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Abstract. Explicit model checking algorithms explore the full state
space of a system. We have gathered a large collection of state spaces and
performed an extensive study of their structural properties. The results
show that state spaces have several typical properties and that they dif-
fer signi�cantly from both random graphs and regular graphs. We point
out how to exploit these typical properties in practical model checking
algorithms.

1 Introduction

Model checking is an automatic method for formal veri�cation of systems. In this
paper we focus on explicit model checking which is the state-of-the-art approach
to veri�cation of asynchronous models (particularly protocols). This approach
explicitly builds the full state space of the model (also called Kripke structure,
occurrence or reachability graph). The state space represents all (reachable)
states of the system and transitions among them. The state space is used to check
speci�cations expressed in a suitable temporal logic. The main obstacle of model
checking is state explosion | the size of the state space grows exponentially
with the size of the model description. Hence, model checking has to deal with
extremely large graphs.

The classical model for large unstructured graphs is the random graph model
of Erd}os and Renyi [11]. In this model every pair of nodes is connected with an
edge with a given probability p. Large graphs are studied in many diverse areas,
such as social sciences (networks of acquaintances), biology (food webs, protein
interaction networks), geography (river networks), and computer science (Inter-
net traÆc, world wide web). Recent extensive studies of these graphs revealed
that they share many common structural properties and that these properties
di�er signi�cantly from properties of random graphs. This observation led to the
development of more accurate models for large graphs occurring in practice (e.g.,
`small worlds' and `scale-free networks' models) and to a better understanding
of processes in these networks. For example, it improved the understanding of
the spread of diseases and vulnerability of computer networks to attacks; see
Barabasi [2] and Watts [32] for a high-level overview of this research and further
references.
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In model checking, we usually treat state spaces as arbitrary graphs. However,
since state spaces are generated from short descriptions, it is clear that they have
some special properties. This line of thought leads to the following questions:

1. What do state spaces have in common? What are their typical properties?

2. Can state spaces be modeled by random graphs or by some class of regular
graphs in a satisfactory manner?

3. Can we exploit these typical properties to traverse or model check a state
space more eÆciently? Or at least to better analyze complexity of algo-
rithms? Can some information about a state space be of any use to the user
or to the developer of a model checker?

4. Is there any signi�cant di�erence between toy academical models and real
life case studies? Are state spaces similar to such an extent that it does not
matter which models we choose for benchmarking our algorithms?

Methodology The basic approach is the following: we measure many graph
parameters of a large collection of state spaces and try to draw answers from the
results. We restrict ourselves to asynchronous models, because these are typically
investigated by explicit model checkers. We consider neither labels on edges nor
atomic propositions in states and thus we focus only on structural properties of
graphs. For generating state spaces we have used four well-known model checkers
(SPIN [22], CADP [14], Murphi [10], �CR [16]L) and two experimental model
checkers. In all, we have used 55 di�erent models including many large case
studies (see Appendix A). In this report we summarize our observations, point
out possible applications, and try to outline some answers. The project's web
page [1] contains more details about investigated state spaces and the way in
which they were generated. Moreover, interested reader can �nd on the web page
all state spaces in a simple textual format together with a detailed report for
each of them, summary tables for each measured parameter, and more summary
statistics and �gures.

Related work Many authors point out the importance of the study of models
occurring in practice (e.g., [13]). But to the best of our knowledge, there has
been no systematic work in this direction. In many articles one can �nd remarks
and observation concerning typical values of individual parameters, e.g., diame-
ter [5, 28], back level edges [31, 3], degree, stack depth [20]. Some authors make
implicit assumptions about the structure of state spaces [7, 23] or claim that the
usefulness of their approach is based on characteristics of state spaces without
actually identifying these characteristics [30]. Groote and van Ham [17] try to
visualize large state spaces with the goal of providing the user with better insight
into a model.

Organization of the paper Section 2 describes studied parameters, results of
measurements, their analysis, and possible application. Section 3 compares dif-
ferent classes of state spaces. An impatient reader can jump directly to Section 4
where our observations are summarized and where we provide some answers. Fi-
nally, the last section outlines several new questions for future research.



2 Parameters of State Spaces

A state space is a relational structure which represents the behavior of a system
(program, protocol, chip, . . . ). It represents all possible states of the system and
transitions between them. Thus we can view a state space as a simple directed
graph1 G = (V;E; v0) with a set of vertices V , a set of directed edges E � V �V ,
and a distinguished initial vertex v0. Moreover, we suppose that all vertices are
reachable from the initial one. In the following we use graph when talking about
generic notions and state space when talking about notions which are speci�c to
state spaces of asynchronous models.

2.1 Degrees

Out-degree (in-degree) of a vertex is the number of edges leading from (to) this
vertex. Average degree is just jEj=jV j. The basic observation is that the average
degree is very small { typically around 3 (Fig. 1). Maximal in-(out-)degree is
often several times higher than the average degree but with respect to the size of
the state space it is small as well. Hence state spaces do not contain any `hubs'.
In this respect state spaces are similar to random graphs, which have Poisson
distribution of degrees. On the other hand, scale free networks discussed in the
introduction are characterized by the power-law distribution of degrees and the
existence of hubs is a typical feature of such networks [2].

The fact that state spaces are sparse is not surprising and was observed long
ago2. It can be quite easily explained: the degree corresponds to a `branching
factor' of a state; the branching is due to parallel components of the model
and due to the inner nondeterminism of components; and both of these are
usually very small. In fact, it seems reasonable to claim that in practice jEj 2
O(jV j). Nevertheless, the sparseness is usually not taken into account either
in the construction of model checking algorithms or in the analysis of their
complexity.

In many cases the average degree is even smaller than two, since there are
many vertices with degree one. This observation can be used for saving some
memory during the state space traversal [4].

2.2 Strongly Connected Components

A strongly connected component (SCC) of G is a maximal set of states C � V
such that for each u; v 2 C, the vertex v is reachable from u and vice versa. The
quotient graph of G is a graph (W;H) such that W is the set of the SCCs of G
and (C1; C2) 2 H if and only if C1 6= C2 and there exist r 2 C1; s 2 C2 such that
(r; s) 2 E. The SCC quotient height of the graph G is the length of the longest

1 We consider state spaces as simple graphs, i.e., we do not consider self-loops and
multiedges. Although these may be signi�cant for model checking temporal logics,
they are not that important for the structural properties we consider here.

2 Holzman [20] gives an estimate 2 for average degree.
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Fig. 1. Degree statistics. Values are displayed with the boxplot method. The upper
and lower lines are maximum and minimum values, the middle line is a median, the
other two are quartiles. Circles mark outliers. Note the logarithmic y-axis.

path in the quotient graph of G. A component is trivial if it contains only one
vertex. Finally, a component is terminal if it has no successor in the quotient
graph.

For state spaces, the height of the SCC quotient graph is small. In all but one
case it is smaller than 200, in 70% of cases it is smaller than 50. The structure
of quotient graph has one of the following types:

{ there is only one SCC component (18% of cases),
{ there are only trivial components (the graph is acyclic) (14% of cases),
{ there is one large component which contains most states; the largest com-
ponent is usually terminal and often it is even the only terminal.

The number of SCCs can be very high, but this is mainly due to trivial com-
ponents. The conclusion is that most states lie either in the largest component
or in some trivial component and that the largest component tends to be `at the
bottom' of the SCC quotient graph.

SCCs play an important role in many model checking algorithms and the
above stated observation can be quite signi�cant with respect to practical ap-
plicability of some approaches, for example:

{ The runtime of symbolic SCC decomposition algorithms [12, 25] depends
very much on the structure of the SCC quotient graph. The thorough anal-
ysis [27] shows that the complexity of these algorithms depends on the SCC



quotient height, the number of SCC, and the number of nontrivial SCC.
We note that symbolic algorithms are usually used for synchronous models
(whereas our state spaces correspond to asynchronous ones) and thus our
observations are not directly applicable here. However, the distributed ex-
plicit cycle detection algorithm [6] has complexity proportional to the SCC
quotient height as well.

{ The existence of one large component shows the limited applicability of
some algorithms. The `sweep line' method [8] of the state space exploration
saves memory by deleting states which are in a fully explored SCC. The
distributed cycle detection based on partitioning the state space with respect
to SCCs [23] assigns to each computer in a network one or more SCCs.

{ On the other hand, some algorithms could be simpler for state spaces which
have one big component. For example during random walk there is a little
danger that the algorithm will stuck in some small component.

2.3 Properties of Breadth-First and Depth-First Search

The basic model checking procedure is a reachability analysis { searching a state
space for an error state. Here we consider two basic methods for state space
traversal and their properties.

Breadth-First Search (BFS) Let us consider the BFS from the initial ver-
tex v0. A level of the BFS with an index k is a set of states with distance from
v0 equal to k. The BFS height is the largest index of a non-empty level. An edge
(u; v) is a back level edge if v belongs to a level with a lower or the same index
as u. The length of a back level edge is the di�erence between the indices of the
two levels.

{ The BFS height is small (Fig. 2). There is no clear correlation between the
state space size and the BFS height. It depends rather on the type of the
model.

{ The sizes of levels follow a typical pattern. If we plot the number of states
on a level against the index of a level we get a BFS level graph3. See Fig. 3
for several such graphs. Usually this graph has a `bell-like' shape.

{ The relative number of back level edges is (rather uniformly) distributed
between 0% and 50%. Most edges are local | they connect two close levels
(as already observed by Tronci et al. [31]). However, for most models there
exist some long back level edges. For exact results and statistics see [1].

{ For most systems we observe that there are only a few typical lengths of
back level edges and that most back level edges have these lengths. This is
probably caused by the fact that back level edges correspond to jumps in
the model. There are typically only a reasonably small number of di�erent
jumps in a model.

3 Note that the word `graph' is overloaded here. In this context we mean graph in the
functional sense.
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Fig. 2. The BFS height plotted against the size of the state space. Note the logarithmic
x-axis. Three examples have height larger than 300.

{ Tronci et al. [31, 24] exploit locality of edges for state space caching. Their
technique stores only recently visited states. The eÆciency (and termination)
of their algorithm rely on the fact that most edges are local and hence target
states of edges are usually in the cache. In a similar way, one could exploit
typical lengths of back level edges or try to estimate the maximal length of
a back level edge and use this estimate as a key for removing states from the
cache.

{ The algorithm for distributed cycle detection by Barnat et al. [3] has com-
plexity proportional to the number of back level edges.

{ The typical shape of the BFS level graph can be exploited for a prediction
of the size of a state space. Particularly, when a model checker runs out of
memory it may be useful to see the BFS level graph | it can help the user
to decide, whether it will be suÆcient just to use a more powerful computer
(or a distributed computation on several computers) or whether the model is
hopelessly big and it is necessary to use some reduction and/or abstraction.
This is easy to implement (and add to existing model checkers) and in our
experience it can be very useful to the user.

Depth-First Search (DFS) Next we consider the depth-�rst search from the
initial vertex. The behavior of DFS (but not the completeness) depends on the
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Fig. 3. BFS level graphs. For simple models the curve is really smooth and bell-like.
For more complex models it can be a bit ragged. The last two graphs show that there
are exceptions which have more `peaks' (but these are rare exceptions).



order in which successors of each vertex are visited. Therefore we have considered
several runs of DFS with di�erent orderings of successors.

If we plot the size of the stack during DFS we get a stack graph. Fig. 4 shows
several stack graphs (for more graphs see [1]). The interesting observation is
that the shape of the graph does not depend much on the ordering of successors.
The stack graph changes a bit of course, but the overall appearance remains
the same. Moreover, each state space has its own typical graph. In contrast, all
random graphs have rather the same, smooth stack graph.

When we count the length of cycles encountered during DFS we �nd out
that there are several typical lengths of cycles which occur very often; after the
observation of the typical lengths of back level edges this does not come as a
great surprise.

These observations point out interesting structural properties of state spaces
(and their di�erences from random graphs) but do not seem to have many direct
applications. The only one is the stack cycling technique [21] which exploits the
fact that the size of the stack does not change too quickly and stores part of the
stack on the magnetic disc. Stack graphs could provide better insight into how
to manage this process.
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Fig. 4. Stack graphs. The �rst one is the stack graph of a very simple model. Stack
graphs of random graphs are similar to this one. The other three stack graphs corre-
spond to more complex models.



Queue and Stack Size For implementations of the breadth- and depth-�rst
search one uses queue and stack data structures. These data structures are in
most model checkers treated di�erently from a set of already visited states. This
set (usually implemented as a hash table) is considered to be the main memory
consumer. Therefore its size is reduced using sophisticated techniques: states are
compressed with lossless compression [19] or bit-state hashing [18], stored on
magnetic disc [29], or only some states are stored [4, 15]. On the other hand, the
whole queue/stack is typically kept in memory without any compression. Our
measurements show that the sizes of these structures are often as much as 10% of
the size of a state space; see Fig. 5 for results and comparison of queue and stack
sizes. Thus it may happen that the applicability of a model checker becomes
limited by the size of a queue/stack data structure. Therefore it is important
to pay attention to these structures when engineering a model checker. We note
that this is already done is some model checkers { SPIN can store part of a
stack on disc [21], UPPAAL stores all states in the hash table and maintains
only references in a queue/stack [9].
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the state space size whereas the relative size of a stack can go up to 90% of the state
space size.



2.4 Distances

The diameter of a graph is the length of the largest shortest path between two
vertices. The girth of a graph is the length of the shortest cycle. Since diameter
and girth are expensive to compute4 we can determine them only for small state
spaces.

However, experiments for small graphs reveal that we can compute good
estimates of these parameters with the use of the breadth- and depth-�rst search.
The BFS height can be used to estimate the diameter. For most state spaces
the diameter is smaller than 1.5 times the BFS height. Note that for general
graphs the diameter can be much larger than the BFS height. DFS can be used
to estimate the girth { it is not guaranteed to �nd the shortest cycle but our
experience shows that in practice it does.

It is a `common belief' (only partially supported in some papers) that the
diameter is small. Our experiments con�rm this belief. In most cases the diameter
is smaller than 200, often much smaller5. The girth is in most cases smaller
than 8.

The fact that the diameter is small is practically very important. Several algo-
rithms (e.g., [28, 12, 25]) and the bounded model checking approach [5] directly
exploit this fact. Moreover, the fact that the diameter is small suggests that
many of the very long counterexamples (as produced by some model checkers)
are caused by a poor search and not by the inherent complexity of the bug.

2.5 Local Structure

As the next step we try to analyze the local structure of state spaces. In order
to do so, we employ some ideas from the analysis of social networks. A typical
characteristics of social networks is clustering | two friends of one person are
friends together with much higher probability than two randomly picked persons.
Thus vertices have a tendency to form clusters. This is a signi�cant feature which
distinguishes social networks from random graphs.

In state spaces we can expect some form of clustering as well | two successors
of a state are more probable to have some close common successor than two
randomly picked states. Speci�cally, state spaces are well-known to contain many
`diamonds'. We try to formalize these ideas and provide some experimental base
for them.

{ A diamond rooted at v1 is a quadruple (v1; v2; v3; v4) such that f(v1; v2),
(v1; v3); (v2; v4); (v3; v4)g � E.

{ The k-neighborhood of v is the set of vertices with distance from v smaller
or equal to k.

4 In the context of large state spaces even quadratic algorithms are expensive.
5 Diameters of state spaces are very small with respect to their size and to the theo-
retical worst case. But compared to random graphs or `small world' networks it is
still rather large (the diameter of these graphs is proportional to the logarithm of
their size).



{ The k-clustering coeÆcient of a vertex v is the ratio of the number of edges
to the number of vertices in the k-neighborhood (not counting the v itself). If
the clustering coeÆcient is equal to 1, no vertex in the neighborhood has two
incoming edges within this neighborhood. A higher coeÆcient implies that
there are several paths to some vertices within the neighborhood. Random
graphs have clustering coeÆcients close to 1.

The measurements con�rm that the local structure of state spaces signi�-
cantly di�er from random graphs (see [1] for more details):

{ The size of neighborhood grows much more slowly for state spaces than for
random graphs (Fig. 6). This is because the clustering coeÆcient of state
spaces increases (rather linearly) with average degree.

{ Diamonds display an interesting dependence on the average degree. For a
state space with average degree less than two there are a small number of
diamonds. For state spaces with average degree larger than two there are a
lot of them.

{ Although girth is small for all state spaces, short cycles are abundant only
in some graphs | only one third of state spaces have many short cycles.

{ The local structure is similar in all parts of a state space.
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The bottom line of these observations is that the local structure depends
very much on the average degree. If the average degree is small then the local
structure of the state space is tree-like (without diamonds and short cycles, with
many states of degree one). Whereas with the high average degree it has many
diamonds and high clustering coeÆcient. The rather surprising consequence is
that the local structure depends on the model only in as much as the average
degree does.

This is just the �rst step in understanding the local structure of state spaces,
so it is diÆcult to give any speci�c applications. Some of these properties could
be exploited by traversal methods which do not store all states [4]. Since the
size of a neighborhood grows rather slowly, it might be feasible to do some kind
of `look-ahead' during the exploration of a state space (this is not the case for
arbitrary graphs).

3 Comparisons

3.1 Speci�cation Languages and Tools

Most parameters seem to be independent of the speci�cation language used
for modeling and the tool used for generating a state space. In fact, the same
protocols modeled in di�erent languages yield very similar state spaces. This can
be seen as an encouraging result since it says that it is fair to do experimental
work with just one model checker.

We have noticed some small di�erences. For example, Promela models often
have sparser state spaces. But because we do not have the same set of examples
modeled in all speci�cation languages, we cannot fully support these observations
at the moment.

3.2 Toy versus Industrial Examples

We have manually classi�ed examples into three categories: toy (16), simple (25),
and complex (14) (see Appendix A). The major criterion for the classi�cation
was the length of the model description. The comparison shows di�erences in
most parameters. Here we only briey summarize the main trends; more detailed
�gures can be found on the project's web page [1]:

{ The average degree is smaller for state spaces of complex models. This is
important because the average degree has a strong correlation with the local
structure of the state space (see Section 2.5).

{ The maximal size of the stack during DFS is signi�cantly shorter for complex
models (Fig. 7).

{ The BFS height and the diameter are larger for state spaces of complex
models.

{ The number of back level edges is smaller for state spaces of complex models
but they have longer back level edges.
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{ Global structure is more regular for state spaces of toy models. This is
demonstrated by BFS level graphs and stack graphs which are much smoother
for state spaces of toy models.

These results stress the importance of having complex case studies in model
checking benchmarks. Particularly experiments comparing explicit and symbolic
methods are often done on toy examples. Since toy examples have more regular
state spaces, they can be more easily represented symbolically.

3.3 Similar Models

We also compared the state spaces of similar models | parametrized models
with di�erent values, abstracted models, models with small syntactic change.
Moreover, we have compared full state spaces and state spaces reduced with
partial order reduction and strong bisimulation.

The resulting state spaces are very similar | most parameters are (nearly)
the same or are appropriately scaled with respect to the change in the size
of the state space. The exception is that a small syntactic change in a model
can sometimes produce a big change of the state space. This occurs mainly
in cases where the small change corresponds to some error (or correction) in
the model. This suggests that listing state space's parameters could be useful
for users during modeling | the signi�cant change of parameters between two



consecutive versions of a model can serve as a warning of a potential error (this
can be even done automatically).

4 Conclusions: Answers

Although we have done our measurements on a restricted sample of state spaces,
we believe that it is possible to draw general conclusions from the results. We
used several di�erent model checkers and models were written by several dif-
ferent users. Results of measurements are consistent | there are no signi�cant
exceptions from reported observations.

What are typical properties of state spaces?

State spaces are usually sparse, without hubs, with one large SCC, with small
diameter and small SCC quotient height, with many diamond-like structures.

These properties can not be explained theoretically. It is not diÆcult to
construct arti�cial models without these features. This means that observed
properties of state spaces are not the result of the way state spaces are generated
nor of some features of speci�cation languages but rather of the way humans
design/model systems.

Can state spaces be modeled by random graphs or by some class of regular graphs?

State spaces are neither random nor regular. They have some internal struc-
ture, but this structure is not strictly regular. This is illustrated by many of our
observations:

{ local clustering (including diamonds) is completely absent in random graphs
{ stack graphs and BFS level graphs are quite structured and ragged, while
for both regular and random graphs they are much smoother

{ typical values of lengths of back level edges and cycles
{ the diameter is larger than for random graphs but small compared to the size
of the state space (de�nitely much smaller than for common regular graphs)

Can we exploit typical properties during model checking?

Typical properties can be useful in many di�erent ways. Throughout the pa-
per we provide several pointers to work that exploits typical values of parameters
and we give some more suggestions about how to exploit them.

Values of parameters are not very useful for non-expert users who are not
usually aware of what a state space is, but they may be useful for advanced
users of the model checker. Properties of the underlying state space can provide
users with feedback on their modeling and sanity checks | users can confront
obtained parameters with their intuition (particularly useful for SCCs) and com-
pare parameters of similar models, e.g., original and modi�ed model.

The parameter values can be de�nitively useful for developers of tools, par-
ticularly for researchers developing new algorithms | they can help to explain
the behavior of new algorithms.



Are there any di�erences between toy and complex models?

Although state spaces share some properties in common, some can signi�-
cantly di�er. Behavior of some algorithms can be very dependent on the structure
of the state space. We can illustrate it on an experiment with random walk. We
have performed series of very simple experiments with random walks on gener-
ated state spaces. For some graphs one can quickly cover 90% of the state space
by random walk, whereas for other we were not able to get beyond 3%. So it
is really important to test algorithms on a large number of models before one
draws any conclusions.

Particularly, there is a signi�cant di�erence between state spaces correspond-
ing to complex and toy models. Moreover, we have pointed out that state spaces
of similar models are very similar. We conclude that it is not adequate to per-
form experiments just on few instancies of some toy example6 and we support
calls for a robust set of benchmark examples for model checking [13].

5 Future Work: New Questions

{ What more can we say about state spaces when we consider atomic proposi-
tions in states (respectively good/bad states)? What is the typical distribu-
tion of good/bad states? How many are there? Where are they? What are
the properties of product graphs used in LTL model checking (product with
B�uchi automaton) and branching time logic model checking (game graphs)?
Do they have the same properties or are there any signi�cant di�erences?

{ Can we estimate structural properties of a state space from static analysis
of its model?

{ In this work we consider mainly `static' properties of state spaces. We have
briey mentioned only the breadth- and depth-�rst search, but there are
many other possible searches and processes over state spaces (particularly
random walk and partial searches). What is the `dynamics' of state spaces?

{ What is the e�ect of eÆcient modeling [26] on the resulting state space?
{ State spaces are quite structured and regular. But how can we capture this
regularity exactly? How can we employ this regularity during model check-
ing? Can the understanding of the local structure help us to devise symbolic
methods for asynchronous models?
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A Models

Tool Model Type Size
Murphi Peterson's mutual exclusion algorithm toy 882
Murphi Parallel sorting toy 3,000
Murphi Hardware arbiter simple 1,778
Murphi Distributed quering lock simple 7,597
Murphi Needham-Schroeder protocol complex 980
Murphi Dash protocol complex 1,694
Murphi Cache coherence protocol complex 15,703
Murphi Scalable coherent interface (SCI) complex 38,034



Tool Model Type Size
SPIN Peterson protocol for 3 processes toy 30,432
SPIN Dining philosophers toy 54,049
SPIN Concurrent sorting toy 107,728
SPIN Alternating bit protocol simple 442
SPIN Readers, writers simple 936
SPIN Token ring simple 7,744
SPIN Snooping cache algorithm simple 14,361
SPIN Leader election in unidirectional ring simple 15,791
SPIN Go-back-N sliding window protocol simple 35,861
SPIN Cambridge ring protocol simple 162,530
SPIN Model of cell-phone hando� strategy simple 225,670
SPIN Bounded retransmition protocol simple 391,312
SPIN ITU-T multipoint communication service complex 5,904
SPIN Flight guidance system complex 57,786
SPIN Flow control layer validation complex 137,897
SPIN Needham-Schroeder public key protocol complex 307,218

CADP Alternating bit simple 270
CADP HAVi leader election protocol simple 5,107
CADP INRES protocol simple 7,887
CADP Invoicing case study simple 16,110
CADP Car overtaking protocol simple 56,482
CADP Philips' bounded retransmission protocol simple 60,381
CADP Directory-based cache coherency protocol simple 70,643
CADP Reliable multicast protocol simple 113,590
CADP Cluster �le system complex 11,031
CADP CO4 protocol for distributed knowledge bases complex 25,496
CADP IEEE 1394 high performance serial bus complex 43,172

�CRL Chatbox toy 65,536
�CRL Onebit sliding window protocol simple 319,732
�CRL Modular hef system complex 15,349
�CRL Link layer protocol of the IEEE-1394 complex 371,804
�CRL Distributed lift system complex 129,849

Divine Cabbage, goat, wolf puzzle toy 52
Divine Dining philosophers toy 728
Divine MSMIE protocol simple 1,241
Divine Bounded retransmition protocol simple 6,093
Divine Alternating bit protocol simple 11,268

MASO Aquarium example toy 6,561
MASO Token ring toy 7680
MASO Alternating bit protocol toy 11,268
MASO Adding puzzle toy 56,561
MASO Elevator simple 643,298


