Difference compression in SPIN
Benoit PARREAUX

Laboratoire d Informati que de Besangon
Uni versité de Frache-Com é
Rout e de Gray
25030 Besancon Cedex

E-mail: parreaux@ib.univ-fconte.fr

SPIN 98 WORK SHOP

Summary: One of main problems induced by the technigue of model checking is state explosion. Work aims to
improve the rate of covering the graph of accessibility. Different approaches have been proposed: bitstate hashing [Hol
95], partial order [God 96a], collapse mode [Hol 97], methods based on BDD [God 96b] [Mil 93] and compressing
state vectors [Hol 92] [Vis 96].

Our work originates from this problem. We propose a new compression method using a hash-table. This technigue comes

from methods for processing animated images. The state compression is done in two steps. Given a hash-code, the first
vector using it is chosen as a reference vector. First, we compute the difference between the state vector and the reference
vector. Second, we compress the resulting vector using a RLE-like technigue. If the generated vector is more sized, the
reference vector is entarged with additional bits. Modifying the reference vector this way preserves the method’s reversibility
since any vector is always compressed with respect to the same part of the reference vector and always yields to the same
compression even if the reference size is increased. This reversible technigue can be viewed as an exhaustive way to put
model checking into action.

We obtain compression rates close to other classical methods with a quicker graph traversal. In addition, we sketch three
possible improvements. Significant improvement can be made with a hash function that chains elements including
identical subparts. Second, a dynamic choice of the reference vector would result in increasing the compression rate. A
third improvement wonld be to modify the implementation so that it becomes compatible with the collapse mode.

Key words: Mbdel Checking, Conpression and menory storage.

1.INTRODUCTION

The technique of model checking [Ger 95] allows us to verify the communicating process behavior
by realizing all possible rendered executions by the model and by verifying properties on these states.
During this verification a graph, called graph of accessibility, is created. It contains all states already
encountered. This kind of exhaustive verification requires a lot resource memory [Cou 92]. This
memory should be used as well as possible to obtain a good rate of cover. Many research works that
aim to increase the number of accessible states have been put in action | Hol 97]. Especially a large part
of these works have proposed to decrease the size of the representation of states in memory. For this
open problem many specific techniques as well as traditional ones have been presented and
experimented. We register our called technique compression by difference in this last.

Different techniques of compression have been used to reduce the size of the representation of
states in memory. Some of these techniques, e.g. as the bitstate hashing [Hol 95] [Maj 96], are not
reversible. These methods are very efficient in term of compression because their non-reversibility is
the consequence of the loss of a more or less important part of the information contained in the state
vector. When using this kind of compression, we cannot know whether or not the accessibility graph
has been reached. Besides, unless an error occurs, we cannot infer anything. Other methods do not

Difference compression in SPIN

have this drawback and are therefore reversible although less efficient. Traditional methods like the
byte masking, compression RLE or Huffman, have been put into action, as well as specific ones like
the Collapse. These methods, in addition to reversibility, have all a property in common: it is necessary
that the compressed representation of a state remains the even all along the execution, to allow the
comparison of states. Techniques based on dictionaries, like Huffman, are not very efficient due to the
difficulty to realize an optimum dictionary for all problems whence the emergence of two pass
methods. The first pass create the dictionary, the second uses the dictionary to encode stats vectors,
and performs the verification. An alternative to traditional methods consists of using the Collapse
mode. This technique implemented in SPIN gives very good results. In the next section we are going
to outline methods based on reversible compression. We explain guidelines of these algorithms and
conclude with advantages and drawbacks of these techniques. In the third section our proposal
appears. We begin by presenting underlying ideas and reasons that us have elaborate to develop this
technique. We give some implementation details of this technique. The fourth section concludes about
results obtained and opens to future direction for this work.

2. EXISTENT COMPRESSION TECHNIQUES

Two ways have been investigated about the choice of compression algorithms. The first has been
implemented of already known general algorithms. We will cite three techniques: the bit masking, the
Run-Length encoding and the method of static Huffman. We will end with the mode Collapse
introduced in the version 2.7.4 of SPIN. This technique is interesting because it is specific to properties
of state vectors generated by model checking. It exploits specificity of state vectors to decrease the size
of their representation.

The simplest technique, the byte masking [Hol 92] has belonged to the distributed version of SPIN
for several years. This method of compression localizes states that are supposed to contain constant
values, within a state vector. We can cite for example:

* bytes filled in by the compiler in order that the size of data structures are a multiple of a
given word,

* structures of data used to implement Rendez-Vous channels. Constant parts are marked
with a byte Mask.

When vectors of state are memorized, only non-marked alone bytes not are copied and others are
ignored. To warn the confusion states during the comparison, the original length of each vector of
state is prefixed with its compressed version. In the case where the vector of state would be less great
than (resp. greater than) 2'° bytes one adds two (resp. four) bytes at most to the compressed state
vector. These operations "masking" are reversible what guarantees that the compression is without
loss. This method allows a moderated reduction of the place used in memory for a weak cost about the
time of the execution.

Other solution is to apply the technique of the Run-Length Encoding [Hol 92] on the vector to
compress. In all experiences proposed, the size of the vector to store is a multiple of a byte’s length. In
the method of the Run-Length Encoding, the vector of state is coded as a sequence of byte pairs. The
first part of the pair gives how many times the value of the byte is repeated. The second part gives the
original value of the byte. Clearly this method is efficient only if on average each byte appears twice at
least consecutively in vectors of state. If this is not the case this method can increasing and even
doubling the size of the memory necessary to store the vector of state. This method results in
increasing significantly the time of execution without for as much give good results to the level of the
economy of memory.

A last solution consists of use a method of compression of static Huffman [Hol 92] [Knu 73]. To
apply this method a statistical study of the composition of state vectors is necessary. These values will

Difference compression in SPIN

be used to create the dictionary of the method of coding by attributing the smallest codes to the most
used bytes. Then bytes are stocked in a vector whose length is varying. Some simulations showed us
that results are better and less time-consuming in comparison with RLE method. The drawback of this
method is that results are average since the dictionary is static and define before the execution.

From September 95 in the version 2.7.4 of SPIN, a new mode of experimental compression has
been introduced to exploit recursive indexation methods [Hol 96] [Vis 97| for storing state vectors.
The method is based on the verification that the complexity of the asynchronous system verification
comes mainly from the non-determinism during the execution of process. Each process and each
datum can be assigned only a relatively small number of different values. The number of combinations
that we can be realized from these local states gets the very great number of accessible states of the
system. Therefore repeating the complete description of local components for each global vector is
therefore very expensive in memory and time. In the first mode of compression Collapse, each local
component storing in the vector, is realized by separately encoding local states represented by each
process or channel in hash tables. Each part is be assigned a unique index number. Numbers constitute
the global state vector.

A drawback in the first implementation of this method is that the user has to define a possibly
maximum index for components of state vectors. The limit is used to determine if indices of
components of the vector can be stored on one, two, three or four bytes. The necessity to give an
estimation of the size of the vector of state prevents to use the vector as SPIN compression method by
default. A solution to avoid the necessity of specify a upper bound for the number of bytes used by
indexing to store the state vector components is to store the number of components and the number
of bytes used for each component of the index. These numbers can now be authorized to change
according to vectors of state, because the exact compression method or uncompression can be always
uniquely determined for each vector. The number of bytes used to encode an index never is smaller
than a byte and greater than four bytes. To store this information, only two bits per component are
necessary. In this new implementation the table of index sizes is added to the global variable
component. This vector now contains:

* alocal index, from one to four bytes, for each active process, that identifies components
that contains this state, including all these variable places, but excluding locally declared
channels;

* a global index, from one to four bytes, for the unique component that contains all shared
variables, all channels of message and the table of index weights of all local indices;

* a byte that specifies the number of bytes used for the global index.

This technique is called recursive indexation. Traditional techniques as RLE and Huffman are not
very efficient so regarding of the time spent for the compression during the verification. A solution to
improve results is the introduction of a first pass in the verification, to constituting the dictionary for
the compression, then a second pass that uses this dictionary to realize the compression itself. The
collapse mode gives good results without increasing the time of computation excessively. This
technique mainly uses a property of state vectors: they can be grouped into parts of identical state
vectors.

The technique we have developed and we present in next section uses this property.

3. OUR PROPOSAL

It is well known that a technique specific to a problem is more efficient than a general one. In our
case it is necessary to study state vectors to try to find properties. A characteristic of state vectors is
that two consecutive vectors on a path of execution are in general slightly different. So it would save

Difference compression in SPIN

memory space if we code a vector according to its difference with the previous vector during the
verification. This type of coding is not possible because the same vector of state could have several
memory representations according to the way it has been reached. This approach is not suitable for us:
each time that a state is generated, we would need to know if it already exists, so we would have to be
able to construct all the states found already. That would result in an unacceptable increase of the time
of execution. So a method should associate a unique representation with each vector.

States are encoded one according to other in chain of collision of the hash table. Therefore a state is
encoded by unique manner since the hash code of the state is unique.

3.1. Presentation

To encode state quickest, we use a vector per collision chain — so-called reference vector — with that
will be made differences with all the other vectors. Reference vectors are grouped into a basis. The
base is constituted under way of execution and these elements once known does not have to change
value. If a vector of the basis changes, we have to recompute the representation of each state vector
belonging to the corresponding collision. Each vector of the graph of state will be encoded according
to its difference to a — unique — vector of the basis. The rate of compression will be related to the
composition of collision chains of the hash table. More similar the elements of these chains better
results obtained in term of compression. Likewise there must be denoting at least an element in the
chain of collision in order that the compression works. Now we are simply explaining what we mean
by coding a state by difference. We are going to begin with computing its difference bit-to-bit between
the vector and the state of reference. The first state met in a collision chain will be the state of
reference. This state will be stored without compression as the first element of the hash chain. This
element must be constant during the whole of the verification, so states could be encoded according to
the same process.

As soon as bit-to-bit the difference is done we packed continuations of '0' obtained to reduce the
size of the vector of states. Several verifications can be suitable:

* It will be necessary to have a clamping of more of an element in the collision chain so that the
method has results.

* Longer the clamping, less efficient the research of elements.

* The function computing the difference will have, to get good performance, to be related to the
hash function.

¢ The function of the bit-to-bit difference calculation is reversible.

Hash table Element of
the basis

Collision chain
A

~ ~
—| el I

h(x)

Elements
difference
code

Figure1: Compression by difference.

Therefore we have studied hash functions to find out which are the most adapted to our problem.
To do that an hash algorithm has been implement in C and will allow us to test the different possible
solutions. Different functions with different values of parameters have been tested. Tests have been

Difference compression in SPIN

realized using a version of SPIN, and have allowed us to find out if our idea was valid. Results have
been very convincing, even without modifying the initial hash function of SPIN. Therefore this
conclusion has encouraged us to go on with our experience. A more elaborate study of functions
usable as hash functions could have improved results. We did not succeed in studying that sufficiently
long, and we did not find any function giving straightforwardly good results in comparison with others.
We have tested different classic functions and results were equivalent. Of course some were more
effective for some problems but less in others. However we think than a more thorough study of the
definition of these functions would allow improving the technique again.

One of the problems of this technique is its incompatibility with the Collapse mode. More precisely
if this technique is used it is impossible then to realize the Collapse. Indeed, if the difference preserves
the different parts of the vector, the compression of the '0' realized afterwards no longer allows to
store on the one hand the local part and the other the global part. However it could have be envisaged
to realize the difference independently of each part of the vector of state and therefore after having
realized the Collapse.

We go to finish to study how the implementation of this technique has been realized in practice and
results obtained.

3.2. Implementation and results

We have chosen to implement this method in SPIN. Our choice is related with several factors: the
availability of sources, a precis documentation of these sources [Hol a], a certain control of the tools
established during different works (for example [Jul 98a]). Besides this platform has been used as a
basis to put different techniques into action in order to save memory as much as possible. That allows
us more easily to verify efficiency of our method by testing it on problems used to realize other
performance studies.

A hash function is a function that has for image area an interval of integer. This value represents
then the position in a table of bits. To insure that the function returns a value belonging to a given
interval as result, the mathematical function mod(N) is usually considered. Any function is suitable,
since its image is a finished domain corresponding to what is expected. Other function is generally used
just before this last in order to distribute elements in the table as efficiently as possible. Often a
polynomial function is used, but other kinds of function could be used. It is elsewhere on this last that
we have attempted to intervene to increase the efficiency of the method.

The implantation of the method has been realized by Stéphane Michaut studying in DESS. We have
studied the code of SPIN in detail to find the function in charge of the detection of collisions and the
addition of the new states vectors in the hash table. As soon as the function realizing that was found, it
has been necessary to modify the code in order to realize the difference and the compression of '0'
chain. We have written a function realizing the bit-to-bit difference between the vector running and the
vector of basis. This difference is realized by the utilization of a XOR between the two vectors.
Another function compresses '0' chain by using a coding similar to that used for RLE but simpler and
more rapid. It has then been necessary to verify that these two-chained operations were reversible.
Therefore we have compressed and uncompressed different vectors to verify that they were not
modified. These operations being stated reversible, we have begun to study what results would be
without changing the internal functioning of SPIN truly. Therefore we have computed the size of
vectors before and after compression with the size of vectors of the basis. We have recorded good rate
of compression (from 20 to 60%) for slightly different times of execution. However we have stated
that when the size of the hash table decreased the rate of compression also decreased. After a small
study we observed that the fundamental state vector we chose was too small. The difference with other
large-sized vectors did not induce a sufficient number of '0' so this technique was not effective. It also
seemed to us that the same problem could have occurred when we would generate a great space of
states. The solution that we have found to this problem is to increase the size of the vector of basis

Difference compression in SPIN

when a greater state vector is found. Then we add the additional bits of the state vector running to the
vector of basis.

The compression remains reversible because for a given a vector, it will have the same
representation, since the bit-to-bit difference operates on a part of the basic vector, and the lengths of
this part and one vector are the same. With this modification, results are almost the same in the
favourable cases, otherwise they go bad with the ratio Number of states / hash table size but very
slowly.

4. CONCLUSIONS AND PERSPECTIVES

We have obtained some results. The obtained gain fluctuates between 20 and 60% according to
problems processed. These results have been obtained with the original hash function. More important
the number of states, best the rate of compression. This is related to the number of collisions, what is
not surprising. When the number of states is not very important a solution is to reduce the size of the
hash table. That has indeed a very good influence on results obtained so often the gain is important
enough. However, except for some very specific problems the obtained maximum gains are around
50%.

It should be interesting to work on the hash function used. We think indeed that improving this
function would result in better performance. It can also seem interesting to implement the variant
compatible with the collapse mode. First, a possible solution is to divide the vector into parts so that
the compression by difference is separately applied to each part. A slight adjustment of the method
induces this result. However it was not possible to change the code of SPIN in order to be able to
experiment this option and to compare results obtained to these of the other methods.

Others works are led in this direction. It seems indeed that a function of very simple compression
working on preprocessed data results in better compression time, rather than obtained gains.

5. BIBLIOGRAPHY

[Cou 92] C. COURCOUBETIS, Mr. VARDI, P. WOLPER, Mr. YANNAKAKIS, "Memory efficient
algorithms for the verification of temporal properties", Formal Methods in System Design 1,
pp 275-288, 1992.

[Ger 95] R. GERTH, D. PELED, Mr. VARDI, P. WOLPER," Simple one - fly automatic
verification of linear temporal logic", Proc. PSTV95 Conference, Warsaw, Poland, June
1995.

[God 93] P. GODEFROID and G.J. HOLZMANN, "One the verification of temporal properties",
Proc. IFIP / WG6.1 Symp. One Protocols Specification, Testing and Verification, PSTV93,
Liege, Belgium, June 1993

[God 96a] P. GODEFROID, "Partial order Methods for the verification of the Concurrent Systems",
LNCS Vol. 1032, Springer Verlag, 1996.

[God 96b] P. GODEFROID, "Symbolic protocol verification with Queue BDDs", Proc. Logic in
Computer science, Rutgers Univ., New Brunswick, New Jersey, July 1996.

[Hol 91] G.J. HOLZMANN, "Design and validation of protocols", Prentice entrance software seties,
1991.

[Hol 92] G.J. HOLZMANN, P. GODEFROID and D. PIROTTIN, "Coverage preserving reduction
strategies for reachability analysis", Proc. 12" Int. Conf. On Protocol Specification, Testing
and verification, PSTV 92, Orlando, FI., 1992.

Difference compression in SPIN

[Hol 95]

[Hol 96]

[Hol 97]

[Hol a]
[Hol b]

[Jul 98a]

[Knu 73]
[Maj 96]

[Mil 93]
[Vis 96]

G.J. HOLZMANN, "An analysis of bit state hashing", Proc. IFIP/WG6.1 Symp. on
Protocol Specification, Testing, and Verification, PSTV 95, Warsaw, poland.

G.J. HOLZMANN, "The model checker SPIN", IEEE Trans. One Software Engineering,
Flight. 23, n° 5, 1996.

G.J. HOLZMANN, "State Comptession in Spin", Proc. Third Spin Workshop, Twente
University The Netherlands, April 1997.

G.J. HOLZMANN, "Basic Spin manual", Bell laboratories - Murray hill, NJ 07974.

G.J. HOLZMANN, "Ovetview of the Spin model checker", Technical Transfer, Computing
Principles Research Department, Bell Laboratories.

J. JULLIAND, B. LEGEARD, T. MACHICOANE, B. PARREAUX, B. TATIBOUET,
"Specification of year integrated circuits card protocol application using B and Temporal
Linear Logic", 2" Conference one the B method, Montpellier, April 1998.

D.E. KNUTH, "The Art of Computer Programming", Vol. 1 Addison-Wesley, 1973.

B.S. MAJEWSKI, N.C. WORMALD, G. HAVAS and Z.J. CZECH, "A family of perfect
hashing methods", The computer Journal, Vol. 39, No. 6, pp 547-554.

K. McMILLAN, "Symbolic model checking", Kluwer Academic Publishers, 1993.

W. VISSER, "Memory efficient storage in SPIN", Proc. 2™ SPIN Workshop, DIMACS,
Rutgers Univ., New Brunswick, New Jersey, July 1996.

