
Towards Modeling and Model Checking
Fault-Tolerant Distributed Algorithms

Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder

Vienna University of Technology (TU Wien)

Abstract. Fault-tolerant distributed algorithms are central for building
reliable, spatially distributed systems. In order to ensure that these algo-
rithms actually make systems more reliable, we must ensure that these
algorithms are actually correct. Unfortunately, model checking state-of-
the-art fault-tolerant distributed algorithms (such as Paxos) is currently
out of reach except for very small systems.
In order to be eventually able to automatically verify such fault-tolerant
distributed algorithms also in larger systems, several problems have to
be addressed. In this paper, we consider modeling and verification of
fault-tolerant algorithms that basically only contain threshold guards
to control the flow of the algorithm. As threshold guards are widely
used in fault-tolerant distributed algorithms (and also in Paxos) efficient
methods to handle them bring us closer to the above mentioned goal.
As case study we use the reliable broadcasting algorithm by Srikanth
and Toueg that tolerates even Byzantine faults. We show how one can
model this basic fault-tolerant distributed algorithm in Promela such
that safety and liveness properties can be efficiently verified in Spin. We
provide experimental data also for other distributed algorithms.

1 Introduction

Even formally verified computer systems are subject to power outages, electrical
wear-out, bit-flips in memory due to ionizing particle hits, etc. that may easily
cause system failures. Replication is a classic approach to ensure that a com-
puter system is fault-tolerant, i.e., continues to correctly perform its task even
if some components fail. The basic idea is to have multiple computers instead
of a single one (that would constitute a single point of failure), and ensure that
the replicated computers coordinate, and for instance in the case of replicated
databases, store the same information. Ensuring that all computers agree on
the same information is non-trivial due to several sources of non-determinism,
namely, faults, uncertain message delays, and asynchronous computation steps.

To address these issues, fault-tolerant distributed algorithms for state-machine
replication were introduced many years ago [33]. As they are designed to in-
crease the reliability of computing systems, it is crucial that these algorithms
are indeed correct, i.e., satisfy their specifications. Due to the various sources of
non-determinism, however, it is very easy to make mistakes in the correctness
arguments for fault-tolerant distributed algorithms. As a consequence, they are

very natural candidates for model checking. Still, model checking fault-tolerant
distributed algorithms is particularly challenging due to the following reasons:

(i) Due to their inherent concurrency and the many sources of non-determinism,
fault-tolerant distributed algorithms suffer from combinatorial explosion both
in the state-space and in the number of legal behaviors. Moreover, distributed
algorithms usually involve parameters such as the system size n and the max-
imum number of faulty components t.

(ii) Correctness and even solvability of problems like distributed agreement de-
pend critically upon assumptions on the environment, in particular, degree
of concurrency, message delays, and failure models; e.g., guaranteeing cor-
rect execution is impossible if there is no restriction on the number of faulty
components in the system and/or the way how they may fail.

(iii) There is no commonly agreed-upon distributed computing model, but rather
many variants, which differ in (sometimes subtle) details such as atomicity
of a computing step. Moreover, distributed algorithms are usually described
in pseudocode, typically using different (alas unspecified) pseudocode lan-
guages, which obfuscates the relation to the underlying computing model.

A central and important goal of our recent work is hence to initiate a sys-
tematic study of distributed algorithms from a verification point of view, in a
way that does not betray the fundamentals of distributed algorithms. Expe-
rience tells that this has not always been observed in the past: The famous
bakery algorithm [22] is probably the most striking example from the literature
where wrong specifications have been verified or wrong semantics have been
considered: Many papers in formal methods have verified the correctness of the
bakery algorithm as an evidence for their practical applicability. Viewed from
a distributed algorithms perspective, however, most of these papers missed the
fact that the algorithm does not require atomic registers but rather safe regis-
ters only [23] — a subtle detail that is admittedly difficult to extract from the
distributed algorithms literature for non-experts. Still, compared to state-of-the-
art fault-tolerant distributed algorithms — and even the algorithms considered in
this paper — the bakery algorithm rests on a quite simple computational model,
which shows the need for a structured approach to handle distributed algorithms.

Contributions. In this paper, we present a structured approach for modeling
an important family of fault-tolerant distributed algorithms, namely, threshold-
guarded distributed algorithms discussed in Section 2. As threshold-guarded
commands are omnipresent in this domain, our work is an important step to-
wards the goal of verifying state-of-the-art fault-tolerant distributed algorithms.
In Section 3, we obtain models of distributed algorithms expressed in slightly
extended Promela [20] to capture the notions required to fully express fault-
tolerant distributed algorithms and their environments, including resilience con-
ditions involving parameters like n and t, fairness conditions, and atomicity
assumptions. This formalization allows us to (i) instantiate system instances
for different system sizes in order to perform explicit state model checking using
Spin as discussed in Section 4, and (ii) build a basis for our parameterized model
checking technique based on parametric interval abstraction discussed in [21].

2

Using our approach, we can already formalize and model check several basic
fault-tolerant distributed algorithms for fixed parameters, i.e., numbers of pro-
cesses and faults. These algorithms include several variants of the classic asyn-
chronous broadcasting algorithm from [34] under various fault assumptions, the
broadcasting algorithm from [6] tolerating Byzantine faults, the classic broad-
casting algorithm found, e.g., in [9], that tolerates crash faults, as well as a
condition-based consensus algorithm [27] that also tolerates crash faults.

This captures the most interesting problems that are solvable [16] by dis-
tributed algorithms running in a purely asynchronous environment with faults.
Our verification results build a corner stone for the verification of more advanced
fault-tolerant distributed algorithms that require more restricted environments;
for instance, the algorithms in [13,9,26,37,10,18] use threshold-guarded com-
mands as a building block.

2 Threshold-guarded distributed algorithms

Processes, which constitute the distributed algorithms we consider, exchange
messages, and change their state predominantly based on the received messages.
In addition to the standard execution of actions, which are guarded by some
predicate on the local state, most basic distributed algorithms (cf. [24,3]) add
existentially or universally guarded commands involving received messages:

i f r e c e i v e d <m>
from some proce s s

then ac t i on (m) ;

(a) existential guard

i f r e c e i v e d <m>
from a l l p r o c e s s e s

then ac t i on (m) ;

(b) universal guard

Depending on the content of the message <m>, the function action per-
forms a local state transition and possibly sends messages to one or more pro-
cesses. Such constructs can be found, e.g., in (non-fault-tolerant) distributed al-
gorithms for constructing spanning trees, flooding, mutual exclusion, or network
synchronization [24]. Understanding and analyzing such distributed algorithms
is far from being trivial, which is due to the partial information on the global
state present in the local state of a process. After all, real processors execute
at different and varying speeds, and the end-to-end message delays also vary
considerably. Viewed from the global perspective, this results in considerable
non-determinism of the executions of a distributed system.

An additional source of non-determinism are faults. In order to shed some
light on the difficulties facing a distributed algorithm in the presence of faults,
consider Byzantine faults [28], which allow a faulty process to behave arbitrarily:
Faulty processes may fail to send messages, send messages with erroneous values,
or even send conflicting information to different processes. In addition, faulty
processes may even collaborate in order to increase their adverse power.

Fault-tolerant distributed algorithms work in the presence of such faults and
provide some “higher level” service. In case of distributed agreement (consensus),

3

e.g., it should be guaranteed that all non-faulty processes compute the same
result even if some processes fail. Fault-tolerant distributed algorithms are hence
used for increasing the system-level reliability of distributed systems [30].

If one tries to build such a fault-tolerant distributed algorithm using the
construct of Example (a) in the presence of Byzantine faults, the (local state
of the) receiver process would be corrupted if the received message <m> orig-
inates in a faulty process. A faulty process could hence contaminate a correct
process. On the other hand, if one tried to use the construct of Example (b), a
correct process would wait forever (starve) when a faulty process omits to send
the required message. To overcome those problems, fault-tolerant distributed al-
gorithms typically require assumptions on the maximum number of faults, and
employ suitable thresholds for the number of messages which can be expected
to be received by correct processes. Assuming that the system consists of n
processes among which at most t may be faulty, threshold-guarded commands
such as the following are typically used by fault-tolerant distributed algorithms:

i f r e c e i v e d <m> from n−t d i s t i n c t p r o c e s s e s
then ac t i on (m) ;

Assuming that thresholds are functions of the parameters n and t, threshold
guards are a just generalization of quantified guards as given in Examples (a)
and (b): In the above command, a process waits to receive n− t messages from
distinct processes. As there are at least n− t correct processes, the guard cannot
be blocked by faulty processes, which avoids the problems of Example (b). In
the distributed algorithms literature, one finds a variety of different thresholds:
Typical numbers are dn/2+1e (for majority [13,27]), t+1 (to wait for a message
from at least one correct process [34,13]), or n− t (in the Byzantine case [34,2]
to wait for at least t+ 1 messages from correct processes, provided n > 3t).

In the setting of Byzantine fault tolerance, it is important to note that the
use of threshold-guarded commands implicitly rests on the assumption that a
receiver can distinguish messages from different senders. In practice, this can
be achieved e.g. by using point-to-point links between processes or by message
authentication. What is important here is that Byzantine faulty processes are
only allowed to exercise control on their own messages and computations, but not
on the messages sent by other processes and the computation of other processes.

Reliable broadcast and related specifications. The specifications considered in the
area of fault tolerance differ from more classic areas, such as concurrent systems
where dining philosophers and mutual exclusion are central problems. For the
latter, one is typically interested in local properties, e.g., if a philosopher i is
hungry, then i eventually eats. Intuitively, dining philosophers requires us to
trace indexed processes along a computation, e.g., ∀i. G (hungryi → (F eatingi)),
and thus to employ indexed temporal logics for specifications [7,11,12,14].

In contrast, fault-tolerant distributed algorithms are typically used to achieve
certain global properties. Reliable broadcast is an ongoing “system service” with
the following informal specification: Each process i may invoke a primitive called
broadcast by calling bcast(i,m), where m is a unique message content. Processes

4

may deliver a messages by invoking accept(i,m) for different process and message
pairs (i,m). The goal is that all correct processes invoke accept(i,m) for the same
set of (i,m) pairs, with the requirement that all messages broadcast by a correct
process are accepted by all correct processes, and that accept(i,m) is not invoked
if i is correct and i did not invoke bcast(i,m). Our case study is to verify that
the algorithm from [34] implements these primitives on top of point-to-point
channels, in the presence of Byzantine faults. In [34], the instances for different
(i,m) pairs do not interfere. Therefore, we will not consider i and m (since
in [34] the domain of m is not specified, some restrictions on m would be required
anyway to make the algorithm amenable to finite state model checking). Rather,
we distinguish the different kinds of invocations of bcast(i,m) that may occur,
e.g., the cases where the invoking process is faulty or correct. Depending on the
initial state, we then have to check whether every/no correct process accepts. To
capture this kind of properties, we have to trace only existentially or universally
quantified properties, e.g., part of the broadcast specification (relay) [34] states
that if some correct process accepts a message, then all (correct) processes accept
the message, that is, (G (∃i. accepti))→ (F (∀j. acceptj)).

We are therefore considering a temporal logic where the quantification over
processes is restricted to propositional formulas. We will need two kinds of quan-
tified propositional formulas that consider (i) the finite control state modeled as a
single status variable sv , and (ii) the possible unbounded data. We introduce the
set APSV that contains propositions that capture comparison against some sta-
tus value Z from the set of all control states, i.e., [∀i. sv i = Z] and [∃i. sv i = Z] .

This allows us to express specifications of distributed algorithms. To express
the mentioned relay property, we identify the status values where a process has
accepted the message. We may quantify over all processes as we only explicitly
model those processes, which are restricted in their internal behavior, that is,
correct or benign faulty processes. More severe faults that are unrestricted in
their internal behavior (e.g., Byzantine faults) are modeled via non-determinism
in message passing. For a detailed discussion see Section 3.

In order to express comparison of data variables, we add a set of atomic
propositions APD that capture comparison of data variables (integers) x, y, and
constant c; APD consists of propositions of the form [∃i. xi + c < yi] .

The labeling function of a system instance is then defined naturally as dis-
junction or conjunction over all process indices; cf. [21] for complete definitions.

Given an LTL \ X formula ψ over APD expressing justice [29], an LTL \ X
specification ϕ over APSV , a process description P in Promela, and the number
of (correct) processes N , the problem is to verify whether

P ‖ P ‖ · · · ‖ P︸ ︷︷ ︸
Ntimes

|= ψ → ϕ.

3 Threshold-guarded distributed algorithms in Promela

Algorithm 1 is our case study for which we also provide a complete Promela
implementation later in Figure 4. To explain how we obtain this implementation,

5

Algorithm 1 Core logic of the broadcasting algorithm from [34].

Code for processes i if it is correct:
Variables
1: vi ∈ {false,true}
2: accepti ∈ {false,true} ← false

Rules
3: if vi and not sent 〈echo〉 before then
4: send 〈echo〉 to all;
5: if received 〈echo〉 from at least t + 1 distinct processes

and not sent 〈echo〉 before then
6: send 〈echo〉 to all;
7: if received 〈echo〉 from at least n− t distinct processes then
8: accepti ← true;

we proceed in three steps where we first discuss asynchronous distributed algo-
rithms in general, then explain our encoding of message passing for threshold-
guarded fault-tolerant distributed algorithms. Algorithm 1 belongs to this class,
as it does not distinguish messages according to their senders, but just counts
received messages, and performs state transitions depending on the number of
received messages; e.g. line 7. Finally we encode the control flow of Algorithm 1.
The rationale of the modeling decisions are that the resulting Promela model
(i) captures the assumptions of distributed algorithms adequately, and (ii) allows
for efficient verification either using explicit state enumeration (as discussed in
this paper) or by abstraction as discussed in [21]. After discussing the modeling
of distributed algorithms, we will provide the specifications in Section 3.4.

3.1 Computational model for asynchronous distributed algorithms

We recall the standard assumptions for asynchronous distributed algorithms. As
mentioned in the introduction, a system consists of n processes out of which at
most t may be faulty. When considering a fixed computation, we denote by f
the actual number of faulty processes. Note that f is not “known” to the correct
processes. It is assumed that n > 3t∧ f ≤ t∧ t > 0. As these parameters do not
change during a run, they can be encoded as constants in Promela. Correct
processes follow the algorithm, in that they take steps that correspond to the
algorithm description. Between every pair of processes, there is a bidirectional
link over which messages are exchanged. A link contains two message buffers,
each being the receive buffer of one of the incident processes.

A step of a correct process is atomic and consists of the following three parts.
(i) The process possibly receives a message. A process is not forced to receive
a message even if there is one in its buffer [16]. (ii) Then, it performs a state
transition depending on its current state and the received message. (iii) Finally, a
process may send at most one message to each process, that is, it puts a message
in the buffer of the other processes.

6

Computations are asynchronous in that the steps can be arbitrarily inter-
leaved, provided that each correct process takes an infinite number of steps.1

Moreover, if a message m is put into a process p’s buffer, and p is correct,
then m is eventually received. This property is called reliable communication.

From the above discussion we observe that buffers are required to be un-
bounded, and therefore sending is non-blocking. Further, receiving is non-blocking
even if no message has been sent to the process. If we assume that for each mes-
sage type, each correct process sends at most one message in each run (as in Al-
gorithm 1), non-blocking send can in principle natively be encoded in Promela
using message channels. In principle, non-blocking receive also can be imple-
mented in Promela, but it is not a basic construct. We discuss the modeling
of message passing in more detail in Section 3.2.

Fault types. In our case study Algorithm 1 we consider Byzantine faults, that
is, faulty processes are not restricted, except that they have no influence on the
buffers of links to which they are not incident. Below we also consider restricted
failure classes: omission faults follow the algorithm but may fail to send some
messages, crash faults follow the algorithm but may prematurely stop running.
Finally, symmetric faults need not follow the algorithm, but if they send mes-
sages, they send them to all processes. (The latter restriction does not apply to
Byzantine faults which may send conflicting information to different processes).

3.2 Efficient encoding of message passing

In threshold-guarded distributed algorithms, the processes (i) count how many
messages of the same type they have received from distinct processes, and change
their states depending on this number, (ii) always send to all processes (including
the process itself), and (iii) send messages only for a fixed number of types (only
messages of type 〈echo〉 are sent in Algorithm 1).

Fault-free communication. We discuss in the following that one can model such
algorithms in a way that is more efficient in comparison to a straight forward
implementation with Promela channels. In our final modeling we have an ap-
proach that captures both message passing and the influence of faults on correct
processes. However, in order to not clutter the presentation we start our discus-
sion by considering communication between correct processes only (i.e., f = 0),
and add faults later in this section.

In the following code examples we show a straight-forward way to implement
“received 〈echo〉 from at least x distinct processes” and “send 〈echo〉 to all” using
Promela channels: We declare an array p2p of n2 channels, one per a pair of
processes, and then we declare an array rx to record that at most one 〈echo〉
message from a process j is received by a process i:

1 Algorithm 1 has runs that never accept and are infinite. Conceptually, the stan-
dard model requires that processes executing terminating algorithms loop forever in
terminal states [24].

7

mtype = { ECHO }; /∗ one message type ∗/
chan p2p[NxN] = [1] of { mtype }; /∗ channels o f capac i ty 1 ∗/
bit rx[NxN]; /∗ a b i t map to implement ” d i s t i n c t ” ∗/
active[N] proctype STBcastChan() {
int i, nrcvd = 0; /∗ nr . o f echoes ∗/

Then, the receive code iterates over n channels: for non-empty channels it
received an 〈echo〉 message or not, and empty channels are skipped; if a message
is received, the channel is marked in rx:

i = 0; do
:: (i < N) && nempty(p2p[i * N + _pid]) ->
p2p[i * N + _pid]?ECHO; /∗ r e t r i e v e a message ∗/
if
:: !rx[i * N + _pid] ->
rx[i * N + _pid] = 1; /∗ mark the channel ∗/
nrcvd++; break; /∗ r ece i v e at most one message ∗/

:: rx[i * N + _pid]; /∗ ignore dup l i c a t e s ∗/
fi; i++;

:: (i < N) ->
i++; /∗ channel empty or postpone recep t ion ∗/

:: i == N -> break;
od

Finally, the sending code also iterates over n channels and sends on each:

for (i : 1 .. N) { p2p[_pid * N + i]!ECHO; }

Recall that threshold-guarded algorithms have specific constraints: messages
from all processes are processed uniformly; every message is carrying only a
message type without a process identifier; each process sends a message to all
processes in no particular order. This suggests a simpler modeling solution. In-
stead of using message passing directly, we keep only the numbers of sent and
received messages in integer variables:

int nsnt; /∗ one shared va r i a b l e per a message type ∗/
active[N] proctype STBcast() {
int nrcvd = 0, next_nrcvd = 0; /∗ nr . o f echoes ∗/
...

step: atomic {
if /∗ r ece i v e one more echo ∗/
:: (next_nrcvd < nsnt) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd; /∗ or nothing ∗/
fi;
...
nsnt++; /∗ send echo to a l l ∗/

}

As one process step is executed atomically (indivisibly), concurrent reads
and updates of nsnt are not a concern to us. Note that the presented code is
based on the assumption that each correct process sends at most one message.

8

active[F] proctype Byz() {
step: atomic {
i = 0; do
:: i < N -> sendTo(i); i++;
:: i < N -> i++; /∗ some ∗/
:: i == N -> break;

od
}; goto step;

}

active[F] proctype Omit() {
step: atomic {
/∗ r ece i v e as a correc t ∗/
/∗ compute as a correc t ∗/
if :: correctCodeSendsAll ->
i = 0; do
:: i < N -> sendTo(i); i++;
:: i < N -> i++; /∗ omit ∗/
:: i == N -> break;

od
:: skip;

fi
}; goto step;

}

active[F] proctype Symm() {
step: atomic {

if
:: /∗ send a l l ∗/

for (i : 1 .. N)
{ sendTo(i); }

:: skip; /∗ or none ∗/
fi

}; goto step;
}

active[F] proctype Clean() {
step: atomic {
/∗ r ece i v e as a correc t ∗/
/∗ compute as a correc t ∗/
/∗ send as a correc t one ∗/
};
if

:: goto step;
:: goto crash;

fi;
crash:
}

Fig. 1: Modeling faulty processes explicitly: Byzantine (Byz), symmetric
(Symm), omission (Omit), and clean crashes (Clean)

We show how to enforce this assumption when discussing the control flow of our
implementation of Algorithm 1 below.

Recall that in asynchronous distributed systems one assumes communica-
tion fairness, that is, every message sent is eventually received. The statement
∃i. rcvd i < nsnt i describes a global state where messages are still in transit. It
follows that a formula ψ defined by

GF¬ [∃i. rcvd i < nsnt i] (RelComm)

states that the system periodically delivers all messages sent by (correct) pro-
cesses. We are thus going to add such fairness requirements to our specifications.

Faulty processes. In Figure 1 we show how one can model the different types
of faults discussed above using channels. The implementations are direct con-
sequences of the fault description given in Section 3.1. Figure 2 shows how the
impact of faults on processes following the algorithm can be implemented in the
shared memory implementation of message passing. Note that in contrast to Fig-
ure 1, the processes in Figure 2 are not the faulty ones, but correct ones whose
variable next nrcvd is subject to non-deterministic updates that corresponds

9

/∗ N > 3T ∧ T ≥ F ≥ 0 ∗/
active[N-F] proctype ByzI() {
step: atomic {
if
:: (next_nrcvd < nsnt + F) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N > 2T ∧ T ≥ F ≥ 0 ∗/
active[N] proctype OmitI() {
step: atomic {
if
:: (next_nrcvd < nsnt) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N > 2T ∧ T ≥ Fp ≥ Fs ≥ 0 ∗/
active[N-Fp] proctype SymmI() {
step: atomic {

if
:: (next_nrcvd < nsnt + Fs) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N ≥ T ∧ T ≥ Fc ≥ Fnc ≥ 0 ∗/
active[N] proctype CleanI() {
step: atomic {

if
:: (next_nrcvd < nsnt - Fnc) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

Fig. 2: Modeling the effect of faults on correct processes: Byzantine (ByzI), sym-
metric (SymmI), omission (OmitI), and clean crashes (CleanI).

to the impact of faulty process. For instance, in the Byzantine case, in addition
to the messages sent by correct processes, a process can receive up to f messages
more. This is expressed by the condition (next nrcvd < nsnt + F).

For Byzantine and symmetric faults we only model correct processes explic-
itly. Thus, we specify that the system has N-F copies of the process. Moreover,
we can use Property (RelComm) to model reliable communication. Omission and
crash faults, however, we model explicitly, so that we have N copies of processes.
Without going into too much detail, the impact of faulty processes is modeled by
relaxed fairness requirements: as some messages sent by these f faulty processes
may not be received, this induces less strict communication fairness:

GF¬ [∃i. rcvd i + f < nsnt i]

By similar adaptations one models, e.g., corrupted communication (e.g., due to
faulty links) [31], or hybrid fault models [4] that contain different fault scenarios.

Figure 3 compares the number of states and memory consumption when mod-
eling message passing using both solutions. We ran Spin to perform exhaustive

10

10
100

1000
10000

100000
1e+06
1e+07
1e+08
1e+09

3 4 5 6 7 8 9

st
at

es
 (

lo
gs

ca
le

)

number of processes, N

var, f=0
var, f=1
ch, f=0
ch, f=1

 128

 256

 512

1024

2048

4096

8192

3 4 5 6 7 8 9

m
em

or
y,

 M
B

 (
lo

gs
ca

le
)

number of processes, N

Fig. 3: Visited states (left) and memory usage (right) when modeling message
passing with channels (ch) or shared variables (var). The faults are in effect only
when f > 0. Ran with SAFETY, COLLAPSE, COMP, and 8GB of memory.

state enumeration on the encoding of Algorithm 1 (discussed in the next sec-
tion). As one sees, the model with explicit channels and faulty processes ran
out of memory on six processes, whereas the shared memory model did so only
with nine processes. Moreover, the latter scales better in the presence of faults,
while the former degrades with faults. This leads us to use the shared memory
encoding based on nsnt variables.

3.3 Encoding the control flow

Recall Algorithm 1, which is written in typical pseudocode found in the dis-
tributed algorithms literature. The lines 3-8 describe one step of the algorithm.
Receiving messages is implicit and performed before line 3, and the actual send-
ing of messages is deferred to the end, and is performed after line 8.

We encoded the algorithm in Figure 4 using custom Promela extensions
to express notions of fault-tolerant distributed algorithms. The extensions are
required to express a parameterized model checking problem, and are used by
our tool that implements the abstraction methods introduced in [21]. These
extensions are only syntactic sugar when the parameters are fixed: symbolic is
used to declare parameters, and assume is used to impose resilience conditions
on them (but is ignored in explicit state model checking). Declarations atomic
<var> = all (...) are a shorthand for declaring atomic propositions that
are unfolded into conjunctions over all processes (similarly for some). Also we
allow expressions over parameters in the argument of active.

In the encoding in Figure 4, the whole step is captured within an atomic
block (lines 20–42). As usual for fault-tolerant algorithms, this block has three
logical parts: the receive part (lines 21–24), the computation part (lines 25–32),
and the sending part (lines 33–38). As we have already discussed the encoding
of message passing above, it remains to discuss the control flow of the algorithm.

Control state of the algorithm. Apart from receiving and sending messages, Al-
gorithm 1 refers to several facts about the current control state of a process:

11

1 /∗ parameters (i n s t an t i a t e d with concrete va lues) ∗/
2 symbolic int N, T, F;
3 /∗ the r e s i l i e n c e condi t ion ∗/
4 assume(N > 3 * T && T >= 1 && 0 <= F && F <= T);
5 /∗ quan t i f i e d atomic propos i t i ons ∗/
6 atomic prec_unforg = all(STBcast:sv == V0);
7 atomic prec_corr = all(STBcast:sv == V1);
8 atomic prec_init = all(STBcast@step);
9 atomic ex_acc = some(STBcast:sv == AC);

10 atomic all_acc = all(STBcast:sv == AC);
11 atomic in_transit = some(STBcast:nrcvd < nsnt);
12

13 active[N - F] proctype STBcast() {
14 byte sv, next_sv; /∗ s t a t u s of the a lgor i thm ∗/
15 int nrcvd = 0, next_nrcvd = 0; /∗ nr . o f echoes rece ived ∗/
16 if /∗ i n i t i a l i z e ∗/
17 :: sv = V0; /∗ vi = false ∗/
18 :: sv = V1; /∗ vi = true ∗/
19 fi;
20 step: atomic { /∗ an i n d i v i s i b l e s t ep ∗/
21 if /∗ r ece i v e one more echo (up to nsnt + F) ∗/
22 :: (next_nrcvd < nsnt + F) -> next_nrcvd = nrcvd + 1;
23 :: next_nrcvd = nrcvd; /∗ or nothing ∗/
24 fi;
25 if /∗ compute ∗/
26 :: (next_nrcvd >= N - T) ->
27 next_sv = AC; /∗ accepti = true ∗/
28 :: (next_nrcvd < N - T && sv == V1
29 || next_nrcvd >= T + 1) ->
30 next_sv = SE; /∗ remember tha t <echo> i s sent ∗/
31 :: else -> next_sv = sv; /∗ keep the s t a t u s ∗/
32 fi;
33 if /∗ send ∗/
34 :: (sv == V0 || sv == V1)
35 && (next_sv == SE || next_sv == AC) ->
36 nsnt++; /∗ send <echo> ∗/
37 :: else; /∗ send nothing ∗/
38 fi;
39 /∗ update l o c a l v a r i a b l e s and r e s e t scra tch v a r i a b l e s ∗/
40 sv = next_sv; nrcvd = next_nrcvd;
41 next_sv = 0; next_nrcvd = 0;
42 } goto step;
43 }
44 /∗ LTL−X formulas ∗/
45 ltl fairness { []<>(!in_transit) } /∗ added to other formulas ∗/
46 ltl relay { [](ex_acc -> <>all_acc) }
47 ltl corr { []((prec_init && prec_corr) -> <>(ex_acc)) }
48 ltl unforg { []((prec_init && prec_unforg) -> []!ex_acc) }

Fig. 4: Encoding of Algorithm 1 in Promela with symbolic extensions.
12

“sent 〈echo〉 before”, “if vi”, and “accept i ← true”. We capture all possible
control states in a finite set SV . For instance, for Algorithm 1 one can collect
the set SV = {V0,V1,SE,AC}, where:

– V0 corresponds to vi = false, accepti = false and 〈echo〉 is not sent.

– V1 corresponds to vi = true, accepti = false and 〈echo〉 is not sent.

– SE corresponds to the case accepti = false and 〈echo〉 been sent. Observe
that once a process has sent 〈echo〉, its value of vi does not interfere anymore
with the subsequent control flow.

– AC corresponds to the case accepti = true and 〈echo〉 been sent. A process
only sets accept to true if it has sent a message (or is about to do so in the
current step).

Thus, the control state is captured within a single status variable sv over SV
with the set SV 0 = {V0,V1} of initial control states.

3.4 Specifications

Specifications are obtained by the broadcasting specification parts called un-
forgeability, correctness, and relay introduced in [34]:

G ([∀i. sv i 6= V1]→ G [∀j. sv j 6= AC]) (U)

G ([∀i. sv i = V1]→ F [∃j. sv j = AC]) (C)

G ([∃i. sv i = AC]→ F [∀j. sv j = AC]) (R)

Note carefully that (U) is a safety specification while (C) and (R) are liveness
specifications.

4 Experiments with SPIN

Figure 4 provides the central parts of the code of our case study. For the ex-
periments we have implemented four distributed algorithms that use threshold-
guarded commands, and differ in the fault model. We have one algorithm for
each of the fault models discussed. In addition, the algorithms differ in the
guarded commands. The following list is ordered from the most general fault
model to the most restricted one. The given resilience conditions on n and t are
the ones we expected from the literature, and their tightness was confirmed by
our experiments:

Byz. tolerates t Byzantine faults if n > 3t,

symm. tolerates t symmetric (identical Byzantine [3]) faults if n > 2t,

omit. tolerates t send omission faults if n > 2t,

clean. tolerates t clean crash faults for n > t.

13

parameter values spec valid Time Mem. Stored Transitions Depth

Byz

B1 N=7,T=2,F=2 (U) 3 3.13 sec. 74 MB 193 · 103 1 · 106 229
B2 N=7,T=2,F=2 (C) 3 3.43 sec. 75 MB 207 · 103 2 · 106 229
B3 N=7,T=2,F=2 (R) 3 6.3 sec. 77 MB 290 · 103 3 · 106 229
B4 N=7,T=3,F=2 (U) 3 4.38 sec. 77 MB 265 · 103 2 · 106 233
B5 N=7,T=3,F=2 (C) 3 4.5 sec. 77 MB 271 · 103 2 · 106 233
B6 N=7,T=3,F=2 (R) 7 0.02 sec. 68 MB 1 · 103 13 · 103 210

omit

O1 N=5,To=2,Fo=2 (U) 3 1.43 sec. 69 MB 51 · 103 878 · 103 175
O2 N=5,To=2,Fo=2 (C) 3 1.64 sec. 69 MB 60 · 103 1 · 106 183
O3 N=5,To=2,Fo=2 (R) 3 3.69 sec. 71 MB 92 · 103 2 · 106 183
O4 N=5,To=2,Fo=3 (U) 3 1.39 sec. 69 MB 51 · 103 878 · 103 175
O5 N=5,To=2,Fo=3 (C) 7 1.63 sec. 69 MB 53 · 103 1 · 106 183
O6 N=5,To=2,Fo=3 (R) 7 0.01 sec. 68 MB 17 135 53

symm

S1 N=5,T=1,Fp=1,Fs=0 (U) 3 0.04 sec. 68 MB 3 · 103 23 · 103 121
S2 N=5,T=1,Fp=1,Fs=0 (C) 3 0.03 sec. 68 MB 3 · 103 24 · 103 121
S3 N=5,T=1,Fp=1,Fs=0 (R) 3 0.08 sec. 68 MB 5 · 103 53 · 103 121
S4 N=5,T=3,Fp=3,Fs=1 (U) 3 0.01 sec. 68 MB 66 267 62
S5 N=5,T=3,Fp=3,Fs=1 (C) 7 0.01 sec. 68 MB 62 221 66
S6 N=5,T=3,Fp=3,Fs=1 (R) 3 0.01 sec. 68 MB 62 235 62

clean

C1 N=3,Tc=2,Fc=2,Fnc=0 (U) 3 0.01 sec. 68 MB 668 7 · 103 77
C2 N=3,Tc=2,Fc=2,Fnc=0 (C) 3 0.01 sec. 68 MB 892 8 · 103 81
C3 N=3,Tc=2,Fc=2,Fnc=0 (R) 3 0.02 sec. 68 MB 1 · 103 17 · 103 81

Table 1: Summary of experiments related to [34]

In addition, we verified a folklore reliable broadcasting algorithm that tol-
erates crash faults, which is given, e.g., in [9]. Further, we verified a Byzan-
tine tolerant broadcasting algorithm from [6]. For the encoding of the algorithm
from [6] we were required to use two message types — opposed to the one type of
the 〈echo〉 messages in Algorithm 1. Finally, we implemented the asynchronous
condition-based consensus algorithm from [27]. We specialized it to binary con-
sensus, which resulted in an encoding which requires four different message types.

The major goal of the experiments was to check the adequacy of our formal-
ization. To this end, we first considered the four well-understood variants of [34],
for each of which we systematically changed the parameter values. By doing so,
we verify that under our modeling the different combination of parameters lead
to the expected result. Table 1 and Figure 5 summarize the results of our exper-
iments for broadcasting algorithms in the spirit of [34]. Lines B1 – B3, O1 – O3,
S1 – S3, and C1 – C3 capture the cases that are within the resilience condition
known for the respective algorithm, and the algorithms were verified by Spin.
In Lines B4 – B6, the algorithm’s parameters are chosen to achieve a goal that is
known to be impossible [28], i.e., to tolerate that 3 out of 7 processes may fail.

14

 128

 256

 512

1024

2048

4096

8192

3 4 5 6 7 8 9

m
em

or
y,

 M
B

 (
lo

gs
ca

le
)

number of processes, N

t=2, f=0, (u)
t=2, f=0, (c)
t=2, f=0, (r)
t=2, f=2, (u)
t=2, f=2, (c)
t=2, f=2, (r)

0.01

0.1

1

1e+01

1e+02

1e+03

1e+04

3 4 5 6 7 8 9

tim
e,

 s
ec

 (
lo

gs
ca

le
)

number of processes, N

Fig. 5: Spin memory usage (left) and running time (right) for Byz.

This violates the n > 3t requirement. Our experiment shows that even if only 2
faults occur in this setting, the relay specification (R) is violated. In Lines O4 –
O6, the algorithm is designed properly, i.e., 2 out of 5 processes may fail (n > 2t
in the case of omission faults). Our experiments show that this algorithm fails
in the presence of 3 faulty processes, i.e., (C) and (R) are violated.

Table 2 summarizes our experiments for the algorithms in [9], [6], and [27].
The specification (F) is related to agreement and was also used in [17]. Proper-
ties (V0) and (V1) are non-triviality, that is, if all processes propose 0 (1), then
0 (1) is the only possible decision value. Property (A) is agreement and similar
to (R), while Property (T) is termination, and requires that every correct pro-
cess eventually decides. In all experiments the validity of the specifications was
as expected from the distributed algorithms literature.

For slightly bigger systems, that is, for n = 11 our experiments run out of
memory. This shows the need for parameterized verification of these algorithms.

5 Related Work

As fault tolerance is required to increase the reliability of systems, the verification
of fault tolerance mechanisms is an important challenge. There are two classes
of approaches towards fault tolerance, namely fault detection, and fault masking.

Methods in the first class follow the fault detection, isolation, and recovery
(FDIR) principles: at runtime one tries to detect faults and to automatically
perform counter measures. In this area, in [32] Spin was used to validate a
design based on the well-known primary backup idea. Under the FDIR approach,
validation techniques have also been introduced in [15,8,19].

However, it is well understood that it is not always possible to reliably detect
faults; for instance, in asynchronous distributed systems it is not possible to
distinguish a process that prematurely stopped from a slow process, and in
synchronous systems there are cases where the border between correct and faulty
behavior cannot be drawn sharply [1]. To address such issues, fault masking has
been introduced. Here, one does not try to detect or isolate faults, but tries to
keep those components operating consistently that are not directly hit by faults,

15

parameter values spec valid Time Mem. Stored Transitions Depth

Folklore Broadcast [9]

F1 N=2 (U) 3 0.01 sec. 98 MB 121 7 · 103 77
F2 N=2 (R) 3 0.01 sec. 98 MB 143 8 · 103 48
F3 N=2 (F) 3 0.01 sec. 98 MB 257 2 · 103 76
F4 N=6 (U) 3 386 sec. 670 MB 15 · 106 20 · 106 272
F5 N=6 (R) 3 691 sec. 996 MB 24 · 106 370 · 106 272
F6 N=6 (F) 3 1690 sec. 1819 MB 39 · 106 875 · 106 328

Asynchronous Byzantine Agreement [6]

T1 N=5,T=1,F=1 (R) 3 131 sec. 239 MB 4 · 106 74 · 106 211
T2 N=5,T=1,F=2 (R) 7 0.68 sec. 99 MB 11 · 103 465 · 103 187
T3 N=5,T=2,F=2 (R) 7 0.02 sec. 99 MB 726 9 · 103 264

Condition-based consensus [27]

S1 N=3,T=1,F=1 (V0) 3 0.01 sec. 98 MB 1.4 · 103 7 · 103 115
S2 N=3,T=1,F=1 (V1) 3 0.04 sec. 98 MB 3 · 103 18 · 103 128
S3 N=3,T=1,F=1 (A) 3 0.09 sec. 98 MB 8 · 103 42 · 103 127
S4 N=3,T=1,F=1 (T) 3 0.16 sec. 66 MB 9 · 103 83 · 103 133
S5 N=3,T=1,F=2 (V0) 3 0.02 sec. 68 MB 1724 9835 123
S6 N=3,T=1,F=2 (V1) 3 0.05 sec. 68 MB 3647 23 · 103 136
S7 N=3,T=1,F=2 (A) 3 0.12 sec. 68 MB 10 · 103 55 · 103 135
S8 N=3,T=1,F=2 (T) 7 0.05 sec. 68 MB 3 · 103 17 · 103 135

Table 2: Summary of experiments with algorithms from [9,6,27]

cf. distributed agreement [28]. The fault-tolerant distributed algorithms that we
consider in this paper belong to this approach.

Specific masking fault-tolerant distributed algorithms have been verified, e.g.,
a consensus algorithm in [36], and a clock synchronization algorithm in [35].
In [25], a bug has been found in a previously published clock synchronization
algorithm that was supposed to tolerate Byzantine faults.

Formalization and verification of a class of fault-tolerant distributed algo-
rithms have been addressed in [5]. Their formalization uses the fact that for
many distributed algorithms, the order in which messages arrive is not relevant,
but only how many messages are received. They provide a framework for such
algorithms and show that they can be efficiently verified using partial order
reduction. While in this work we consider similar message counting ideas, our
formalization targets at parameterized model checking [21] rather than partial
order reductions for systems of small size.

6 Conclusions

In this paper we presented a way to efficiently encode fault-tolerant threshold-
guarded distributed algorithms using shared variables. We showed that our en-
coding scales significantly better than a straight-forward approach. With this
encoding we were able to verify small system instances of a number of broad-
casting algorithms [34,6,9] for diverse failure models. We could also find counter

16

examples in cases where we knew from theory that the given number of faults
cannot be tolerated. We also verified a condition-based consensus algorithm [27].

As our mid-term goal is to verify state-of-the-art fault-tolerant distributed
algorithms, there are several follow-up steps we are currently taking. In [21] we
show that the encoding we described in this paper is also a basis for param-
eterized model checking techniques that allow us to verify the correctness of
distributed algorithms for any system size. Some of the algorithms mentioned
above could already be verified in this setting, while we are working on tech-
niques to verify also the other ones. Also we are currently working on verifica-
tion of the Paxos-like Byzantine consensus algorithm from [26], which is also
threshold-guarded. The challenges of this algorithm are threefold. First, it con-
sists of three different process types — proposers, accepters, learners — while the
algorithms discussed in this paper are just compositions of processes of the same
type. Second, to tolerate a single fault, the algorithm requires at least four pro-
posers, six acceptors, and four learners. Our preliminary experiments show that
14 processes is a challenge for explicit state enumeration. Third, as the algorithm
solves consensus, it cannot work in the asynchronous model [16], and we have
to restrict the interleavings of steps, and the message delays.

References

1. Ademaj, A.: Slightly-off-specification failures in the time-triggered architecture. In:
High-Level Design Validation and Test Workshop. IEEE. pp. 7–12 (2002)

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Consensus with
Byzantine failures and little system synchrony. In: DSN. pp. 147–155 (2006)

3. Attiya, H., Welch, J.: Distributed Computing. John Wiley & Sons, 2nd edn. (2004)
4. Biely, M., Schmid, U., Weiss, B.: Synchronous consensus under hybrid process and

link failures. Theoretical Computer Science 412(40), 5602–5630 (2011)
5. Bokor, P., Kinder, J., Serafini, M., Suri, N.: Efficient model checking of fault-

tolerant distributed protocols. In: DSN. pp. 73–84 (2011)
6. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM

32(4), 824–840 (1985)
7. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many

identical finite state processes. Inf. Comput. 81, 13–31 (April 1989)
8. Bucchiarone, A., Muccini, H., Pelliccione, P.: Architecting fault-tolerant

component-based systems: from requirements to testing. Electr. Notes Theor. Com-
put. Sci. 168, 77–90 (2007)

9. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (March 1996)

10. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distributed Computing 22(1), 49–71 (2009)

11. Clarke, E., Talupur, M., Veith, H.: Proving Ptolemy right: the environment abstrac-
tion framework for model checking concurrent systems. In: TACAS’08/ETAPS’08.
pp. 33–47. Springer (2008)

12. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decomposi-
tion. In: CONCUR 2004. vol. 3170, pp. 276–291 (2004)

13. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (Apr 1988)

17

14. Emerson, E., Namjoshi, K.: Reasoning about rings. In: POPL. pp. 85–94 (1995)
15. Feather, M.S., Fickas, S., Razermera-Mamy, N.A.: Model-checking for validation

of a fault protection system. In: HASE. pp. 32–41 (2001)
16. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus

with one faulty process. J. ACM 32(2), 374–382 (Apr 1985)
17. Fisman, D., Kupferman, O., Lustig, Y.: On verifying fault tolerance of distributed

protocols. In: TACAS. LNCS, vol. 4963, pp. 315–331. Springer (2008)
18. Függer, M., Schmid, U.: Reconciling fault-tolerant distributed computing and

systems-on-chip. Distributed Computing 24(6), 323–355 (2012)
19. Gnesi, S., Latella, D., Lenzini, G., Abbaneo, C., Amendola, A.M., Marmo, P.: A

formal specification and validation of a critical system in presence of Byzantine
errors. In: TACAS. LNCS, vol. 1785, pp. 535–549 (2000)

20. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional (2003)

21. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Counter attack on Byzan-
tine generals: Parameterized model checking of fault-tolerant distributed algo-
rithms. arXiv CoRR abs/1210.3846 (2012), (submitted to LICS)

22. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

23. Lamport, L.: On interprocess communication. part i: Basic formalism. Distributed
Computing 1(2), 77–85 (1986)

24. Lynch, N.: Distributed Algorithms. Morgan Kaufman, San Francisco, USA (1996)
25. Malekpour, M.R., Siminiceanu, R.: Comments on the “Byzantine self-stabilizing

pulse synchronization”. protocol: Counterexamples. Tech. rep., NASA (Feb 2006)
26. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Trans. Dep. Sec. Comp.

3(3), 202–215 (2006)
27. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-

based approach to solve consensus. In: DSN. pp. 541–550 (2003)
28. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.

J.ACM 27(2), 228–234 (April 1980)
29. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0,1,∞)- counter abstraction. In: CAV,

LNCS, vol. 2404, pp. 93–111. Springer (2002)
30. Powell, D.: Failure mode assumptions and assumption coverage. In: FTCS-22. pp.

386–395. Boston, MA, USA (1992)
31. Santoro, N., Widmayer, P.: Time is not a healer. In: STACS. LNCS, vol. 349, pp.

304–313. Springer (1989)
32. Schneider, F., Easterbrook, S.M., Callahan, J.R., Holzmann, G.J.: Validating re-

quirements for fault tolerant systems using model checking. In: ICRE. pp. 4–13
(1998)

33. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

34. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Computing 2, 80–94 (1987)

35. Steiner, W., Rushby, J.M., Sorea, M., Pfeifer, H.: Model checking a fault-tolerant
startup algorithm: From design exploration to exhaustive fault simulation. In: DSN.
pp. 189–198 (2004)

36. Tsuchiya, T., Schiper, A.: Verification of consensus algorithms using satisfiability
solving. Distributed Computing 23(5–6), 341–358 (2011)

37. Widder, J., Schmid, U.: Booting clock synchronization in partially synchronous
systems with hybrid process and link failures. Distributed Computing 20(2), 115–
140 (August 2007)

18

APPENDIX

1 symbolic int N, T, Fs, Fp;
2 assume(N > 2 * T
3 && Fs <= Fp && Fp <= T);
4 ...
5 atomic in_transit
6 = some(Proc:nrcvd < nsnt + Fs);
7

8 active[N - Fp] proctype STSymm() {
9 ...

10 if /∗ receive ∗/
11 :: next_nrcvd < nsnt + Fs ->
12 next_nrcvd = nrcvd + 1;
13 :: next_nrcvd = nrcvd;
14 fi;
15 if /∗ compute ∗/
16 :: next_nrcvd >= T + 1 ->
17 next_sv = AC;
18 :: sv == V1 -> next_sv = SE;
19 :: else -> next_sv = sv;
20 fi;
21 /∗ send as in Byz . . . ∗/ }

1 symbolic int N, To, Fo;
2 assume(N > 2 * To
3 && 0 <= Fo && Fo <= T);
4 ...
5 atomic in_transit
6 = some(Proc:nrcvd < nsnt - Fo);
7

8 active[N] proctype STOmit() {
9 ...

10 if /∗ receive ∗/
11 :: next_nrcvd < nsnt ->
12 next_nrcvd = nrcvd + 1;
13 :: next_nrcvd = nrcvd;
14 fi;
15 if /∗ compute ∗/
16 :: next_nrcvd >= T + 1 ->
17 next_sv = AC;
18 :: next_nrcvd >= 1
19 && next_nrcvd < To + 1 ->
20 next_sv = SE;
21 :: sv == V1 -> next_sv = SE;
22 :: else -> next_sv = sv;
23 fi;
24 /∗ send as in Byz . . . ∗/ }

Fig. 6: Differences of Symm and Omit from Byz

1 symbolic int N, Tc, Fc, Fnc;
2 assume(N > Tc + 1 && Fnc <= Fc && Fc <= Tc);
3 ...
4 atomic in_transit = some(Proc:nrcvd < nsnt - Fnc);
5

6 active[N] proctype STClean() {
7 ...
8 if /∗ r ece i v e ∗/
9 :: next_nrcvd < nsnt - Fnc ->

10 next_nrcvd = nrcvd + 1;
11 :: next_nrcvd = nrcvd;
12 fi;
13 if /∗ compute ∗/
14 :: next_nrcvd >= N - Tc -> next_sv = AC;
15 :: sv == V1 -> next_sv = SE;
16 :: else -> next_sv = sv;
17 fi;
18 /∗ send as in Byz . . . ∗/ }

Fig. 7: Differences of Clean from Byz

19

1 symbolic int N;
2 int nsnt, nsntF;
3 atomic in_transit
4 = some(Proc:nrcvd < nsnt);
5 ...
6 active[N] proctype STFolklore() {
7 ...
8 if /∗ r ece i v e ∗/
9 :: next_nrcvd < nsnt + nsntF ->

10 next_nrcvd = nrcvd + 1;
11 :: next_nrcvd = nrcvd;
12 fi;
13 if /∗ compute ∗/
14 :: sv == V1 ->
15 next_sv = AC;
16 :: sv == V1 ->
17 next_sv = CR; /∗ crash ∗/
18 :: sv != AC && sv != CR && (next_nrcvd >= 1) ->
19 next_sv = AC;
20 :: sv != AC && sv != CR && next_nrcvd >= 1 ->
21 next_sv = CR;
22 :: else -> next_sv = sv;
23 fi;
24 if /∗ send ∗/
25 :: (pc == V0 || pc == V1)
26 && next_pc == AC -> nsnt++;
27 :: (pc == V0 || pc == V1)
28 && (next_pc == CR) -> nsntF++;
29 :: else
30 fi;
31 ...
32 ltl fkl { [](prec_init -> <>[](!ex_acc || all_acc)) }

Fig. 8: Fragment of Folklore Broadcast

20

1 symbolic int N, T, F;
2 int nsnt00, nsnt01, nsnt10, nsnt11;
3 int nfaulty, init0, init1;
4 assume(N > 2 * T && F <= T);
5 atomic prec_no0 = all(Proc:pc != V0);
6 atomic prec_no1 = all(Proc:pc != V1);
7 atomic ex_acc0 = some(Proc:pc == AC0);
8 atomic ex_acc1 = some(Proc:pc == AC1);
9 atomic prec_init = ((init0 + init1) == N);

10 atomic cond_init = ((init0 > (init1 + F)) || (init1 > (init0 + F)));
11 atomic all_acc = all(Proc:pc == CR ||Proc:pc == AC0 || Proc:pc == AC1);
12 atomic in_transit00 = some(Proc:nrcvd00 < nsnt00);
13 /∗ similar for nrcvd01 , nrcvd10 , nrcvd11 ∗/
14 active[N] proctype CondConsensus() {
15 byte pc = 0, next_pc = 0;
16 int nrcvd00, next_nrcvd00, nrcvd01, next_nrcvd01;
17 int nrcvd10, next_nrcvd10, nrcvd11, next_nrcvd11;
18 if /∗ INIT ∗/
19 :: pc = V0 -> init0++;
20 :: pc = V1 -> init1++;
21 fi;
22 step: atomic {
23 if
24 :: (pc == V0 || pc == V1 || pc == P0) && (nrcvd00 < nsnt00) ->
25 next_nrcvd00 = nrcvd00 + 1;
26 :: next_nrcvd00 = nrcvd00;
27 fi; /∗ and similar for nrcvd01 . . . ∗/
28 if :: (pc == W0 || pc == W1 || pc == P1) && (nrcvd10 < nsnt10) ->
29 next_nrcvd10 = nrcvd10 + 1;
30 :: next_nrcvd10 = nrcvd10;
31 fi; /∗ and similar for nrcvd11 . . . ∗/
32 if :: pc == V0 || pc == V1 -> next_pc = P0;
33 :: (pc == P0) && ((next_nrcvd0 + next_nrcvd1) >= N - T)
34 && (next_nrcvd0 > next_nrcvd1) -> next_pc = W0;
35 :: (pc == P0) && ((next_nrcvd0 + next_nrcvd1) >= N - T)
36 && (next_nrcvd1 > next_nrcvd0) -> next_pc = W1;
37 :: pc == W0 || pc == W1 -> next_pc = P1;
38 :: (pc == P1) && (next_nrcvd0 >= ((N-1) / 2)+1) ->
39 next_pc = AC0;
40 :: (pc == P1) && (next_nrcvd1 >= ((N-1) / 2)+1) ->
41 next_pc = AC1;
42 :: nfaulty < F && pc != CR ->
43 nfaulty++; next_pc = CR;
44 :: else -> next_pc = pc;
45 fi;
46 if :: (pc == V0) && (next_pc == P0) -> nsnt00++;
47 :: (pc == V1) && (next_pc == P0) -> nsnt01++;
48 :: (pc == P0) && (next_pc == W0) ->
49 nsnt10++; next_nrcvd0 = 0; next_nrcvd1 = 0;
50 :: (pc == P1) && next_pc == W1 ->
51 nsnt11++; next_nrcvd0 = 0; next_nrcvd1 = 0;
52 :: else;
53 fi;
54 ...
55 } goto step; }
56 ltl fairness { []<>(!in_transit00 && !in_transit01
57 && !in_transit10 && !in_transit11) }
58 ltl validity0 { (([](prec_no0) && <>(prec_init)) -> []!ex_acc0) }
59 ltl agreement { [](!ex_acc0 || !ex_acc1)}
60 ltl termination { []((!prec_init || !cond_init) || (<>(all_acc))) }

Fig. 9: Fragment of Condition-based Consensus

21

	Towards Modeling and Model Checking Fault-Tolerant Distributed Algorithms

