
CTL� Model Checking for SPIN

Willem Visser and Howard Barringer

Department of Computer Science, Manchester University
fvisserw,howardg@cs.man.ac.uk

Abstract. We describe an e�cient CTL� model checking algorithm based on alternating au-
tomata and games. A CTL� formula, expressing a correctness property, is �rst translated to
a hesitant alternating automaton and then composed with a Kripke structure representing the
model to be checked, this resulting automaton is then checked for nonemptiness. We introduce
the nonemptiness game that checks the nonemptiness of a hesitant alternating automata (HAA).
In the same way that alternating automata generalises nondeterministic automata, we show that
this game for checking the nonemptiness of HAA, generalises the nested depth-�rst algorithm
used to check the nonemptiness of nondeterministic B�uchi automata (used in SPIN).

1 Introduction

For nearly two decades now model checking has been a popular method for analysing the
correctness of designs [CE81,QS82]. A model checker performs the task of checking whether
a correctness property, expressed in a temporal logic, is valid in a model of a design. Its
popularity is to a large extent due to the fact that the model checking task can be automated
when checking �nite state systems.

Temporal logics are popular property-description languages since they can describe event
orderings without having to introduce time explicitly. There are two main kinds of temporal
logics: linear and branching [Lam80]. In linear temporal logics, each moment in time has a
unique possible future, while in branching temporal logics, each moment in time has several
possible futures.

E�cient model checking algorithms for linear time temporal logic were developed by
exploiting the close relationship of the temporal logic and nondeterministic automata on in�-
nite words [VW86b,VW94]. Essentially for each formula one can construct a nondeterministic
B�uchi automata (NBA) that accepts the same input language as the formula. Model checking
then reduces to checking the nonemptiness of the product of the automaton for the formula
and the Kripke structure being checked. Recently it has been shown that a similar approach
can be taken for branching time temporal logic by using hesitant alternating automata on in�-
nite trees (HAA) [BVW94,Ber95]. Here we show that e�cient model checking can be done for
the branching time logic CTL�, by giving an e�cient algorithm for checking the nonemptiness
of hesitant alternating automata. We show that this nonemptiness check can be reformulated
as a 2-player game, which we call the nonemptiness game. We develop a novel way, by playing
so-called new games, of ensuring that results obtained during the nonemptiness game can be
reused in later stages to make the algorithm both space and time e�cient. We show that when
specifying properties in the sublogics LTL and CTL one can optimise the nonemptiness game
by reducing the number of new games required. In fact, it is the case that when we combine
the rules for playing LTL games and CTL games we can do nonemptiness checking for full

CTL�. Furthermore, it is easy to see that the LTL nonemptiness game is a reformulation of
the nested depth-�rst search for testing nonemptiness for NBA. The extra rules required for
the CTL nonemptiness games therefore capture the extra expressive power of the branching
time fragment of CTL�.

The rest of the paper is structured as follows. Section 2 contains the syntax and semantics
of CTL�. Section 3 describes automata-theoretic LTL model checking, including a description
of the nested depth-�rst search used within SPIN to check the nonemptiness of NBA. Section 4
describes automata-theoretic CTL� model checking with HAA, including a brief description
of the translation from formulas to HAA. Section 5 describes the nonemptiness game for
HAA as well as the use of new games, whereas in section 6 we give the rules for playing
the optimised games for LTL, CTL and CTL�. In section 7 we briey discuss some issues
when considering an implementation of our approach within SPIN. In section 8 we have some
concluding remarks about the work presented here.

2 Syntax and Semantics of CTL�

CTL� can express both linear and branching time properties, and is therefore more expressive
than the linear time logic LTL [LP85] and the branching time logic CTL [CES86]. In fact,
both these logics are sublogics of CTL�. For technical convenience only positive CTL� formulas
will be used here, i.e. formulas with negations only applied to atomic propositions. Any CTL�

formula can be transformed into a positive form by pushing negations inward as far as possible
by using De Morgan's laws and dualities. There are two types of formula in CTL�: formulas
whose satisfaction is related to states, state formulas, and those whose satisfaction is related
to paths, path formulas. Let q 2 Props, where Props is a set of atomic propositions. The
syntax of CTL� state (S) and path formulas (P) is then given by the following two BNF
rules:

S ::= true j false j q j :q j S ^ S j S _ S j AP j EP
P ::= S j P ^P j P _P j XP j P U P j P V P

A (\for all") and E (\there exists") are referred to as path quanti�ers and X (\next"), U
(\Until") and V (\release") as path operators. The sublogics CTL and LTL are now de�ned
as:

CTL Every occurrence of a path operator is immediately preceded by a path quanti�er.
LTL Formulas of the form AP where the only state subformulas of P are propositions.

The semantics of CTL� is de�ned with respect to aKripke structureK = (Props; S;R; s0; L),
where Props is a set of atomic propositions, S is a set of states, R � S � S is a transition
relation that must be total (for every si 2 S there exists a sj such that (si; sj) 2 R), s0 2 S
is an initial state and L : S ! 2Props maps each state to the set of atomic propositions true
in that state. For (si; sj) 2 R, sj is the successor of si and si the predecessor of sj. The
branching degree, i.e. the number of successors, of a state s is denoted by d(s). A path in K
is an in�nite sequence of states, � = s0; s1; s2; : : : such that (si; si+1) 2 R for i � 0. The su�x
si; si+1; : : : of � is denoted by �i. K; s j= ' indicates that the state formula ' holds at state

s and K;� j= indicates the path formula holds at the path � of the Kripke structure K.
s j= ' and � j= are written when K is clear from the context. The relation j= is inductively
de�ned as:

� 8s 2 S, s j= true and s 6j= false

� s j= p for p 2 Props i� p 2 L(s) � s j= :p for p 2 Props i� p 62 L(s)
� s j= '1 ^ '2 i� s j= '1 and s j= '2 � s j= '1 _ '2 i� s j= '1 or s j= '2
� s j= A i� for every path � = s0; s1; : : :, with s0 = s, then � j=

� s j= E i� there exists a path � = s0; s1; : : :, with s0 = s, and � j=

� � j= ' for a state formula ', i� s0 j= ' where � = s0; s1; : : :

� � j= 1 ^ 2 i� � j= 1 and � j= 2 � � j= 1 _ 2 i� � j= 1 or � j= 2
� � j= X i� �1 j=

� � j= 1 U 2 i� 9i � 0 such that �i j= 2 and 8j,0 � j < i, �j j= 1
� � j= 1 V 2 i� 8i � 0 such that if �i 6j= 2 then 9j,0 � j < i, �j j= 1

A state s satis�es A (E) if every path (some path) � from the state s satis�es , while a
path satis�es a state formula if the initial state of the path does. X holds of a path when
 is satis�ed in the next state on the path, whereas 1 U 2 holds of a path if 1 holds on
the path until 2 becomes true. V is the dual of U since :(1 U 2) = : 1 V : 2 and is
referred to as the \release" operator: 1 V 2 holds for a path, if 2 remains true until 1
\releases" the path from its obligation. The following well known abbreviations will also be
used: F' = true U ' and G' = false V '.

3 Automata-Theoretic LTL Model Checking

For linear time temporal logics, notably LTL, a close relationship with nondeterministic au-
tomata has been established [VW86b,VW94]. Essentially, with each linear time formula, an
automaton over in�nite words is associated that accepts exactly all the computations that
satisfy the formula. Therefore if we consider the Kripke structure to be an automaton as
well, call it AK , with the automaton describing the formula, A , then model checking can be
described as a language containment problem: L(AK) � L(A). This can be rewritten as a
nonemptiness problem of intersecting automata: L(AK) \ L(A) = ;.

3.1 Nondeterministic B�uchi word automata

LTL formulas can express properties on in�nite behaviours, therefore automata that ac-
cept in�nite sequences (words) are required. Nondeterministic B�uchi automata (NBA) can
accept in�nite sequences and are often used for automata-theoretic LTL model checking
[VW86b,VW94].

A B�uchi automaton A is a 5-tuple (�;S; �; s0; F), where � is a �nite alphabet, S is a �nite
set of states, s0 2 S is the initial state1, � : S �� ! 2S is a transition function and F � S

is the set of accepting states. Intuitively, �(s; a) is the set of states A can move into when it
reads symbol a when in state s. Since it can move to a set of states, the B�uchi automaton

1 In the general case there is a set of initial states, but for model checking we only require a single initial state.

is nondeterministic. If an in�nite word, w = a0; a1; : : : over � is given as input to A then a
run of A is the sequence s0; s1; : : : where si+1 2 �(si; ai), for all i � 0 (we also refer to a run
as a path of states). If we de�ne inf(�) as the set of states that occur in�nitely often on the
in�nite path �, then � is an accepting path i� inf(�) \ F 6= ;.

A Kripke structure K = (Props; S;R; s0; L) can be viewed as a B�uchi automaton AK =
(�;S; �; s0; S), where � = 2Props and s0 2 �(s; a) i� (s; s0) 2 R and a = L(s). The automaton
AK has as its accepting set all the states in the automaton and therefore any run of the
automaton is accepting. Thus, L(AK) is the set of computations (possible behaviours) of K.

In [VW94] it is proven that for an LTL formula a B�uchi automaton A can be con-
structed such that L(A) is the set of computations that satis�es formula with the num-
ber of states of L(A) in O(2

O(j j)). Furthermore, for B�uchi automata the following holds:
L(A) = L(A:). In general the following does not hold for B�uchi automata: L(A1 �A2) =
L(A1)\L(A2), since this implies that the two automata must go in�nitely often and simulta-

neously through accepting states. Here, however, since all the states of AK are accepting we
have: L(AK �A:) = L(AK) \ L(A:). Automata based LTL model checking can therefore
be described by the following three steps:

1. Negate formula and create the NBA A: .

2. Construct the product automaton AK;: = K �A: .

3. If L(AK;:) 6= ; report invalid else report valid.

3.2 Nonemptiness Checking

A B�uchi automaton accepts some word i� there exists an accepting state reachable from the
initial state and from itself [VW94]. It is easy to see that a linear time algorithm exists to
�nd such an accepting state: decompose the state graph of the automaton into SCCs, which
can be done in time linear in the size of the automaton [Tar72]; the automaton is nonempty
i� an accepting state exists in any of the SCCs. Since checking whether a B�uchi automaton
accepts some word can be done in time linear in the size of the automaton and an LTL formula
 can be translated to a B�uchi automaton with O(2O(j j)) states this gives model checking
complexity O(jSj � (2O(j j))) where jSj is the number of states in the Kripke structure to be
checked.

Courcoubetis et al. [CVWY92] show that during the nonemptiness check of a B�uchi au-
tomaton the computation of SCCs can be avoided. Note that constructing SCCs is not very
memory e�cient since the states in the SCCs must be stored during the procedure. The idea is
to use a nested depth-�rst search to �nd accepting states that are reachable from themselves.

Such an algorithm is given in Figure 1. VisitedStates is a data-structure, usually a hash
table, that keeps track of all states already seen during the search. The algorithm works as
follows: when the �rst search backtracks to an accepting state a second search is started to look
for a cycle through this state. In [CVWY92] it was stated that the memory requirements of
the nested depth-�rst search would be double that of a single depth-�rst search, but in [GH93]
it is shown that only two bits need to be added to each state to separate the states stored in
VisitedStates. Unfortunately, the time might double when all the states of the automaton are
reachable in both searches and there are no cycles through accepting states.

1 dfs(state s)

2 Add (s,0) to VisitedStates;

3 FOR each successor t of s DO

4 IF (t,0) not in VisitedStates THEN dfs(t) END

5 END

6 IF s is an accepting state THEN seed = s; 2dfs(s) END

7 END;

8
9 2dfs(state s)

10 Add (s,1) to VisitedStates;

11 FOR each successor t of s DO

12 IF (t,1) not in VisitedStates THEN 2dfs(t) END

13 ELSIF t==seed THEN report nonempty END

14 END

15 END

Fig. 1. Nested DFS

Of all model checkers, SPIN [Hol91] is probably the most widely used: a recent estima-
tion puts the number of installations at around 4000 [Hol97] with an even spread among
commercial and academic usage. Correctness properties in SPIN are speci�ed by the so-called
never claim, which is essentially a B�uchi automaton expressing unacceptable behaviour (hence
the name never claim). Checking nonemptiness of the automaton comprising the product of
the never claim with the model of the system is done with the nested depth-�rst algorithm
shown in Figure 1 [Hol91,HPY96]. The product automaton is also built on-the-y during the
depth-�rst search for memory e�ciency. An interface for doing LTL model checking exists by
translating a LTL formula to a never claim (B�uchi automaton).

4 Automata-Theoretic CTL� Model Checking

The automata-theoretic counterpart for branching time temporal logic is automata over in�-
nite trees [VW86a]. For branching time, unlike for linear time, satis�ability and model check-
ing complexity do not coincide; model checking is typically much easier than checking sat-
is�ability. Nondeterministic tree automata cannot compete with this gap, essentially since
the translation from formulas to automata can incur an exponential blow-up in size. There-
fore, when using nondeterministic tree automata as a basis for model checking the resulting
algorithm's time complexity will be exponential in the size of the temporal formula.

Since nondeterministic automata have traditionally been used for automata-theoretic
model checking and since for certain branching time temporal logics model checking is linear
(e.g. CTL), automata-theoretic techniques have been considered inapplicable to branching
time model checking. In [BVW94,Ber95] it is shown that the use of alternating automata over
in�nite trees is the automata-theoretic counterpart of branching time temporal logics that
allows e�cient model checking.

Alternating automata generalise nondeterministic automata, since they can express both
existential and universal choice, whereas nondeterministic automata can only express existen-
tial choice. In fact, the name refers to the automaton's ability to alternate between existential
and universal choice. In order to de�ne the alternating automata of interest here, the following

de�nition is required: for a given set X, let B+(X) be the set of positive Boolean formulas
over X (i.e. boolean formulas built from elements in X using ^ and _), where the formulas
true and false are also allowed. Y � X satis�es � 2 B+(X) if � is satis�ed when assigning
true to the members of Y and false to X � Y . For example, the set fs0; s1g satis�es the
formula (s0 _ s2) ^ (s1 _ s3), but the set fs0; s2g does not.

First we show the di�erence between nondeterministic and alternating B�uchi word au-
tomata with the aid of the function B+(X) (de�ned above). For a nondeterministic B�uchi
word automaton A = (�;S; �; s0; F) the transition function � maps a state s and an in-
put symbol a 2 � to a set of states indicating the possible nondeterministic choice for the
automaton's next state. The function � can be represented by using B+(S); for example,
�(s; a) = fs0; s1; s2g can be written as �(s; a) = s0 _ s1 _ s2. When using alternating au-
tomata, however, � can be an arbitrary formula from B+(S); for example

�(s; a) = (s0 ^ s1) _ (s2 ^ s3)

meaning that the automaton accepts the word aw (where a is a symbol and w is a word)
when it accepts a in state s and accepts w from both states s0 and s1 or from both s2 and s3.
The transition combines therefore both existential choice (disjunction) and universal choice
(conjunction).

4.1 Alternating Tree Automata

An alternating tree automaton is a tuple (�;D; S; �; s0; F). Here � is a �nite alphabet, D � N

is a �nite set of branching-degrees, S is a �nite set of states, s0 2 S is the initial state, F is the
acceptance condition (the type of condition depends on the type of alternating automata; two
types are discussed below) and � : S �� �D ! B+(N � S) is a partial transition function,
where �(s; a; k) 2 B+(f0; : : : ; k� 1g�S) for each s 2 S, a 2 � and k 2 D such that �(s; a; k)
is de�ned. A run r of an alternating automaton A on a tree T is a tree where the root is
labelled by s0 and every other node is labelled by an element of N� � S. Each node of r
corresponds to a node of T . A node in r, labelled by (x; s), describes a copy of the automaton
that reads the node x of T in the state s. Note that many nodes of r can correspond to the
same node of T . The labels of a node and its successors have to satisfy the transition function.
A run is accepting if all its in�nite paths satisfy the acceptance condition F . For example, the
B�uchi acceptance condition F � S will be satis�ed on an in�nite path � i� inf(�) \ F 6= ;.
Note that we can get �nite branches in the tree representing the run when either true or
false is read in the transition function. However in an accepting run, only true can be found
as leaves, since a path containing false is trivially not accepting.

Example: Let us consider the following transition function: �(s0; a; 2) = ((0; s1)_(1; s2))^
((0; s3)_ (1; s1)). When the automaton is in state s0, reads input a and the branching degree
of the input tree is 2 when a is read (i.e. there are 2 successor states from this state in the
input tree) then the automaton will make two copies of itself (due to the ^ in �) which could
then proceed in di�erent ways. One possibility is that one copy of the automaton proceeds to
state s1 and the next input this copy reads is in direction 0 of the input tree (which could be
considered to be the �rst successor of the state in the tree where a was read), the other copy
of the automaton could also go to state s1 but read its input in direction 1 of the input tree
(say in the direction of the second successor of the state in which a was read). In fact there
are four possibilities for the automaton to proceed, summarised below:

� one copy proceeds in direction 0 in state s1 and one copy proceeds in direction 0 in s3.

� one copy proceeds in direction 0 in state s1 and one copy proceeds in direction 1 in s1.

� one copy proceeds in direction 1 in state s2 and one copy proceeds in direction 0 in s3.

� one copy proceeds in direction 1 in state s2 and one copy proceeds in direction 1 in s1.

Weak alternating automata (WAA), introduced by Muller et al. [MSS86], was one of
the �rst types of alternating automata to be used for reasoning about temporal logic. For
example, in [MSS88] WAA are used to explain the complexity of decision procedures for
certain temporal logics. More recently, WAA were used to de�ne linear time algorithms for
model checking CTL [Ber95]. In [BVW94], Bernholtz et al. de�ned bounded alternation WAA,
that also allow space e�cient CTL model checking. In fact, it was shown that CTL model
checking is in NLOGSPACE in the size of the Kripke structure.

A weak alternating automaton is de�ned as follows. Firstly, it uses a B�uchi acceptance
condition, F � S. The set of states of a WAA can be partitioned into disjoint sets Si, such
that each Si is either an accepting set, i.e. Si � F , or is a rejecting set, i.e. Si \ F = ;.
Furthermore, a partial order � exists on the collection of Si sets such that for every s 2 Si
and s0 2 Sj for which s

0 occurs in �(s; a; k) for some a 2 � and k 2 D, we have Sj � Si.
Thus, transitions from an Si either lead to states in the same Si or a lower one. An in�nite
path in the run of a WAA will therefore get trapped within some Si; if this Si is accepting
then the path satis�es the acceptance condition.

Unfortunately WAA cannot be used for model checking CTL�, since CTL� can de�ne
languages that are not weakly de�nable. A stronger acceptance condition is required for
automata corresponding to CTL� formulas. In [Ber95] hesitant alternating tree automata
(HAA) are de�ned that have a more restricted transition structure than WAA, but a more
powerful acceptance condition. As with WAA, there exists a partial order between disjoint
sets Si of S. Furthermore, each set Si is classi�ed either as transient, existential or universal,
such that for each Si, and for all s 2 Si, a 2 � and k 2 D the following holds:

� if Si is transient, then �(s; a; k) contains no elements from Si. Examples (assume Si =
fs0g): �(s0; a; 2) = (0; s1) ^ (1; s2) and �(s0; a; 2) = ((0; s1) _ (1; s2)) ^ (0; s3)

� if Si is existential, then �(s; a; k) only contains disjunctively related elements of Si. Exam-
ples (assume Si = fs0g): �(s0; a; 2) = (0; s0) _ (1; s0) and �(s0; a; 2) = ((0; s0) _ (1; s0)) ^
(0; s1), but here Si is not an existential set: �(s0; a; 2) = ((0; s0) ^ (1; s0)) _ (0; s1)

� if Si is universal, then �(s; a; k) only contains conjunctively related elements of Si. Exam-
ples (assume Si = fs0g): �(s0; a; 2) = (0; s0) ^ (1; s0) and �(s0; a; 2) = ((0; s0) ^ (1; s0)) _
(0; s1), but here Si is not a universal set: �(s0; a; 2) = ((0; s0) _ (1; s0)) ^ (0; s1)

The acceptance condition is a pair of sets of states, (G;B). From the above restricted
structure of HAA it follows that an in�nite path, �, will either get trapped in an existential
or universal set, Si. The path then satis�es (G;B) i� either Si is existential and inf(�)\G 6= ;
or is universal and inf(�) \ B = ;. Here we also de�ne a subclass of HAA, called 1-HAA,
for which every Si set contains only one state in the partial order. In [Vis98] it is shown that
1-HAA is the automata-theoretic counterpart of CTL, whereas HAA in general correspond
to CTL� formulas.

4.2 Translating CTL� to HAA

Here we will only discuss informally the translation of CTL� formulas into HAA. The inter-
ested reader is referred to [Ber95] for a detailed analysis of this translation. First, maximal

state subformulas of a formula ', max('), need to be de�ned: is a maximal state subfor-
mula of ' if it is a state subformula and there is no other state subformula of ' for which
 is also a state subformula. For example, let ' = AF(Xq V AFAGp), then max(') =
fq;AFAGpg. Secondly, observe that complementing an HAA A = (�;D;Q; �; q0; (G;B)) is
A = (�;D;Q; �; q0; (B;G)), where � is de�ned as switching all the true and false values and
the ^ and _ symbols. For example, if �(q; a; k) = p _ (true ^ g), then � = p ^ (false _ g).

The �rst step in the translation of ' is to build the HAA for all the formulas in max(').
The formula ' is now rewritten, as '0, with all the formulas in max(') replaced by atomic
propositions. The formula '0 now consists of path modalities preceded by a path quanti�er
(A or E) and only has propositions as state formulas, i.e. linear time formula preceded by an
A or E. Let us consider the case where we have � = E , where is a linear time formula.
Informally, the idea is to build an HAA for E over the alphabet �0 = 2max(�) and then to
expand it over the alphabet � by using the HAA for the formulas in max(�). For the formula
A , an HAA for E: (with the negation pushed inside to the propositions) is built in the
above fashion and then complemented. In the construction of the HAA for E the crucial
point is the construction of a nondeterministic B�uchi word automaton that accepts all the
in�nite words recognised by . A simple translation exists from this automaton to the HAA
for E (see [Ber95]). Unfortunately, the B�uchi word automaton is exponential in the size of
the [VW94,GPVW95]. This results in the complete translation from a CTL� formula into
an HAA being exponential.

Note that we do not translate the linear time formula into an alternating B�uchi word
automaton, even though this translation is known to be linear [MSS88]; this is because the
reduction to a 1-letter nonemptiness problem, which we will see in the next section is crucial
for e�cient model checking, is impossible for alternating B�uchi word automata, but valid for
nondeterministic B�uchi word automata [Ber95].

Example: Consider the CTL� formula ' = AFGp. Since it is of the form A we need
to negate and complement the HAA for EGF:p. Note that we do not need to construct an
HAA for the maximal formula (:p) since it is already a proposition. The nondeterministic
B�uchi word automaton for GF:p has the following transition relation M :

M(q0; f:pg) =M(q1; f:pg) = q1 M(q0; fpg) =M(q1; fpg) = q0

with the accepting set fq1g and the initial state q0. (We implemented an optimised version of
the algorithm given in [GPVW95] to create B�uchi word automata from linear time formulas.)
From this we construct the HAA for EGF:p:

q �(q; f:pg; k) �(q; fpg; k)

q0
Wk�1
c=0 (c; q1)

Wk�1
c=0 (c; q0)

q1
Wk�1
c=0 (c; q1)

Wk�1
c=0 (c; q0)

with acceptance condition (fq1g; fg) and initial state q0. Since this HAA is already de�ned
over the alphabet 2Props = f:p; pg, all that remains is to complement it to get the HAA for
' (call this HAA AAFGp):

q �(q; f:pg; k) �(q; fpg; k)

q0
Vk�1
c=0 (c; q1)

Vk�1
c=0 (c; q0)

q1
Vk�1
c=0 (c; q1)

Vk�1
c=0 (c; q0)

with acceptance condition (fg; (fq1g) and initial state q0.

4.3 Nonemptiness Checking for HAA

Let us �rst consider the general approach to automata-theoretic branching time model check-
ing. Recall that for linear time temporal logic each Kripke structure may correspond to in-
�nitely many computations. Model checking is therefore reduced to checking inclusion between
the set of computations allowed by the Kripke structure and the language of an automata
describing the formula (section 3). For branching temporal logic, each Kripke structure cor-
responds to a single nondeterministic computation. Therefore, model checking is reduced to
checking the membership of this computation in the language of the automaton describing
the formula [Wol89]. This suggests the following automata-based model checking algorithm.
Given a branching temporal formula ' and a Kripke structure K with degrees in D:

1. Construct the alternating automaton for the formula, AD;'.
2. Construct the product alternating automaton AKD;' = K�AD;'. This automaton simulates

a run of AD;' on the tree induced by the Kripke structure K.
3. If the language accepted by AKD;' is nonempty then ' holds for K, otherwise not.

Thus, a nonemptiness check for HAA is required to check CTL� properties in K. The
general nonemptiness check for HAA cannot be done e�ciently [Ber95]. Fortunately, taking
the product with the Kripke structure K, results in a 1-letter HAA over words (i.e. an HAA
with j�j = 1 andD = f1g), for which a nonemptiness check can be done in linear time [Ber95].
Let us now de�ne this product automaton. Let AD;' = (2Props; D;Q'; �'; q0; (G'; B')) be an
HAA which accepts exactly all the D-trees that satisfy ' and let K = (Props; S;R; s0; L) be a
Kripke structure with degrees in D. The product automaton is then an HAA word automaton
AKD;' = (fag; S �Q'; �; (s0; q0); (S �G'; S � B')) where � is de�ned as (d(s) is the number
of successors of s in K):

� Let Q 2 Q', s 2 S, succR(s) = (s0; : : : ; s(d(s)�1)) and �'(q; L(s); d(s)) = �. Then �((s; q); a) = �0, where
�0 is obtained from � by replacing each atom (c; q0) in � by (sc; q

0).

A run of an alternating automata is a tree; in the sequel we will display this tree as
an And-Or tree with each in�nite branch truncated when a node is revisited on a branch.
Therefore the product automaton will be displayed in this fashion (note we do not show the
^ and _ choices when only one successor state exists in the product automaton). For example
consider the product automaton of the Kripke structure in Figure 2 and the HAA for the
CTL formula AGEFp (Figure 3) given as an And-Or tree in Figure 4.

To illustrate how this product is obtained we show how the run proceeds from the initial
state. In the initial state the automaton is in state q0 and takes as input the label from state
x (namely :p) in the input tree induced by the Kripke structure K:

�(q0; f:pg; 2) = ((0; q1) _ (1; q1)) ^ ((0; q0) ^ (1; q0))

x

y

z

k

p

p

p

p

Fig. 2. Kripke structure K = (ffpg; f:pgg; fx; y; z; k; hg; R; x;L)

q �(q; f:pg; l) �(q; fpg; l)

q0
Wl�1
c=0(c; q1) ^

Vl�1
c=0(c; q0)

Vl�1
c=0(c; q0)

q1
Wl�1
c=0(c; q1) true

Fig. 3. HAA AD;AGEFp = (ff:pg; fpgg; D; fqo; q1g; �; q0; (fg; fg))

If we consider y to be the �rst successor of x and k the second successor of x then we get:

�(q0; f:pg; 2) = ((y; q1) _ (k; q1)) ^ ((y; q0) ^ (k; q0))

which is displayed graphically in Figure 4. Note that all the branches that reach the state
(k; q1) are trivially accepting since a true is read in the transition function. All other branches
are in�nite and their acceptance is determined by the acceptance condition (fg; fg): the in�nite
branches with a q0 component are accepting (since q0 is in a universal set and q0 62 B, i.e.
inf(�) \ B = ;, where � is any of the in�nite branches with a q0 component) whereas all
the in�nite branches with a q1 component are not accepting (since q1 is in a existential set
and inf(�) \G = ;, where � is any of the in�nite branches with a q1 component). However,
since all the in�nite branches with a q1 component can be avoided by picking the other option
in the _-choice and reach a trivial accepting state it follows that the run of the alternating
automata is accepting and hence K;x j= AGEFp.

5 Nonemptiness Game

Emerson and Jutla were the �rst to use game-theory in combination with temporal logic
[EJ88]. They used in�nite Borel games to show that satis�ability checking for CTL� is in
deterministic double exponential time. Stirling showed how Ehrenfeucht-Fra��ss�e games can be
used to capture the expressive power of the extremal �xed point operators of the �-calculus
[Sti96]. To the best of our knowledge, Stirling was also the �rst to use two-player games for
model checking [Sti95] when he reformulated the model checking problem for the �-calculus
as a two-player game. Here we show how the nonemptiness check for HAA can be formulated
as a 2-player game. We refer to this game as the nonemptiness game. We will show that
formulating the nonemptiness problem for HAA as a game has two main advantages: (1) The
game is simple and can be played without prior knowledge of the automata-theoretic details.
(2) Although the game does not improve the worst-case complexity of the nonemptiness check
for HAA, it leads to a simple and e�cient implementation for checking nonemptiness of an
HAA.

y ,q
00

q
00

z ,

q
00

z ,

q
0

z ,
1

q
00

x ,

q
00

x ,

q z ,
1

q z ,
1

q z ,
1

q z ,
1

q
1

x ,

q
1

x ,

q
1

y ,

q
1

x ,

q
1
, y

q
1

k ,

q
1

k , q
1

k ,

q
1

k ,

q
1

k ,q
1

y ,

q
1

x ,

q
1

y ,

q
00

k ,

q
00

x , q
1

x ,

q
1

x ,

q
1

y ,

T

T T

T

T

Fig. 4. And-Or tree for the product automaton K �AD;AGAFp.

The nonemptiness game is de�ned as a two-player game, in which player 1 will try to
show that the HAA is empty whilst player 2 will try to establish that it is nonempty. A play

of the game is a possibly in�nite sequence of positions2 of the form (q0; s0); (q1; s1); : : : where
each position (qi; si) is a node in an And-Or tree (in our case, the product of the HAA for
the formula and the Kripke structure). Which player makes the next move is determined by
the structure of the And-Or tree: player 1 (Brandy) moves whenever there is an ^-choice
and player 2 (Port) when there is an _-choice3. The players therefore do not take turns as
is the case in many standard games. The winner of a play can be determined when either a
node that is labelled true (Port wins) or false (Brandy wins) is found in the play or when a
position in the current play is revisited.

When a position in a play is revisited it represents the scenario where there is an in�nite
path in the product HAA and therefore we need to consider the acceptance condition (G;B)
to determine which player wins the play. Recall the acceptance condition for an in�nite path,
�, in an HAA:

1. If � gets trapped in an existential Si and inf(�) \G 6= ;

2. If � gets trapped in an universal Si and inf(�) \B = ;

Let us de�ne a set of positions, infpos(play�), to be the positions in the current play,
play�, that are visited in�nitely often on play�. Existential Si only contain disjunctively
related elements, thus Port will be making the choices of which move to make in these Si.
Universal Si, on the other hand, only contain conjunctively related elements, from which
Brandy makes the next move. The de�nitions of existential and universal sets combined with
1 and 2 above are su�cient to de�ne the winning conditions of a play, summarised in Figure 5.

2 Positions in the game setting are equivalent to states in the automata setting.
3 The player names reect when the player moves: Brandy and Port.

Player 1 (Brandy) Wins Player 2 (Port) Wins

Play reaches a false Play reaches a true

After a move by Port, that revisits a position After a move by Port, that revisits a position
in the current play, infpos(play�) \G = ; in the current play, infpos(play�) \G 6= ;
After a move by Brandy, that revisits a position After a move by Brandy, that revisits a position
in the current play, infpos(play�) \B 6= ; in the current play, infpos(play�) \B = ;

Fig. 5. Winning Conditions for a Play in the Nonemptiness Game

Since the intentions of the players when making moves are backwards sound, the following
rule can be used to combine the results of plays: if Brandy (Port) moves from position s to
s0 in a play and s0 is the start of a winning play for Brandy (Port), then Brandy (Port) also
wins from s. A player has a winning strategy for a game if the player can win any play of the
game from a position regardless of the opponent's moves.

Theorem 1. Player 2 (Port) has a winning strategy in the nonemptiness game from the

initial state of an HAA i� the language accepted by the HAA is nonempty.

Proof: The correctness of the Theorem follows directly from the construction of the winning
conditions of the game: each play in the game is essentially checking the acceptance of a
(possibly) in�nite path in the HAA. 2

y ,q
00

q
00

z ,

q
00

z ,

q
00

x ,

q
00

x ,

qz ,
1

qz ,
1

q
1

x ,

q
1

x ,

q
1

x ,

q
1

k ,

q
1

k ,

q
00

k ,

q
00

x ,

q
1

y ,

qz ,
1

q
1

x ,

qk ,
1

qk ,
1

qk ,
1

1
qx ,

qz ,
1

q
1

y ,

1
qx ,

qz ,
1

q
1

y ,

q
1

y ,

winning from a position

The labels indicate the player

T

T T

T

T

Port

Port

Port

Port

Port

Port

Port

Port

Port

PortPort

Port

Port

Port

Port

Port

Port Port

Port

Brandy

Brandy

Brandy Brandy

Brandy

Brandy

Brandy

Brandy

Brandy

q
1

y ,

Fig. 6. And-Or tree for the product automaton K �AD;AGEFp

Example: If we play the nonemptiness game on the HAA, K�AD;AGEFp from Figure 6,
then it is clear that whenever Port has a move it can reach the position (k; q1) which is
a winning position for Port (the winning players are shown as labels on the positions in
Figure 6). The only interesting plays are those that revisit (x; q0) and (x; q1), for example for
the left-most play (play�), infpos(play�) = f(x; q0); (y; q0); (z; q0)g, but since B is empty Port

wins this play. Port in fact wins every play, regardless of Brandy's moves, and from Theorem 1
it then follows that K �AD;AGEFp is nonempty, and hence also that K j= AGEFp.

Theorem 2. Given a Kripke structure K and a CTL� formula ' then K j= ' i� Player 2

(Port) has a winning strategy for the nonemptiness game on K � AD;', where AD;' is an

HAA such that the language accepted by AD;' is exactly the set of D-trees satisfying '.

Proof: Theorem 2 follows directly from Theorem 1 and captures the relationship between
the model checking problem and the nonemptiness game. 2

From Theorem 2 we can now construct an e�cient algorithm for doing CTL� model
checking. The �rst part is to construct the HAA from the CTL� formula and then to play the
nonemptiness game on the product of this HAA and the Kripke structure. The construction
of the HAA from a CTL� formula is given in section 4.2. Next we will show how to implement
the nonemptiness game in an e�cient fashion.

5.1 Implementing the Nonemptiness Game

In the previous section it was shown that the moves of the nonemptiness game are determined
by the structure of the And-Or tree. We have implemented a depth-�rst algorithm for �nding
winning plays in an And-Or tree. An e�cient implementation of infpos is obtained by keeping
track of the positions in the current play on a stack data-structure, where a new position is
pushed every time a move is made and popped whenever a winning play is found from the
position. The elements in infpos are therefore all the elements in the stack between the
depth where a position is revisited and the current depth (value of the top of stack pointer).
The stack is also used to keep track of the other possible moves from a position, but the
moves themselves will only be made if the depth-�rst algorithm requires it later (i.e. after
backtracking) in the search for a winning play. For example when looking for a winning play
in the initial position of Figure 6 the left-hand choice at the ^-node is taken and the fact that
there is a right-hand choice is recorded in the stack, but it is only explored when it is clear that
the left-hand choice returns a winning play for Port. This approach is in general more memory
e�cient than a breadth-�rst algorithm where all the choices are explored simultaneously.

Unfortunately, although the algorithm outlined above is memory e�cient, it is not time
e�cient. The reason for this is that \winning" games from a position can be replayed. Con-
sidering again the example of Figure 6, it is clear that in the play (x; q0); (y; q0); (z; q0); (x; q1)
there is a winning play for Port in position (x; q1), but this position arises three more times
in other plays and the fact that Port has a win from this position will be re-established each
time. A results store is required to keep track of winning positions so that when they are
revisited in di�erent plays then the results can be reused. The problem is however to deter-
mine when to store the results, or to put it another way, when a potential winning position is
stored to be certain that the winning position is indeed correct. One possibility is to store the
winning position when all moves from a position have been played (i.e. when the depth-�rst
algorithm backtracks). However, since a play is truncated whenever a position is revisited, it
may happen that an incorrect result can be stored when all moves from a position have been
made. The problem is that a winning play for a player may now be missed since that play
may have been truncated at some point.

5.2 New Games

In order to ensure that the results stored as winning positions are indeed correct, it is proposed
that a new game is played whenever all the moves from a position, say s, have been played.
This new game takes as its initial position s and a new stack and new results store are
used. Since a new game uses a new stack and a new store, the intuition is that plays that
were previously truncated will be played to completion in the new game, hence ensuring that
the correct result is obtained for the initial position of the new game. When a new game
is completed (i.e. the winning player from its initial position is found) the stack and results
store for the new game are deleted and the result of the new game is stored in the original4

results store. Whenever a position is visited in the new game it is �rst checked whether this
position is not in the original store, since if it is that result can be used. Note that when we
refer to the nonemptiness game we refer to the initial (�rst) game together with all the new
games that are played in order to determine the winning player for the initial position (of the
�rst game).

New games may have to be played recursively, i.e. whilst playing a new game another new
game can be started etc. Therefore, to ensure that new games will not be played in�nitely,
a new game is not allowed from a position from which a new game is already being played.
In fact, when a new game is being played one can restrict the play of more new games from
positions that are on the current play of any of the previous games (initial game and all
new games currently being played). The reason for this restriction is that new games for
positions that are on the current play of a previous game will be played later on (precisely,
when the positions are backtracked in the previous game). This therefore has the e�ect of
just postponing the new game. Note that the initial position of a new game is by de�nition
also part of the current play of the previous game and therefore this restriction also ensures
that new games cannot be played in�nitely. Furthermore, when a new game is to be started
from a position that is in the acceptance condition (G,B) and a previous new game is already
being played for this position then a cycle exists and the winning player from this position
can be determined by whether it is part of a universal or existential set.

Example: In Figure 7 it is shown how a new game is played when the only move from
(z; q1) has been played and the result of this new game is that (z; q1) is a winning position for
Port. Reusing this result when (z; q1) is visited again enables Port to win the game from the
initial position which is the correct result. No further new games are played for the positions
visited in the new game from position (z; q1), since all these positions are on the current
play of the initial game. New games are however played for the positions in the initial game,
but in those cases the results are immediately found in the original results store (due to the
depth-�rst nature of the plays).

5.3 Complexity

Let the number of positions in the product HAA K�AD;' be n. Since a new game is required
for each position and in the worst case each of the n positions needs to be visited for each new
game the time complexity of the nonemptiness game is O(n2). However, due to the depth-�rst
nature of the nonemptiness games and the fact that the original results store is checked for

4 The store used for the initial game will be referred to as the original store and is never deleted.

y ,q
00

q
0

z ,

q

0

0
z ,

0

q
00

x ,

q
00

qz ,
1

q

x ,

1

qz ,
1

q
1

x ,

q
1

x ,

q
1

z ,

q
1

k ,

q
1

k ,

q
1

k ,

q

k ,

x ,

q
1

y ,

q
00

k ,

q
00

x , q
1

x ,

q
1

x ,

q
1

y ,

qz ,
1

q

1

1

q
1

x ,

q
1

k ,q
1

y ,

T

Port

Port

Brandy

Brandy

qz ,
1

z ,

z ,
1

q
1

x ,

q
1

k ,q
1

y ,

q
1

y ,

q

T

T

T

T

Port

Port

Port

Port

Port

PortPort

Port

Port

Port

Port

Port

Port Port

Brandy

Brandy

Brandy

Brandy

Brandy

q
1

y ,

Not Played

From Store:

Add Store:

Add Store:

Add Store:

Add Store:

Port

Port

From Store:

Add Store: From Store:

Port
Add Store:

Port

T

PortBrandy

Port

New Game

Port

Port

Add Store 1:

Add Store 1: Add Store 1:

Fig. 7. New Games combined with Results Store

winning positions during a new game, new games tend only to traverse all n positions the
�rst time the game is played and subsequently the results store provides the results. The time
complexity of the nonemptiness game is therefore O(cn), where c � n and c is the number of
new games that will not immediately �nd a winning position from the results store. In fact
there is a relationship between c and the number of strongly connected components in the
Kripke structure (and the product automaton therefore): for each SCC in K � AD;' a new
game might be required that will visit at most all the positions in the SCC. An example of
this is the new game in Figure 7: the new game from (z; q1) visits the positions (x; q1), (y; q1),
(k; q1) and (k; q1) (which are all part of the same SCC), but the other new games only visit
at most all their immediate successor positions.

The space complexity of the nonemptiness game is the amount of space required for the
stack plus the space required for each of the games' results stores. The space requirement for
one results store is linear in the number of positions n, and since we can reuse the space when
a game is �nished the space complexity is O(k + n), where k is the space required for the
stack (in general k � n)

6 Optimised Games

We show that the number of new games played can be reduced by exploiting the structure of
the HAA. Firstly we show that checking the nonemptiness of a HAA translated from an LTL
formula is similar to the nested depth-�rst algorithm of section 3.2, next we give the special

rules for when to play new games in the CTL case and lastly we consider optimised rules for
general CTL� formulas.

6.1 LTL Nonemptiness Games

Here we are interested in CTL� formulas of the form A' and E' where ' contains no state-
subformulas (call them linear time formulas). From section 4.2 (and in more detail [Ber95])
we know that the HAA obtained from formulas of the form E' only contain _-choices and
those for A' only contain ^-choices.The nonemptiness games for linear time formulas can
therefore be considered to be boring games for one of the two players, since either all the
moves will be made by Port (for E' formulas) or by Brandy (for A' formulas). Furthermore,
when Port makes all the moves the acceptance condition is (G; ;) and when Brandy makes
all the moves it is (;; B) [Ber95]. Therefore from the winning conditions in the nonemptiness
game given in Figure 5, if Port (Brandy) moves and G (B) is empty then any position on
the current play that is revisited means a win for Brandy (Port). However, if G (or B) is not

q �(q; f:pg; k) �(q; fpg; k)

q0
Vk�1
c=0 (c; q1)

Vk�1
c=0 (c; q0)

q1
Vk�1
c=0 (c; q1)

Vk�1
c=0 (c; q0)

Fig. 8. AD;AFGp = (ffpg; f:pgg; D; fq0; q1g; �; q0; (fg; fq1g))

empty then the fact that the Si set is not necessarily singleton means some of the positions
in the set can now be in G (B) and other positions not in G (B). For example the HAA
translated from the formula AFGp (Figure 8) has an Si set containing two states (q0 and q1)
of which only one (q1) is in the B set. When a nonemptiness game, without any new games,
are played for an automaton of the above form, the use of a results store might cause a cycle
through a position in G (B) to be missed and consequently a winning position can be labelled
incorrectly. A new game is thus required to �nd a cycle through positions that are either in
B or G. This, combined with the fact that only one player moves in a game and that cycles
in a play, where no position is in G (B) are trivially labelled, allows us to make the following
optimised rule for linear time nonemptiness games:

� During the nonemptiness game for K � AD;' where ' is a linear time formula, new games need only be
played from positions that are either in G or B.

This is the same rule that is used in the nested depth-�rst search used in the SPIN model
checker [HPY96] (see also section 3.2). Here we have presented a justi�cation for this rule in
the setting of the nonemptiness game.

6.2 CTL Nonemptiness Games

In [Vis98] it was shown that CTL formulas can be translated to 1-HAA (HAA with singleton
Si sets). Hence, unlike in the linear time case, the introduction of a results store cannot cause

a position in G (B) to be labelled incorrectly as a win for the wrong player. Intuitively, when
a cycle in a play is found during a CTL nonemptiness game if all the positions in infpos

are in G then Port wins the play (vice versa for B and Brandy); if one of these positions in
infpos is revisited in a later play then the result in the store can be reused since the new play
will also have a cycle through the positions in infpos (this is not necessarily true in the linear
time case). This would seem to indicate that new games need only be played from positions
that are neither in G nor B. This rule is however too weak.

In the linear time case we have seen that all the moves in a game are made by the same
player. Let us now de�ne Si sets with all the transitions either consisting of only _-choices
or only ^-choices to be one-player sets. Similarly, a set with transitions consisting of both
_-choices and ^-choices is called a two-player set. In the linear time nonemptiness game all
the Si sets are therefore one-player sets. In the 1-HAA for the CTL formula AGEFp, given in
Figure 3, the set Sq0 (i.e. Si set containing q0) is a two-player set, whereas the set Sq1 (i.e. Si
set containing q1) is a one-player set. From the linear time case we know that for a one-player
set no new games are required if the positions in the set are not in G nor B. This leads to the
following stronger rule:

� During the nonemptiness game for K �AD;' where ' is a CTL formula, new games need only be played
from positions that are neither in G nor in B but are referred to in the transition function of a two-player
set.

Again considering the 1-HAA for AGEFp (Figure 3), both Si sets of the automaton are
referred to in the transition function of the two-player set Sq0 and therefore new games must
be played for all positions visited during the nonemptiness game.

In the CTL nonemptiness game it is unnecessary to play new games for positions in the
initial Si set. The reason is that if we consider the positions in lower Si sets already to be
labelled then the boolean transition function for the states in the initial set reduces to only
referring to positions from itself. Therefore, it can be considered to be a one-player set and
no new games are required for these positions regardless whether the positions are in G or B.
For example in the 1-HAA for AGEFp, positions with a q0 component are in the initial Sq0
set and therefore no new games will be played for these positions.

6.3 CTL� Nonemptiness Games

q �(q; f:p;:qg; k) �(q; fpg; k) �(q; fqg; k) �(q; fp; qg; k)

q0
Vk�1
c=0 (c; q1)

Vk�1
c=0 (c; q0) true true

q1
Vk�1
c=0 (c; q1)

Vk�1
c=0 (c; q1) true true

Fig. 9. AD;A(Gp_Fq) = (2fp;qg; D; fq0; q1g; �; q0; (fg; fq1g))

Although in the LTL case all states in the HAA can be considered part of the same Si
set, splitting this set into singular sets where possible can allow more e�cient nonemptiness
games. In the CTL case we saw that for 1-HAA, when positions from one of the Si sets are in

G or B then no new games are required for these positions. Therefore, in the LTL case if the
Si set of the HAA is divided into smaller Si sets and it is found that all the positions in G
(B) are in singleton Si sets then no new games are required. For example, consider the HAA
for the formula A(Gp _ Fq) given in Figure 9. If we consider both states of the HAA to be
in the same Si set then new games must be played for positions with a q1 component since
these positions are in B. Whereas if we consider the HAA to have two Si sets then it is clear
that no new games are required.

LTL CTL

1 For all states in HAA, 1 For all states in HAA,
set NewGame ag to false. set NewGame ag to false.

2 Construct minimal Si sets. 2 Si sets are singleton (i.e. minimal).
3 For all states in G (B) and 3 For all states not in G or B and referred
not in a singleton set, to in the transition function of a
set NewGame true. two-player set, set NewGame true.

4 Set NewGame for initial state to false.

Table 1. New game rules in nonemptiness Game for CTL and LTL

The di�erent rules for determining when to play new games in the CTL and LTL environ-
ments are summarised in Table 1. First, the HAA for the CTL or LTL formula is built and
then analysed according to the rules in Table 1. After completing the analysis each state in
the HAA will have its NewGame ag either set to true or false. When the product with the
Kripke structure is taken the product state's NewGame ag will be copied from the states
of the HAA for the formula. When the depth-�rst algorithm backtracks from a position the
NewGame ag is tested to see whether a new game is required from the position.

By adding a simple proviso to the rules for playing the nonemptiness game the rules
in Table 1 is also su�cient to play nonemptiness game for full CTL�. Here we will only
give informal arguments for why this is the case, the interested reader is referred to [Vis98]
where it is discussed in detail. First observe that a CTL� formula can consists of a boolean
combination of CTL and/or LTL formulas or nesting of such formulas. It is easy to see that the
HAA for a boolean combination of formulas will adhere to the rules of Table 1, the HAA for
a nesting of formulas (e.g. the HAA for AFG(EFp)) will however need additional treatment.
In fact we only need the following proviso: when a next move is to be picked by a player, a
move that leads to a lower Si set must be picked �rst. This has the e�ect of �rst playing a
game for all subformulas before playing a game for the formula itself. For example for the
HAA for AFG(AGEFp) we �rst play games from the positions of AGEFp, which will be CTL
games, before playing the games for the positions of AFGq (where q can be considered the
propositional result of playing the game for AGEFp) which will be LTL games.

An interesting observation is that when a formula is to be model checked that is both a
CTL and an LTL formula then no new games will be required: HAA for CTL formulas always
have singleton Si sets and HAA for LTL formulas can only contain one-player Si, therefore
from Table 1 it follows no new games will be played. Note that this result also indicates that
for B�uchi automata for which all cycles are self-loops no second search will ever be necessary
and can therefore be used to reduce the number of nested depth-�rst searches required within
SPIN.

7 Implementing the Nonemptiness game in SPIN

It is obvious that it would be simple to implement the LTL nonemptiness game in SPIN.
However, adding the CTL� nonemptiness games would require some fundamental changes.
Firstly, it is worth noting that whereas for the LTL games at most one new game will be
required (from the result for the nested depth-�rst search [GH93]), in the CTL� case many
(nested) games might be required depending on the formula to be checked. Also, in the CTL�

case we currently require that the results stores for the new games be deleted when the games
terminate5, which is not necessary for the strictly LTL case (again from [GH93]). The biggest
single change to SPIN would be to replace the never claim with a di�erent notation to handle
the positive boolean functions used with the HAA. Speci�cally to handle the case where we
have ^ connectives.

We have implemented a CTL� model checker that works with HAA and the nonemptiness
game approach [Vis98]. One of the features of this model checker is that it was designed with
the view to easily facilitate changing the design formalism to be checked. Currently we check
asynchronous hardware designs described in the Rainbow formalism [VBF+97]. The next step
would be to do PROMELA designs.

8 Concluding Remarks

We showed that the automata approach that led to e�cient LTL model checking algorithms
can be generalised to full CTL�. This is to the best of our knowledge the �rst such algorithm.

Traditional CTL model checkers use bottom-up algorithms that require the whole state
graph to be kept in memory (albeit in encoded form when using BDDs), whereas in our ap-
proach a top-down on-the-y generation of the state space is possible. It is however interesting
to note that in this top-down approach, CTL is \more di�cult" to check than LTL, since
more than one new game might be required depending on the formula (e.g. AG(EFp^EFq)
would require new games for both EFp and EFq).

References

[Ber95] O. Bernholtz. Model Checking for Branching Time Temporal Logics. PhD thesis, The Technion,
Haifa, Israel, June 1995.

[BVW94] O. Bernholtz, M. Vardi, and P. Wolper. An Automata-Theoretic Approach to Branching-Time
Model Checking. In CAV '94: 6th International Conference on Computer Aided Veri�cation, vol-
ume 818 of Lecture Notes in Computer Science, 1994.

[CE81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons using Branching
Time Temporal Logic. In D. Kozen, editor, Proceedings of IBM Workshop on Logic of Programs,
pages 52{71. Lecture Notes in Computer Science, 131, 1981.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Veri�cation of Finite-State Concurrent
Systems Using Temporal Logic Speci�cations. ACM Transactions on Programming Languages and

Systems, 8(2):244{263, April 1986.
[CVWY92] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-E�cient Algorithms for the

Veri�cation of Temporal Properties. Formal Methods in System Design, 1:275{288, 1992.

5 This requirement needs further investigation; we believe it might not be necessary, although it is in our
prototype implementation.

[EJ88] E.A. Emerson and C.S. Jutla. Complexity of Tree Automata and Modal Logics of Programs. In
29th annual IEEE Symposium on Foundations of Computer Science, 1988.

[GH93] P. Godefroid and G.J. Holzmann. On the Veri�cation of Temporal Properties. In Participants

Proceedings of the 13-th IFIP Symposium on Protocol Speci�cation, Testing, and Veri�cation, Li�ege,
Belgium, 25-28 May 1993.

[GPVW95] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-y automatic veri�cation of linear
temporal logic. In Protocol Speci�cation Testing and Veri�cation, pages 3{18, Warsaw, Poland,
1995. Chapman & Hall.

[Hol91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, Englewood Cli�s,
New Jersey, 1991.

[Hol97] G. Holzmann. Invited Presentation, November 1997. Formal Methods Day, Royal Holloway &
Bedford NW College, University of London.

[HPY96] G.J. Holzmann, D. Peled, and M. Yannakakis. On Nested Depth First Search. In Jean-Charles
Gregoire, Gerard J. Holzmann, and Doron Peled, editors, Proceedings of the Second Workshop in

the SPIN Veri�cation System. American Mathematical Society, DIMACS/39, August 1996.
[Lam80] L. Lamport. Sometimes is sometimes \not never" | on the Temporal Logic of Programs. Pro-

ceedings 7th ACM Symposium on Principles of Programming Languages, pages 174{185, January
1980.

[LP85] Orna Lichtenstein and Amir Pnueli. Checking That Finite State Concurrent Programs Satisfy Their
Linear Speci�cation. Proceedings 12th ACM Symposium on Principles of Programming Languages,
pages 97{107, January 1985.

[MSS86] D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating Automata, the Weak Monadic Theory
of the Tree and its Complexity. In 13th International Colloquium on Automata, Languages and

Programming, volume 226 of Lecture Notes in Computer Science, 1986.
[MSS88] D.E. Muller, A. Saoudi, and P.E. Schupp. Weak Alternating Automata give a Simple Explanation

of why Temporal and Dynamic Logics are Decidable in Exponential Time. In Third Symposium

on Logic in Computer Science, pages 422{427, July 1988.
[QS82] J.P. Queille and J. Sifakis. Speci�cation and Veri�cation of Concurrent Systems in CESAR. In

International Symposium on Programming, volume 137 of Lecture Notes in Computer Science,
1982.

[Sti95] C. Stirling. Local model checking games. In CONCUR '95: 6th International Conference on

Concurrency Theory, volume 962 of Lecture Notes in Computer Science, 1995.
[Sti96] C. Stirling. Games and model mu-calculus. In TACAS '96: 2nd International Workshop on Tools

and Algorithms for the Construction and Analysis of Systems, volume 1055 of Lecture Notes in

Computer Science, 1996.
[Tar72] Robert E. Tarjan. Depth-First Search and Linear Graph Algorithms. Society for Industrial and

Applied Mathematics, 1(2):146{160, 1972.
[VBF+97] W. Visser, H. Barringer, D. Fellows, G. Gough, and A. Williams. E�cient CTL� Model Checking

for the Analysis of Rainbow Designs. Proceedings of CHARME '97, Montreal, October 1997.
[Vis98] W.C. Visser. E�cient CTL� Model Checking using Games and Automata. PhD thesis, Manchester

University, June 1998.
[VW86a] M. Vardi and P. Wolper. Automata-theoretic Techniques for Modal Logics of Programs. Journal

of Computer and System Science, 32(5), 1986.
[VW86b] M.Y. Vardi and P. Wolper. An Automata Theoretic Approach to Automatic Program Veri�cation.

In First Symposium on Logic in Computer Science, pages 322{331, June 1986.
[VW94] M. Vardi and P. Wolper. Reasoning about In�nite Computations. Information and Computation,

115(1), 1994.
[Wol89] P. Wolper. On the Relation of Programs and Computations to Models of Temporal Logic. In

Temporal Logic in Speci�cation, volume 398 of Lecture Notes in Computer Science, 1989.

