any uninterpreted function (UF) applica-
tion, then it is trivially correct, since b = T(b).

Otherwise, without loss of generality, we consider only two cases: conjunction
and disjunction of equalities involving single UF applications. This is sufficient,
since equalities (or equivalent expressions) of UF applications are the only ex-
pressions that can possibly make unsatisfiable a formula over the uninterpreted
function symbols theory.

If b ≡ b1 ∨ b2, then we have that T(b) ≡ T(b1) ∨ T(b2). For the UF+IA
theory, it is trivial to show that b is satisfiable iff T(b) is satisfiable.

If b is a conjunction, then T(b) can be seen as a linear system Ax = b, where
A is a square matrix of size n × n with the powers 0 to (n − 1) of the input
parameters of the UF applications, and x is a vector with the fresh variables
UFi,j . Moreover, A is a Vandermonde matrix [42].

For a conjunction of UF application b ≡ f(x1) = b1 ∧ · · · ∧ f(xn) = bn, T(b)
results in the following linear system:1 x1

1 · · · xn−1
1

1
...

. . .
...

1 x1
n · · · xn−1

n


 f1,0

...
f1,n−1

 =

b1...
bn


If xi 6= xj for all i 6= j, then b is satisfiable. Moreover, the lines and the

columns of the coefficient matrix A are linearly independent, which guarantees
that the system has a solution (by the Unisolvence Theorem [42]). Therefore,
T(b) is also satisfiable.

If there are i, j with i 6= j such that xi = xj , and b is satisfiable, then bi = bj .
In this case, the corresponding system of T(b) has infinitely many solutions, and
therefore T(b) is satisfiable as well.

Finally, if b is unsatisfiable, then there are i, j with i 6= j such that xi = xj

and bi 6= bj . The linear system of T(b) has no solution (again, by the Unisolvence
Theorem), and therefore T(b) is unsatisfiable as well.

Theorem 1. (Soundness and completeness) Transformation T preserves partial
equivalence between two programs, i.e.,

〈P1, σ0〉 →∗ σ1 ∧ 〈P2, σ0〉 →∗ σ2 ∧ σ1 ↓ V = σ2 ↓ V
⇐⇒

〈T(P1), σ0〉 →∗ σ3 ∧ 〈T(P2), σ0〉 →∗ σ4 ∧ σ3 ↓ V = σ4 ↓ V

with V = Out(P1) = Out(P2) = Out(T(P1)) = Out(T(P2)).

Proof. (Sketch) From Lemma 1 we have that the paths executed in programs
Pi and T(Pi) are the same, since the branch conditions in both programs will

evaluate to the same (boolean) values. Lemma 1 is applicable since the number
of applications of a given uninterpreted function f used in boolean expressions
in any path is bounded by u(f, i).

For each path in P1 and P2, and for each output observable variable v ∈
Out(P1), we have that σ1(v) = σ2(v) iff σ3(v) = σ4(v), since this assertion is a
boolean expression, and therefore Lemma 1 applies.

