
COMPLeTe - A COMmunication Protocol

vaLidation Toolchain using Formal and

Model-Based Speci�cations and Descriptions

Sven Gröning, Christopher Rosas, and Christian Wietfeld

Communication Networks Institute (CNI), TU Dortmund University,
Dortmund 44227, Germany,

Email: {sven.groening, christopher.rosas,

christian.wietfeld}@tu-dortmund.de,
home page: www.cni.tu-dortmund.de

Abstract. Because of shorter software development cycles for commu-
nication protocol stacks, the risk of design failures rises. Therefore, even
within the protocol speci�cation phase, appropriate validation should be
performed in order to detect failures as early as possible.
In the light of electric vehicle integration in a smart grid environment,
the complexity of charging processes increases e.g. for demand manage-
ment, and thus also complexity of requirements for associated communi-
cation protocols increases. Accordingly, it lends to describe the behavior
of communication protocols by abstraction in form of models. The use
of model checking processes can validate properties of future behavior,
hence failures may be detected earlier.
COMPLeTe is a toolchain for validation of communication protocols, rep-
resented in an adapted version of UML-Statecharts. The toolchain uses
the SPIN model checker and its composition is based on techniques of
Model-Driven Software Development (MDSD). The applicability of this
toolchain will be presented by modeling an exemplary communication
protocol for electric vehicle charging.

Keywords: Communication Protocol Validation, COMPLeTe, SPIN,
UML-Statecharts, Electric Mobility

1 Introduction

Communication protocols in general, de�ne the way of information exchange be-
tween devices or other entities on a network. To reach an agreement by involved
parties about the way of information �ow, the protocol description should be
developed as a technical standard. Some standards already include a formal de-
scription, however only in rare cases. Furthermore, the description of the protocol
behavior may also have a high level of complexity.

Especially in the context of electric mobility, a future widespread use of
electric vehicles requires the deployment of reliable, uniform and comprehen-
sive battery charging infrastructures. Therefore, the communication between all
systems becomes an important factor for future acceptance.

2

By use of model checking techniques, the behavior of new communication
protocol standards can be validated within the speci�cation process. For this
purpose, it is required to describe the behavior in a formal description lan-
guage, which can be used by state-of-the-art model checking tools like SPIN[5].
COMPLeTe combines the possibility of an abstract behavior description repre-
sented as Uni�ed Modeling Language (UML)-Statechart models, with a formal
representation in PROMELA, which is used by SPIN as input language. Accord-
ingly, COMPLeTe facilitates the formal description process.

The remainder of this paper is structured as follows. In Section 2 an overview
of the designed toolchain is given. The applicability of the proposed toolchain
will be presented in Section 3 by modeling an exemplary communication protocol
for electric vehicle charging. Section 4 closes with a conclusion and an outlook
including future work.

2 Concept and Design of COMPLeTe

COMPLeTe realizes a COMmunication Protocol vaLidation Toolchain, by using
formal and model-based speci�cations and descriptions. The concept should take
the following requirements into account.

First, the support for creation and modi�cation of graphical models which
represent communication protocols shall be developed. Moreover, an automatic
transformation of the constructed graphical models to the input language of
a corresponding model checker is needed. This transformation builds the link
between the front-end and the back-end component in Figure 1. The back-end
component shall integrate a model checker tool. Furthermore, support for editing
the transformed models, based on the input language of the model checker is
required. In addition, properties must be de�nable, so that models can be checked
against. Second, beside the more functional requirements the toolchain shall be

Graphical
model

e.g. UML-
Statecharts

Formal
description

e.g.
PROMELA

Model
Checker

e.g. SPIN

Results produced from Model Checker; Representation of property violations

Properties derived from protocol specification

Front-end component Back-end component

Input

Input
Invariants

COMPLeTe

Extension for Conformance- and Interoperability Testing
Input

Protocol
specification
e.g. Standard

document

Syntax
Invariant 1
Invariant 2
Invariant 3

Invariant n
...

Fig. 1. Architecture of COMPLeTe

used within the Eclipse Integrated Development Environment (IDE). This will
ensure that components within the toolchain can easily be exchanged or modi�ed
(modularity and extensibility) and new components can be integrated in a simple
way. Furthermore, open-source or free available existing tools shall be used in
order to consider reusability.

3

2.1 Realization of Front-End Component

The front-end component realization of COMPLeTe utilizes a combination of
approaches described in [3] and [7] to use UML-Statecharts for modeling com-
munication protocols and SPIN as model checker for veri�cation purposes. In
[3] an automatic transformation from UML-Statecharts based on the domain-
speci�c UML-Statecharts Description Language (UDL) to PROMELA source
code is described. However, such models are only created in a textual form so
that a graphical editor has to be created. In [7] a meta-model for UDL and
PROMELA is constructed in order to de�ne a Model-to-Model (M2M) trans-
formation, which represents a homomorphic mapping between meta-model ele-
ments. Only a PROMELA meta-model has to be constructed, because an UDL
meta-model has already been created in [3].

Figure 2 shows the development process (steps D1 - D5) which is grouped
into the categories meta-modeling, transformation and modeling. These con-
form to the paradigm of Model-Driven Software Development (MDSD) and en-
sure modularity and extensibility of the toolchain. For this reason, the com-
bination of the two approaches were chosen. The generation of meta-models
for UDL and PROMELA is realized by use of Xtext and the Eclipse Modeling
Framework (EMF) giving an Extended Backus-Naur Form (EBNF) grammar for
UDL and PROMELA. The Model-to-Model (M2M) transformation from UDL to
PROMELA model instances is provided by mapping rules between elements of
the generated meta-models in the Atlas Transformation Language (ATL). There-
fore the rules described in [3] are used as a basis for the appropriate mapping.
The Model-to-Text (M2T) transformation from PROMELA model instances into
PROMELA source code is achieved by the Xpand template language. The graph-
ical editor for UDL respectively UML-Statecharts is generated via the Graphical
Modeling Framework (GMF).

Modeling Transformation

Meta-modeling

Step D1

Step D2 Step D5 Step D3

PROMELA Model Instance PROMELA Source Code

Development

Usage

Step D4

UDL Model Instance

Step U1 Step U2 Step U3
Model

Designer

PROMELA
Meta-model

UDL
Meta-model

GMF Module M2M Module M2T Module

Fig. 2. Overview of development process in front-end component of COMPLeTe

With the COMPLeTe front-end component, a model designer is able to cre-
ate abstractions of communication protocols in form of UML-Statechart mod-
els which can be transformed into PROMELA models and subsequently into
PROMELA source code. This is indicated in Figure 2 by steps U1-U3.

2.2 Realization of Back-End Component

The development of a back-end component comprises the integration of SPIN
model checker. Figure 3 summarizes the implemented functionality of COMPLeTe.
The bottom layer shows the prerequisites and basic functions for the usage of

4

SPIN. These are also partly described and supported by similar approaches
in [4] and [6]. In addition, several extensions are implemented in COMPLeTe

which build on top of these basic functions. As an example the invocation of
an interactive and interactive-random simulation can be conducted enabling
user-interaction. Furthermore, a MSC-View is included to allow visualization
of the communication �ow between PROMELA processes during simulations.
This view is complemented with a SimData-View which shows variable val-
ues and queues of the PROMELA model. For veri�cation purposes a speci�c
LTLProperty-View is built to simplify the user interface. In addition it provides
support of a so called Multi-veri�cation. Thereby, for a given PROMELA model
it can be invoked on a number of selected invariants. In case of a violation the
Multi-veri�cation is terminated.

Another extension is the Automata-View, in which the �nite state machines
of a corresponding PROMELA model are displayed by use of the Zest/DOT tool-
ing. The FSMSimulation represents a combination of the Automata-View and
a simulation. This allows to display a complete simulation-path by highlight-
ing the visited states, from the beginning up to the occurrence of the invariant
violation.

MSC-
View

SimData-
View

Automata-
ViewSpinNavigator LTLProperty-

View

SpinConsole

FSMSimulation

Basic functions

Extensions

Prerequisites

Interactive
Simulation

SyntaxCheck Verification

SpinProject
Wizard

PROMELA Model Wizard

CNI Perspective
Simulation

Spin PreferencePages

PROMELA MultiPageEditor

SPIN ExecutablesPROMELA Model LTL formula (Invariants)

Fig. 3. Functions of back-end component of COMPLeTe

3 Application of COMPLeTe in Electric Mobility Context

The applicability of COMPLeTe is presented by modeling an exemplary commu-
nication protocol for electric vehicle charging. One representative is the Smart
Charge Communication Protocol Speci�cation (SCCPS) [1], which is the prede-
cessor for the standardization process of ISO/IEC 15118 [2]. The binding process
is a self-contained part of SCCPS and therefore an ideal candidate to be applied
to COMPLeTe. In general the binding process ensures a successful setup of a
point-to-point connection between a Charge Point (CP) and an Electric Vehicle
(EV) on IP-Level. In a �rst step a simpli�ed SCCPS binding process is mod-
eled in UDL respectively as UML-Statecharts, using the front-end component
of COMPLeTe. Subsequently an automatic invocation of the translation process
takes place, which produces corresponding PROMELA source code from the
constructed UDL models. The second step uses the PROMELA source code to
process the veri�cation of the SCCPS binding. For this purpose the following
example properties are de�ned in the LTLProperty-View :

� Eventually the binding process will be completed. � bindingComplete
� The connection of EV and CP always implies the completion of the binding
process (invariant property). � (instancesConnected =⇒ bindingComplete)

5

Especially the invocation of veri�cations is a crucial point in the evaluation of
COMPLeTe's capabilities. The veri�cation for the �rst de�ned property suc-
ceeds without any errors but the second property fails. For analysis purposes, a
guided simulation is conducted. Within COMPLeTe the message �ow is visual-
ized in the MSC-View. In addition, the FSMSimulation shows the traversing of
the states, which are iteratively highlighted in the Automata-View. By analyzing
the SCCPS model using the MSC-View and the FSMSimulation, the failed ver-
i�cation results in a loss of a message during the SCCPS binding process. Thus,
it is necessary to adapt the simpli�ed UDL model in order to correct the error.

4 Conclusion and Future Work

In this paper the concept and realization of COMPLeTe was introduced, which
enables validation of communication protocols. The toolchain can be applied in
the context of electric mobility as well as in further domains of interest. The
communication protocol behavior is represented as a graphical UDL model. A
conversion into an equivalent PROMELA code is accomplished via a M2M and a
M2T transformation. For veri�cation purposes, COMPLeTe integrates the SPIN
model checker and allows simpli�ed usage by enabling mechanisms to specify
invariant properties as LTL formulas and additional analysis extensions.

For future work, the construction of a "complete" model of SCCPS as well
as the upcoming ISO/IEC 15118 [2] standard is intended, in order to validate
their related protocol behavior. Furthermore interoperability and conformance
testing capabilities of COMPLeTe shall be considered.

Acknowledgment The work in this paper was funded by the NRW Ziel 2 Program
2007-2013 (EFRE) of the European Union, the MBWSV and the MKULNV of NRW
as part of the TIE-IN project with reference number 64.65.69-EM-1022A.

References

1. Project e-Mobility: Smart Charge Communication Protocol Speci�cation
Part A & B. Tech. rep., RWE, Daimler, INSYS Microelectronics, EMSYCON (2010)

2. ISO/IEC DIS 15118, Road vehicles - Vehicle to grid Communication Interface (2012)
3. Ammann, C.: Veri�kation von UML-Statecharts unter besonderer Berücksichtigung

von Speicherverbrauch und Laufzeit des Model Checkers [Veri�cation of UML-
Statecharts with particular attention of memory usage and runtime of the model
checker]. Softwaretechnik-Trends 31(3) (2011)

4. De Vos, B., Kats, L.C.L., Pronk, C.: EpiSpin: An Eclipse Plug-in for Promela/SPIN
using Spoofax. In: Proceedings of the 18th international SPIN conference on Model
checking software. pp. 177�182. Springer-Verlag, Berlin, Heidelberg (2011)

5. Holzmann, G.J.: The model checker SPIN 23(5), 279�295 (1997)
6. Kov²e, T., Vlaovi£, B., Vreºe, A., Brezo£nik, Z.: Eclipse Plug-In for SPIN and

st2msc Tools-Tool Presentation. In: Proceedings of the 16th International SPIN
Workshop on Model Checking Software. pp. 143�147. Springer-Verlag, Berlin, Hei-
delberg (2009)

7. Mcumber, W.E., Cheng, B.H.: A general framework for formalizing UML with for-
mal languages. In: Software Engineering, 2001. ICSE 2001. Proceedings of the 23rd
International Conference on. pp. 433�442 (2001)

6

A Oral Tool Presentation

A.1 Structure of the Presentation

This section gives a structure of the demonstration of COMPLeTe and is divided into
the following three parts.

1. Motivation for designing COMPLeTe

� COMPLeTe in the electric mobility context
� Protocol validation including veri�cation (SPIN/PROMELA)

and testing
2. Detailed development of COMPLeTe:

� Front-end: Model design and transformation
� Back-end: SPIN integration and extensions

3. Case study: Application of SCCPS binding process in COMPLeTe

� Description of SCCPS and its binding process
� Front-end component: Presenting UDL model and invoke automatic transfor-

mation into PROMELA source code
� Back-end component: Demonstrate several functions of back-end component

→ PromelaEditor, MSC-View, SimData-View, FSMSimulation, Automata-View,

LTLProperty-View, SyntaxCheck, Various simulation runs (random, guided, in-
teractive simulation runs), Veri�cation and Multi-Veri�cation runs, De�nition
of invariants with regard to the generated PROMELA source code of the SC-
CPS binding process and at last show analysis capabilities of COMPLeTe by
explaining the failed veri�cation

A.2 Front-end: Model Design and Transformation

In the meta-modeling steps D1 and D2 (see Figure 2) appropriate meta-models on basis
of an EBNF grammar, Xtext and EMF for both UDL and PROMELA are generated.
The Listing 1.1 o�ers an excerpt of UDL grammar rules for creation of a corresponding
UDL meta-model. Listing 1.2 shows an excerpt of the PROMELA grammar represent-
ing a rule for a PROMELA proctype.

1 Model:
2 (imports += UDLInclude)*
3 (variable += UDLData)*
4 (behaviour=UDLBehaviour)? ;
5

6 //State Rules
7 UDLState:
8 UDLSimpleState |
9 UDLCompositeState |

10 UDLFinalState |
11 UDLInitialState ;
12

13 UDLSimpleState:
14 "simplestate" name=ID
15 "{"
16 (entry=UDLEntryAction)?
17 (exit=UDLExitAction)?
18 (out+= UDLTransition)+
19 "}";

Listing 1.1. Excerpt of UDL grammar

7

1 spec: // PARSER RULES
2 (specname=ID)?
3 (modules += module +);
4

5 module:
6 proctype /* proctype declaration */
7 | init /* init process - max 1 per model */
8 | never /* never claim - max 1 per model */
9 | trace /* event trace - max 1 per model */

10 | utype /* user defined types */
11 | mtype /* mtype declaration */
12 | decl_lst /* global vars , chans */
13 | inline
14 | preprocess ;
15

16 proctype:
17 (active=active)?
18 PROCTYPELABEL name=ID PARENOPEN
19 (dlist=decl_lst)?
20 PARENCLOSE
21 (priority=priority)?
22 (enabler=enabler)?
23 BLOCKBEGIN
24 seq=sequence
25 BLOCKEND
26 (SEMICOLON)* ;

Listing 1.2. Excerpt of PROMELA grammar

Step D3 indicates the M2M transformation from UDL to PROMELA model instances
via ATL. Listing 1.3 gives an exemplary M2M mapping rule in ATL describing the
translation of UDL Enumerations into PROMELA mtypes. The M2T transformation
from PROMELA model instances to PROMELA source code via Xpand templates is
conducted in step D4. Listing 1.4 o�ers an excerpt of a Xpand template rule which
shows the transformation of a PROMELA proctype element into its corresponding code
fragment.

1 -- @path UDLMM =/com.statechartverification/src -gen/com/statechartverification/UDL.ecore
2 -- @path PMLMM =/org.xtext.draft.promela/src -gen/org/xtext/draft/promela/PromelaDSL.ecore
3

4 module UDL2PML;
5 create OUT: PMLMM from IN: UDLMM;
6

7 -- Transform UDLEnumDeclare into Promela mtype declaration
8 rule UDLEnumDeclare2Promela {
9 from

10 udl_enum_declare_in: UDLMM!UDLEnumDeclare
11 to
12 pml_out: PMLMM!mtype (
13 name <- udl_enum_declare_in.getFirstEnumElementName (),
14 name <- udl_enum_declare_in.next
15 -> collect(e |
16 udl_enum_declare_in.getEnumDeclareNamePrefix () + e.name)
17)
18 }

Listing 1.3. Excerpt of ATL transformation �le

1 �IMPORT promelaDSL�
2

3 �DEFINE generateSpec FOR spec�
4 �IF this.specname != null�
5 �FILE this.specname+".promela"�
6 �EXPAND generateModules FOR this -�
7 �ENDFILE�
8 �ELSE�
9 �FILE "Test.promela"�

10 �EXPAND generateModules FOR this�
11 �ENDFILE�
12 �ENDIF�
13 �ENDDEFINE�
14

15 �DEFINE generateModule FOR proctype�
16 // Proctype ModuleDeclaration
17 �IF this.active != null�
18 �EXPAND generateActive FOR this.active�
19 �ENDIF -�proctype �this.name -�(
20 �IF this.dlist != null�
21 �EXPAND generateDeclarationList FOR this.dlist -�
22 �ENDIF�)
23 �IF this.priority != null�
24 �EXPAND generatePriority FOR this.priority�
25 �ENDIF -�
26 �IF this.enabler != null�
27 �EXPAND generateEnabler FOR this.enabler�
28 �ENDIF -� {
29 �IF this.seq != null�
30 �EXPAND generateSequence FOR this.seq�
31 �ENDIF�
32 }
33 �ENDDEFINE�

Listing 1.4. Excerpt of Xpand template �le representing the M2T transformation

8

Step D5 describes the development of a graphical UDL Editor in Eclipse via GMF.
Figure 4 shows the constructed graphical UDL Editor and the corresponding textual
UDL Editor from [3].

UDL Xtext Editor UDL GMF Editor

Fig. 4. Comparison textual UDL Editor and generated graphical UDL GMF Editor

A.3 Back-end: SPIN Integration and Extensions

The result of SPIN integration in COMPLeTe as Eclipse Plugin is shown in Figure 5.
With regard to simulation and veri�cation capabilities Figure 6 show the MSC-View,

SimData-View and Automata-View.

SpinNavigator PROMELA Editor

LTLProperty‐View
Automata‐View

SimData‐View SpinConsole MSC‐View

Fig. 5. Overview of the Spin Eclipse Plugin within COMPLeTe

9

(a) SimData-View and MSC-View (b) Automata-View with FSMSim-
ulation

Fig. 6. Focus on SimData-View, MSC-View and Automata-View with FSMSimulation

A.4 Case Study: Application of SCCPS Binding Process in

COMPLeTe

The applicability of COMPLeTe is demonstrated on the SCCSP communication proto-
col for electric vehicle charging. The sequence of the SCCPS binding process between
a Charge Point and an EV is explained in Figure 7. At �rst the front-end component
is used in order to model the SCCPS binding process and to transform the models into
executable PROMELA source code. Afterwards the source code is applied to SPIN
model checker via the back-end component of COMPLeTe.

EV1

CP-1-1

CP-1-2

IP via DCHP

CPD-Request

CPD-Response

CSCC 1

SNB

DHCP

CPD

Electric Vehicle

CP-2-1

CP-2-2

CSCC 2

SNB

DHCP

CPD

…

CP: Charge Point
CPD: Charge Point Discovery
CSCC: Charge Spot Communication Controller
DHCP: Dynamic Host Configuration Protocol
EV: Electric Vehicle
IP: Internet Protocol
SNB: Silent Neighborhood Broadcast

3
2

4

5

6

SNB-Start
SNB-Stop

CP-n-1

CP-n-p

CSCC n

SNB

DHCP

CPD …

Shared Communication Channel e.g.
Power Line Communications

1

Connection of an EV to a
charge point through a
charge cord

Fig. 7. SCCPS binding process

10

Front-end Component: Presenting UDL Model and invoke Automatic
Transformation into PROMELA Source Code On basis of the described
SCCPS speci�cation the front-end component of COMPLeTe is used to model the
SCCPS binding process resulting in UDL models for the Charge Point and the EV.
The EV model is illustrated in Figure 8. Afterwards an automatic M2M and M2T
transformation takes place. Listing 1.5 shows an excerpt of the generated PROMELA
source code for the SCCPS binding process.

Back-end Component: Demonstrate Several Functions of Back-end
Component The generated PROMELA source code of the SCCPS binding process
is taken as input for SPIN. Therefore the invocation of a Syntax Check as well as
several simulation runs are presented. The veri�cation of the SCCPS binding process
in PROMELA is demonstrated by use of de�ned LTL formulas from Section 3. For
illustration purposes Figure 8 depicts the statemachine of the EV in the Automata-

View.
The veri�cation on the �rst de�ned property succeeds without any errors but the

veri�cation on the second property fails. Figure 9 shows an contrasting comparison of
the generated SPIN outputs. An example of the FSMSimulation for the Charge Point
and the EV is shown in Figure 10.

(a) UDL-Statechart of EV (b) EV statemachine in Automata-View

Fig. 8. EV models

11

(Spin Version 6.1.0 -- 4 May 2011)
+ Partial Order Reduction

Full statespace search for:
never claim +

(ltl_invariant_eventually_bindingComplete)
assertion violations - (disabled by -A flag)
cycle checks - (disabled by -DSAFETY)
invalid end states - (disabled by -E flag)

State-vector 72 byte, depth reached 77, errors: 0
 791 states, stored
 1038 states, matched
 1829 transitions (= stored+matched)
 4 atomic steps
hash conflicts: 0 (resolved)

 2.539 memory usage (Mbyte)

pan: elapsed time 0 seconds

pan:1: end state in claim reached (at depth 45)
pan: wrote udl_Sccps_Binding_ver5_modified.pml.trail

(Spin Version 6.1.0 -- 4 May 2011)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never claim +

(ltl_invariant_instancesConnected_then_bindingComplete)
assertion violations - (disabled by -A flag)
cycle checks - (disabled by -DSAFETY)
invalid end states - (disabled by -E flag)

State-vector 72 byte, depth reached 45, errors: 1
 158 states, stored
 94 states, matched
 252 transitions (= stored+matched)
 2 atomic steps
hash conflicts: 0 (resolved)

 2.539 memory usage (Mbyte)

pan: elapsed time 0 seconds

Invariants

Number of errors

State space size

Fig. 9. Comparison of SPIN output for a successful and failed veri�cation run

(a) CP statemachine (b) EV statemachine

Fig. 10. Paths of EV and Charge Point statemachines for the error case

12

1 //Mtype ModuleDeclaration
2 mtype = {ChargePoint_plug_detect_signal_cp , ChargePoint_timout_plc_guard_timer ,

ChargePoint_snb_start_request_received , ChargePoint_control_pilot_stateB , ChargePoint_binding_timout ,
ChargePoint_valid_cpd_request_received , ChargePoint_snb_stop_request_received ,
ChargePoint_timout_wait_binding_timer , ChargePoint_timout , ChargePoint_pilot_off_timout ,
Pev_plug_detect_signal_pev , Pev_control_pilot_switched_on_stateA , Pev_control_pilot_five_percent ,
Pev_dhcp_fails , Pev_ip_address_assigned , Pev_cpd_response_timout , Pev_cpd_response_ok ,
Environment_env_signal }

3 // Decl_lst ModuleDeclaration
4 bool oldSessionParametersAvailable;
5 bool moreThanOneRetry;
6 bool binding_complete_cp;
7 bool binding_complete_pev;
8 bool connected_cp;
9 bool connected_pev;

10 chan ChargePoint_queue [1] = [2] of {mtype , bool};
11 chan Pev_queue [1] = [2] of {mtype , bool};
12 chan Environment_queue [1] = [2] of {mtype , bool};
13 // MacroDeclaration
14 #define ChargePoint_queue_access(x)(x-1)
15 // MacroDeclaration
16 #define Pev_queue_access(x)(x-2)
17 // MacroDeclaration
18 #define Environment_queue_access(x)(x-3)
19

20 // Proctype ModuleDeclaration
21 proctype ChargePoint (){
22 goto start;
23 //STMNT Labeled Statement
24 start:
25 if
26 ::
27 empty(ChargePoint_queue[ChargePoint_queue_access(_pid)]);
28 goto disconnected
29 ::
30 ChargePoint_queue[ChargePoint_queue_access(_pid)]? ChargePoint_plug_detect_signal_cp , _ ;
31 goto start
32 ::
33 ChargePoint_queue[ChargePoint_queue_access(_pid)]? ChargePoint_timout_plc_guard_timer , _ ;
34 goto start
35 ::
36 ChargePoint_queue[ChargePoint_queue_access(_pid)]? ChargePoint_snb_start_request_received , _ ;
37 goto start
38 ::
39 ChargePoint_queue[ChargePoint_queue_access(_pid)]? ChargePoint_control_pilot_stateB , _ ;
40 goto start
41 ::
42 ChargePoint_queue[ChargePoint_queue_access(_pid)]? ChargePoint_binding_timout , _ ;
43 goto start
44 ::
45 ChargePoint_queue[ChargePoint_queue_access(_pid)]? ChargePoint_valid_cpd_request_received , _ ;
46 goto start
47 ::
48 ChargePoint_queue[ChargePoint_queue_access(_pid)]? ChargePoint_snb_stop_request_received , _ ;
49 goto start
50 ::
51 ChargePoint_queue[ChargePoint_queue_access(_pid)]? ChargePoint_timout_wait_binding_timer , _ ;
52 goto start
53 ::
54 ChargePoint_queue[ChargePoint_queue_access(_pid)]? ChargePoint_timout , _ ;
55 goto start
56 ::
57 ChargePoint_queue[ChargePoint_queue_access(_pid)]? ChargePoint_pilot_off_timout , _ ;
58 goto start
59 fi;
60 }
61

62 // Proctype ModuleDeclaration
63 proctype Pev(){
64 goto start;
65 //STMNT Labeled Statement
66 start:
67 if
68 ::
69 empty(Pev_queue[Pev_queue_access(_pid)]) ;
70 goto disconnected
71 ::
72 Pev_queue[Pev_queue_access(_pid)]? Pev_plug_detect_signal_pev , _ ;
73 goto start
74 ::
75 Pev_queue[Pev_queue_access(_pid)]? Pev_control_pilot_switched_on_stateA , _ ;
76 goto start
77 ::
78 Pev_queue[Pev_queue_access(_pid)]? Pev_control_pilot_five_percent , _ ;
79 goto start
80 ::
81 Pev_queue[Pev_queue_access(_pid)]? Pev_dhcp_fails , _ ;
82 goto start
83 ::
84 Pev_queue[Pev_queue_access(_pid)]? Pev_ip_address_assigned , _ ;
85 goto start
86 ::
87 Pev_queue[Pev_queue_access(_pid)]? Pev_cpd_response_timout , _ ;
88 goto start
89 ::
90 Pev_queue[Pev_queue_access(_pid)]? Pev_cpd_response_ok , _ ;
91 goto start
92 fi;
93 }

Listing 1.5. Generated PROMELA source code of the SCCPS binding process

