
Toward an Operational Semantics of PROMELA in ACL2

William R. Bevier

Computational Logic, Inc.
1717 West 6th Street, Suite 290

Austin, Texas 78703-4776
bevier@cli.com

1 Introduction

PROMELA is a language for modeling concurrent systems, developed speci�cally for de-
scribing communication protocols. Analysis of some properties of PROMELA models is
automated by the SPIN model checker [Hol91].
Currently, the semantics of PROMELA is most completely and accurately de�ned by the

C implementation of SPIN. It would be preferable to have a formal de�nition of PROMELA
semantics independent of this implementation. This report describes an operational semantic
de�nition for most of PROMELA in the logic of ACL2 [KM94]. It should be considered a
preliminary version, which can be re�ned in response to public scrutiny.
Natarajan and Holzmann have described an operational semantics for a smaller subset of

PROMELA. Their semantics is based on labeled transition systems [NH96]. The semantic
de�nition presented here was created independently and does not re
ect the structure of
their de�nition, although there are many similarities.
This de�nition complements their work and o�ers several advantages. First, ACL2 per-

forms some useful error checking on the de�nition. The number of arguments and results of
each function is checked for consistent usage. The termination of each function is proved at
the time it is accepted. The primitive ACL2 type of the result of each function is automati-
cally deduced.
It is possible to use ACL2 to check properties of the de�nition. The semantic de�nition

is complex, and it is helpful to verify some of its expected properties to avoid errors. Each
function can be adorned with guards, which describe pre-conditions on function arguments.
Guard proofs can be checked in ACL2. A useful thing to do, which we have only begun, is
to de�ne the predicate that characterizes a legal PROMELA state and show that it is an
invariant of the semantic function.
ACL2 includes an automatic re-play facility. Once a semantic de�nition is completed,

modi�cations to it can be re-played. Only events which fail to get accepted by the theorem
prover need attention from the user. The re-play facility can help to make sure that impor-
tant invariants of the model are preserved after modi�cations have been made. In general,
proposed changes to the language can be analyzed with proof-checking support.
A second bene�t of this style of model is that it is executable. We can simulate PROMELA

models directly in this de�nition. The ability to \debug" the model via execution is very
helpful. We have chosen to make the model executable; ACL2 does not limit one to building

1

executable models. Because of this choice, a number of concepts are not modeled as generally
as one would like.
Finally, a model such as this opens up possibilities in the combined use of theorem proving

and model checking for analysis. Approaches to proof-based veri�cation for notations like
TLA [Lam91] and Unity [CM88] exist. The techniques developed for these notations can be
adapted for proving properties of PROMELA programs. This can be another way around
the state explosion problem.
Can this de�nition (or some modi�cation of it) serve as a reference model for PROMELA

semantics? Can the the de�nition ful�ll some purpose in addition to documentation? In the
near future we hope to make the de�nition publicly available for experimentation to help
answer these questions.
This paper should be considered a report on work in progress, not a polished result. The

purpose of this paper is to announce the presence of this model, and to see if there is interest
in its use. Any errors are due to the author's misunderstanding of PROMELA semantics.
Section 2 presents the language that we handle, and gives an example program. Section 3

gives a sketch of the semantic model for this language. In the future, a full technical report
will contain the details. Section 4 o�ers a comparison of the structures of the PROMELA
ACL2 model and the semantic de�nition in [NH96]. Section5 discusses the state of the formal
semantics as a software system. Section 6 provides a brief introduction to ACL2, and can
be used as a reference for various constructs presented in the paper.

2 The Language

For the sake of simplicity, Natarajan and Holzmann have excluded the following issues from
their semantic de�nition.

1. array variables

2. assert statements

3. never claims

4. correctness properties expressed by progress and accept labels

5. multiple arguments on run statements

6. multiple �elds in a message

7. compound statements, including control
ow statements

8. other \uninteresting" statements like printf and skip

Our de�nition handles all of the above except 3 and 4. We also model the dynamic creation
of variables and channels in a style di�erent from [NH96]. We do not model deterministic
steps or process priorities.

2

This de�nition includes one major simpli�cation, which is merely an expediency. All
primitive numeric data types are unbounded integers. We have not yet extended ACL2 with
a �nite arithmetic library, so we rely on the unbounded arithmetic built in to ACL2. Fixing
this is just a matter of time and energy. Section 2.1 gives the grammar of the language we
handle. Section 2.2 shows an example program.

2.1 Grammar

We present a grammar for the forms directly read in by the PROMELA semantic function,
which adopts the syntactic conventions of Common Lisp. Using lex and yacc we can easily
build a front end that will let us parse the C-syntax of PROMELA and generate programs
in this form. Lower case symbols in this grammar are non-terminals. Upper case symbols
are terminals. Parentheses are not meta-symbols; they appear where they are syntactically
required.

Toplevel Forms

start ::= unit+

unit ::= define | proctype | init | one-decl | mtype

define ::= (DEFINE name expr)

proctype ::= (PROCTYPE name decl-list body))

init ::= (INIT body))

mtype ::= (MTYPE name+)

Declarations

decl-list ::= one-decl*

one-decl ::= (typesymbol ivar+)

ivar ::= var-decl | (ASSIGN var-decl initializer)

initializer ::= expr | ch-init

ch-init ::= (OF cap-spec (typesymbol+))

cap-spec ::= natural | symbol

var-decl ::= name | (name natural)

Statements

body ::= stmt

stmt ::= structured-stmt | elementary-stmt | (label @ stmt)

label ::= (symbol+)

structured-stmt ::= atomic | selection | repetition | sequence

atomic ::= (ATOMIC stmt*)

selection ::= (IF option+)

repetition ::= (DO option+)

sequence ::= (SEQ stmt*)

option ::= (OPTION stmt*)

3

elementary-stmt ::= assertion | assignment | break | end | expr |

goto | one-decl | printf | receive | send | skip

assertion ::= (ASSERT expr)

assignment ::= (ASSIGN var-ref expr)

break ::= (BREAK)

end ::= (END)

goto ::= (GOTO label)

printf ::= (PRINTF string expr*)

receive ::= (RECEIVE var-ref convar*)

send ::= (SEND var-ref expr*)

skip ::= (SKIP)

Types and Expressions

typesymbol ::= BIT | BOOL | BYTE | SHORT | INT | CHAN

convar ::= symbol

name ::= symbol

expr ::= constant | var-ref | opr-application

constant ::= integer

var-ref ::= name | (NTH expr name)

opr-application ::= (== expr expr) | (+ expr expr) |

(- expr expr) | (* expr expr) |

(/ expr expr) | (% expr expr) |

(NEG expr) | (AND expr expr) |

(OR expr expr) | (NOT expr) |

(IMP expr expr) | (IFF expr expr) |

(XOR expr expr) | (< expr expr) |

(<= expr expr) | (> expr expr) |

(>= expr expr) | (LEN expr) |

(? expr (* expr)) | (TIMEOUT) |

(RUN (name (* expr))) |

(NTH expr expr)

2.2 An Example Program

Here is the PROMELA factorial program as presented in [Hol91].

proctype fact(int n; chan p)

{ int result;

if

:: (n <= 1) -> p!1;

:: (n >= 2) ->

chan child = [1] of { int};

run fact(n-1, child);

child?result;

p!n*result

fi

}

4

init

{ int result;

chan child = [1] of {int };

run fact(5, child);

child?result;

printf("result: %d\n", result)

}

The internal representation of this program accepted by our grammar, and processed by
our interpreter appears as follows.

(proctype fact ((int n) (chan p))

(seq (int result)

(if (option (<= n 1) (send p 1))

(option (>= n 2)

(chan (assign child (of 1 (int))))

(run (fact (- n 1) child))

(receive child result)

(send p (* n result))))

(end)))

(init (seq (int result)

(chan (assign child (of 1 (int))))

(run (fact 5 child))

(receive child result)

(printf "~%result: ~d" result)

(end)))

Here is a formatted display of the initial state of factorial program as created by the ACL2
PROMELA interpreter. The details of system state are introduced in Section 3.2. However,
we can see that initially no system error is recorded, no process is executing atomically, and
there are no global variables or channels. There is a single process, the initial process. It
is active, and its program counter points to the toplevel of the init program body. At the
start of the computation, there are no local variables in the initial process.

Error: NIL

Atomic: NIL

Globals:

Channels:

Process 0 (INIT): Active: T; PC: NIL;

Locals:

After three steps, the �rst three statements in the toplevel sequential composition form in
init have been executed. First, the local variable result is allocated in init with default
initial value of 0. Second, the channel child is allocated. An empty channel with capacity
1 is created in channel space, and a local variable child is allocated in init whose value is

5

the address of the new channel. Third, a fact process is created. Parameters are allocated
as local variables. Note that in this display, we do not show the type of variables, or the
type and capacity of channels.

Error: NIL

Atomic: NIL

Globals:

Channels: 0 = NIL;

Process 0 (INIT): Active: T; PC: (4)

Locals: CHILD = 0; RESULT = 0

Process 1 (FACT): Active: T; PC: NIL

Locals: N = 5; P = 0

Here is the �nal state of a computation of 5!. It shows that �ve channels and �ve fact

processes have been created. At the end of the process, all channels are empty. The local
variables assigned to each process are displayed. The program counter of each process points
to an end statement.

Error: NIL

Atomic: NIL

Globals:

Channels: 4 = NIL; 3 = NIL; 2 = NIL; 1 = NIL; 0 = NIL;

Process 0 (INIT): Active: NIL; PC: (6);

Locals: CHILD = 0; RESULT = 120

Process 1 (FACT): Active: NIL; PC: (3);

Locals: CHILD = 1; RESULT = 24; N = 5; P = 0

Process 2 (FACT): Active: NIL; PC: (3);

Locals: CHILD = 2; RESULT = 6; N = 4; P = 1

Process 3 (FACT): Active: NIL; PC: (3);

Locals: CHILD = 3; RESULT = 2; N = 3; P = 2

Process 4 (FACT): Active: NIL; PC: (3);

Locals: CHILD = 4; RESULT = 1; N = 2; P = 3

Process 5 (FACT): Active: NIL; PC: (3);

Locals: RESULT = 0; N = 1; P = 4

3 Sketch of the Semantic De�nition

The state of a PROMELA computation is described by a complex structure discussed in
the following sections. Among the components of a PROMELA state are a list of global

6

constants, a list of global variables, a list of channels, and a list of processes. There are other
control �elds in the state structure, which are described later.
The semantics of PROMELA is captured in a function called step-fn, which de�nes the

e�ect on a state by a primitive operation. The arguments to step-fn are a system state and
a current process identi�er. The value returned is an updated system state.
We present the de�nition of step-fn in the order that ACL2 processes it. This means we

begin with primitive concepts and move toward higher levels. step-fn is the last de�nition.
For the sake of brevity, many de�nitions are omitted.
Section 3.1 discusses preliminary de�nitions. Section 3.2 presents the structure of state.

Section 3.3 describes expression evaluation. Statement executability is discussed in Section
3.4. A sketch of the semantics of some statements is given in Section 3.5. Section 3.6 gives
the toplevel de�nition of step-fn.

3.1 Foundation

System Constants

The following system constants are de�ned. We give them speci�c values to make the step
function executable. These can be changed to any natural number.

(defun maxprocesses () 100)

(defun maxchannels () 100)

(defun maxchannelcapacity () 10)

Types

A primitive type is one of bit, bool, byte, short, int, or chan. A value of type chan is
a pointer to a message queue. The boolean type is synonymous with the bit type. We use
symbolic representations for these types. For example, a bit type is de�ned as follows.

(defun bit-t () 'bit)

The predicate type-p recognizes a legal type. type-list-p recognizes a list of types, and
is introduced by the deflist mechanism described in Section 6.

(defun type-p (x) (member x (list (bit-t) (byte-t) (short-t) (int-t) (chan-t))))

(deflist type-list-p (l) type-p)

The function in-type recognizes a value in the domain of a given type. default-val

creates a default value for a given type. cast-val casts a value to a given type. We omit
these de�nitions.

7

Channels

A message is a tuple, represented as a list of values. A channel is represented by a chan

structure containing the following �elds.

id the id of a channel; a natural number
cap the channel capacity

fldtypes the type of a message, represented as a list of type expressions
contents a FILO list of messages

(defstructure chan

(id (:assert (naturalp id)))

(cap (:assert (and (naturalp cap)

(< cap (maxchannelcapacity)))))

(fldtypes (:assert (type-list-p fldtypes)))

(contents (:assert (true-listp contents))))

PROMELA channel space is represented as a list of chan structures. Since the �rst element
of a chan is its id, a list of chan's can be interpreted as an alist whose domain is the set of
ids.1 We use assoc to look up a channel with a given id, and put-tuple to add or replace
a channel in a list. In the following, chan-list-p recognizes a list of chan structures.

(deflist chan-list-p (l) chan-p)

make-channel takes as arguments a channel capacity, a message type, and a list of chan-
nels. It returns a multiple value consisting of a new channel id, and an updated channel list
containing a new channel. make-channels creates n channels. It returns a multiple value
consisting of n new channel ids, and a list of channels with the new channels added.

(defun make-channel (cap fldtypes channels)

(declare (xargs :guard

(and (naturalp cap) (type-list-p fldtypes)

(< 0 (len fldtypes)) (chan-list-p channels))))

(let ((id (excess-natural (domain channels))))

(mv id

(cons (make-chan :id id :cap cap :fldtypes fldtypes :contents

nil)

channels))))

Variables

A variable, its type, and current value is represented by a dcell.

1This is an ugly hack that's too convenient to resist.

8

name variable name (a symbol)
type type of the variable;

interpreted as primitive or an array,
depending on whether nel is 0 or positive

nel number of elements;
0 for a primitive type, positive for an array type

val current value of the variable;
one of: a number, channel id, or array (represented as a list)

(defstructure dcell

(name (:assert (symbolp name)))

(nel (:assert (naturalp nel)))

(type (:assert (type-p type)))

(val (:assert (in-type val type nel))))

The following functions are de�ned in the model. dcell-list-p recognizes a list of dcells.
dcell-names collects the variable names of a list of dcells. dcell-types collects the types
of a list of dcells.
We use initial-dcell to construct a dcell. default-dcell constructs a dcell using the

default value of the type as initial value. initial-dcells creates a list of integer-valued
dcells from a lists of names, types and initial values.

(defun initial-dcell (name type nel val)

(declare (xargs :guard

(and (symbolp name) (type-p type) (naturalp nel) (naturalp val))))

(if (zerop nel)

(make-dcell :name name :type type :nel (nfix nel) :val

(nfix val))

(make-dcell :name name :type type :nel nel :val

(make-list nel :initial-element (nfix val)))))

initial-chan initializes a single channel or an array of channels, determined by nel. Two
values are returned. The �rst is a dcell containing a variable whose type is a channel id or
list of channel ids. The second is an updated channel list, with the appropriate number of
new channels allocated.

Program Control

A program is represented by an s-expression. A location in a program, called a pc, is a
path into an s-expression. A pc is a list of natural numbers. A pc is ok with respect to a
program body if each of its elements is, successively, a valid index at the next level of the
body. pc-get fetches the statement at position pc in body. push-pc is used for adding one
level of depth to a given pc. incr-pc increments a pc at its deepest point. pop-pc drops
the lowest n levels from a pc.

9

(defun pc-ok (pc body)

(declare (xargs :guard (natural-listp pc)))

(cond ((endp pc) t)

(t (and (< (car pc) (len body))

(pc-ok (cdr pc) (nth (car pc) body))))))

(defun pc-get (pc body)

(declare (xargs :guard (and (natural-listp pc) (pc-ok pc body))))

(cond ((atom pc) body)

(t (pc-get (cdr pc) (nth (nfix (car pc)) body)))))

(defun incr-pc (n pc)

(declare (xargs :guard

(and (naturalp n) (consp pc) (natural-listp pc))))

(append (butlast pc 1) (list (+ n (car (last pc))))))

3.2 System State

Programs

A program label is a list of symbols. End labels are those whose �rst element is the symbol
'end. A program body is an s-expression. We assume that a pre-processor removes labels
from programs. A mapping from labels to locations in a program represents this information
explicitly. A program is represented by a pgm structure.

name program name
args list of dcells containing the names and types of program parameters

labels mapping from labels to positions in the program body
body an s-expression representing a statement

without internal labels

(defstructure pgm

(name (:assert (symbolp name)))

(args (:assert (dcell-list-p args)))

(labels (:assert (label-to-location labels)))

body)

Processes

A process structure represents the execution state of an individual process.

id a unique natural number identi�er
name the name of the program (proctype name) the process is running

active the program is eligible for execution
pc program counter

locals local variables
children ids of child processes

10

(defstructure process

(id (:assert (naturalp id)))

(name (:assert (symbolp name)))

(active (:assert (booleanp active)))

(pc (:assert (natural-listp pc)))

(locals (:assert (dcell-list-p locals)))

(children (:assert (natural-listp children))))

Global State

A st structure represents a PROMELA system state. It contains all processes, globals and
and channels, as well as necessary control information. In the remainder of this report, the
variable name st represents a global state.

error a system error
atomic a process id or nil
timeout a
ag used to handle timeout semantics
globals global variables

channels channels
output a format string which can be displayed by the environment

constants constant symbols
processes list of processes

pgms program de�nitions

(defstructure st

(error (:assert (true-listp error)))

(atomic (:assert (or (naturalp atomic) (null atomic))))

(timeout (:assert (booleanp timeout)))

(globals (:assert (dcell-list-p globals)))

(channels (:assert (chan-list-p channels)))

(output (:assert (true-listp output)))

(constants (:assert (dcell-list-p constants)))

(processes (:assert (process-list-p processes)))

(pgms (:assert (pgm-list-p pgms))))

The following supporting functions are de�ned on state. fetch-stmt returns the current
program statement for a given process. active-processes collects the identi�ers of the
active processes in a list of processes. all-inactive is true if all of list of process ids
identify inactive processes in a given state.

3.3 Expression Evaluation

The semantics of each operation is de�ned by a function which returns three results: an error
value (nil means no error), an operation value, and an updated state. The state is required
since one expression, run, has a side e�ect on state. We omit the de�nitions of most of the
semantic functions, since they are obvious. See Section 2 for the set of operations that are
handled.

11

check-fn de�nes the semantics of the channel test operator. This operator asks if there
exists a message on a channel, and if so, whether it matches the pattern of constants and
variables supplied by the list convars. The function msg-pattern-match de�nes the pattern
matching algorithm: any constant in convars must equal the corresponding �eld in msg.

(defun msg-pattern-match (convars msg constants)

(declare (xargs :guard (and (true-listp convars)

(true-listp msg)

(dcell-list-p constants))))

(cond ((endp convars) (endp msg))

((endp msg) nil)

((integerp (car convars))

(and (equal (car convars) (car msg))

(msg-pattern-match (cdr convars) (cdr msg) constants)))

(t (let ((dcell (assoc-equal (car convars) constants)))

(and (implies dcell (equal (dcell-val dcell) (car msg)))

(msg-pattern-match (cdr convars) (cdr msg) constants))))))

(defun check-fn (chid convars st)

(let ((chan (assoc chid (st-channels st))))

(cond ((null chan) (mv (list 'bad 'channel 'id chid) 0 st))

((null (chan-contents chan)) (mv nil 0 st))

(t (let ((msg (car (chan-contents chan))))

(mv nil

(if (msg-pattern-match convars msg (st-constants st)) 1 0)

st))))))

The run operation returns an error
ag, the identi�er of a new process (meaningful only if
no error occurs), and an updated state. The initial set of local variables for the new process
consists of its formal parameters bound to the actual arguments. The new process identi�er
is recorded in the parent process.

(defun run-fn (pgmname args pid st)

(if (>= (len (active-processes (st-processes st))) (maxprocesses))

(mv '(process limit exceeded) 0 st)

(let ((pgm (assoc-equal pgmname (st-pgms st))))

(cond ((null pgm) (mv (list 'unknown 'program pgmname) 0 st))

(t (let* ((newpid (len (st-processes st)))

(newprocess (make-process :id newpid

:name pgmname

:locals

(initial-dcells

(dcell-names (pgm-args pgm))

(dcell-types (pgm-args pgm))

args))))

(mv nil

newpid

(update-st st :processes

(append (add-child newpid pid st)

(list newprocess))))))))))

12

The function evl takes an expression, a process identi�er and a state as arguments. It
returns an (error, value, state) triple as discussed above. evl-list takes as arguments
a list of expressions, a process id and state. The value component of the triple returned by
evl-list is a list of expression values. These functions do a pattern match on the form of
an expression, and dispatch the appropriate semantic function. We omit most of the details.

(defun evl (expr pid st)

(declare (xargs :guard (and (naturalp pid) (st-p st)

(< pid (len (st-processes st))))))

(cond ((integerp expr) (mv nil expr st))

((symbolp expr) (let ((dcell (assoc-equal expr (variable-env pid st))))

(cond (dcell (mv nil (dcell-val dcell) st))

(t (mv `(unbound symbol ,expr) 0 st)))))

((consp expr)

(case-match expr

(('== a b) (mv-let (err args st1) (evl-list (list a b) pid st)

(if err (mv err 0 st)

(eq-fn (car args) (cadr args) st1))))

(('+ a b) (mv-let (err args st1) (evl-list (list a b) pid st)

(if err (mv err 0 st)

(add-fn (car args) (cadr args) st1))))

...

(('RUN (pgmname . args)) (mv-let (err vals st1) (evl-list args pid st)

(if err (mv err 0 st)

(run-fn pgmname vals pid st1))))

(('TIMEOUT) (if (st-timeout st)

(mv nil 1 (update-st st :timeout nil))

(mv nil 0 st)))

(& (mv `(unrecognized opr ,(car expr)) 0 st))))

(t (mv `(unrecognized expr ,expr) 0 st))))

(defun evl-list (exprs pid st)

(declare (xargs :guard (and (naturalp pid) (st-p st)

(< pid (len (st-processes st))))))

(cond ((endp exprs) (mv nil nil st))

(t (mv-let (err1 val1 st1) (evl (car exprs) pid st)

(mv-let (err2 vals st2) (evl-list (cdr exprs) pid st1)

(mv (or err1 err2)

(cons val1 vals)

st2))))))

3.4 Executability

A statement s in behalf of active process p is executable if either no atomic transition is
in progress, or p is executing atomically and some statement-speci�c condition is satis�ed.

13

Many of the statements are always executable. Here we present in some detail the exe-
cutability of expressions and the send statement.
An expression is executable (evl-executable) if it evaluates to a non-zero value without

error. A list of expressions is executable (evl-list-executable) if all execute without error.

(defun evl-executable (expr pid st)

(mv-let (err val st1) (evl expr pid st) (declare (ignore st1))

(and (not err) (not (zerop val)))))

(defun evl-list-executable (exprs pid st)

(mv-let (err vals st1) (evl-list exprs pid st)

(declare (ignore vals st1)) (not err)))

A send operation is executable if it refers to an existing channel, and it is an asynchronous
send to a channel that is not full, or it is a synchronous send to a process that is ready to
receive the given message. The de�nition of an executable receive is analogous. (We omit
the de�nition of the algorithm that detects a matching receive for a synchronous send.)

(defun send-executable (var-ref exprs pid st)

(mv-let (err chid st1) (evl var-ref pid st)

(if err nil

(let ((chan (assoc chid (st-channels st))))

(and chan

(or (and (< 0 (chan-cap chan))

(< (len (chan-contents chan))

(chan-cap chan)))

(and (= 0 (chan-cap chan))

(mv-let (err msg st2) (evl-list exprs pid st1)

(if err

nil

(some-process-has-matching-receive

chid msg st))))))))))

The following forms complete the de�nition of executability. The toplevel predicate is
executable, which determines if the given process can execute in given current state.

(defun stmt-executable (stmt pid st)

(case-match stmt

(('assert expr) t)

(('assign var-ref expr) t)

(('atomic . stmts) (or (null stmts)

(stmt-executable (car stmts) pid st)))

(('break) t)

(('do . options) (some-stmt-executable options pid st))

(('end) (let ((p (nth pid (st-processes st))))

(all-inactive (process-children p) st)))

(('goto label) t)

(('if . options) (some-stmt-executable options pid st))

(('printf string . exprs) t)

14

(('option . stmts) (or (null stmts)

(stmt-executable (car stmts) pid st)))

(('receive var-ref . convars) (receive-executable var-ref convars pid st))

(('send var-ref . exprs) (send-executable var-ref exprs pid st))

(('seq . stmts) (or (null stmts)

(stmt-executable (car stmts) pid st)))

(('skip) t)

(('bit . ivars) t)

(('bool . ivars) t)

(('byte . ivars) t)

(('chan . ivars) t)

(('short . ivars) t)

(('int . ivars) t)

(& (evl-executable stmt pid st))))

(defun executable (pid st)

(declare (xargs :guard (and (naturalp pid) (st-p st))))

(and (or (null (st-atomic st))

(equal (st-atomic st) pid))

(stmt-executable (fetch-stmt pid st) pid st)))

3.5 Statements

The e�ect each statement has on state is de�ned by a semantic function. We display only a
few of them. In each, the function finish-step is responsible for incrementing the program
counter and marking exit from an atomic region.

Assertion

An assertion expression is evaluated. If an error occurs or the expression evaluates to zero,
the an state error is signaled. Otherwise, control passes to the next statement.

(defun assert-fn (expr pid st)

(mv-let (err val st1) (evl expr pid st)

(if err (update-st st :error err)

(if (equal val 0)

(update-st st :error (list 'assertion 'failure expr))

(finish-step pid st1)))))

End

The end operation de-activates a process if all its children are inactive.

(defun end-fn (pid st)

(let ((p (nth pid (st-processes st))))

(update-st st :processes

(put-nth pid

(update-process p :active

(not (all-inactive (process-children p) st)))

(st-processes st)))))

15

Send

An asynchronous send adds a message to a non-full channel. A synchronous send performs
a rendezvous with a matching receive operation. send-fn performs a synchronous or asyn-
chronous send depending on the capacity of the speci�ed channel.

(defun send-fn (var-ref exprs pid st)

(mv-let (errs msg st1) (evl-list exprs pid st)

(if (some-error errs)

(update-st st :error (report-errors errs))

(mv-let (err id st2) (evl var-ref pid st1)

(if (or err (not (bound? id (st-channels st2))))

(update-st st :error (list 'bad 'channel var-ref))

(let ((chan (assoc-equal id (st-channels st2))))

(cond ((zerop (chan-cap chan))

(synchronous-send chan msg pid st2))

(t (asynchronous-send chan msg pid st2)))))))))

3.6 Step Function

The function step-stmt (de�nition omitted) interprets a statement in behalf of a given
process. Primitive statements are handled by the individual semantic functions. Compound
statements including atomic, do, if, seq and option are de�ned as well.
step-fn is the top-level function in the semantic de�nition. It takes a step in behalf of the

indicated process. A new state is returned. A stuttering step is taken on a state in which an
error is recorded, or if the selected process is inactive. Otherwise, step-fn1 is applied with
the timeout
ag set if no statement is executable. A timeout expression is not executable in
a state in which this
ag is false, otherwise it is executable. Finally, if the current executable
statement is interpreted and a resulting state is returned.

(defun step-fn1 (pid st)

(cond ((not (executable pid st)) st)

(t (step-stmt (fetch-stmt pid st) pid st))))

(defun step-fn (pid st)

(declare (xargs :guard (and (naturalp pid) (st-p st) (not (st-timeout st))

(< pid (len (st-processes st))))))

(cond ((st-error st) st)

((not (process-active (nth pid (st-processes st)))) st)

(t (step-fn1 pid (update-st st :output nil

:timeout (all-blocked (active-procs st) st))))))

4 Comparison with Natarajan and Holzmann

The gross structure of our model resembles the semantic de�nition presented by Natarajan
and Holzmann. Both describe a state transition system. The structure of state in [NH96]
consists of

16

a collection of labeled transition systems (LTS) of the form

< Name; Structure; Start; locals; ChansOwned;Active; Param >;

a set of local states of the form

< Name; pid; pc; locals; lChansOwned >;

a global state of the form < X; g >, where X is a set of local states and g is a structure of
the form

< globals; gChansOwned;NrProcs;Handshake; Exclusive;

ChIdMap;ChContMap; timeout; dstep > :

Our pgm structure roughly corresponds to their LTS. However, we do not support the
notion of a static collection of locals and channels assigned to a program. Rather, we have
chosen to model the dynamic allocation of variables and channels. It would seem that the
Active �eld is more appropriately associated with a local state than with an LTS. Also,
their Structure includes dynamic aspects of computation, such as execution mode (e.g.,
atomic, deterministic) and priority. We don't handle priorities, but again, it seems that this
information would be more naturally modeled as part of local state.
Our process structure corresponds to their local state. Again, we omit the notion of

owned channels. We include an active property in a process structure.
Our st structure corresponds to their < X; g > pair. The processes �eld of an st is

analogous to their set of local states X. The rest of the st structure maps more or less
to their global structure g. We collapse their ChIdMap and ChContMap into a single
list of channel structures. Their Exclusive is our atomic; their globals is our globals. We
computeNrProcs from the list of processes. We omit a notion corresponding toHandshake,
and model synchronous message communication without a hidden intermediate state. We
have adopted their strategy for modeling timeouts. We don't handle deterministic steps
(yet).
There are various di�erences in the details of how we de�ne steps. They are suggested by

the di�erences in state structure, so we do not enumerate them. Additionally, the details
will likely be modi�ed in response to further scrutiny of the model.

5 Running the Model

In this section we summarize the status of this model as a software system. The model relies
on the following software.

ACL2. The logic of ACL2 is very close to a subset of Common Lisp. ACL2 itself is imple-
mented in Common Lisp. See http://www.cli.com for instructions on downloading
the latest version of ACL2.

17

ACL2 libraries. Some public libraries are included in the ACL2 distribution. We have
modi�ed these slightly for the purposes of building this model. When this model
becomes available, all pertinent libraries will be distributed with it.

The PROMELA model. This is an ACL2 script containing all the de�nitions and lemmas
supporting the introduction of step-fn.

The simulation environment. To be able to run programs, we have de�ned a very sim-
ple interpreter in Common Lisp, which repeatedly applies step-fn. This interpreter
randomly selects an active process for execution until all processes have terminated,
or a system error occurs. Rudimentary support for running PROMELA programs is
present, including step tracing.

In general, the PROMELA-ACL2 system is neither robust nor complete. Should there be
any interest in carrying this work forward, a review of the model will lead to its revision.
The attempt to prove properties of the model will require some library development. A
reasonable interface to a simulation environment would be desirable.

6 A Brief Introduction to ACL2

In this section we summarize some of the features of ACL2. We rely to a large extent on the
reader's assumed familiarity with Common Lisp. An ACL2 script is a �le of forms which
is processed in the order presented. This summary describes some of the forms which can
appear in a script.

Defun. The defun form creates a function. In the example below, the function foo is
de�ned. foo has two arguments, x and y. Assumptions about the arguments are declared
(optionally) in the guard. In this example, x and y are declared to be integers. The guard
is evaluated at run time, and causes an error if it is not satis�ed. Following the declaration
is the function body. A termination proof must be completed before a function is accepted
as a logical extension of ACL2.

(defun foo (x y)

(declare (xargs :guard (and (integerp x) (integerp y))))

(* (+ x y) 2))

Guard Veri�cation. One can avoid the cost of the guard check by verifying guards with
the theorem prover. Verifying the guards of a function f demonstrates that the guards to
all functions that f calls are satis�ed at their point of call. One can tell the ACL2 system
to automatically attempt or avoid a guard veri�cation proof at the time that a function is
introduced. This setting can be overridden by an explicit hint.

18

Multiple Values. A function may return more than one value. One way of returning
multiple values is to return a list of values. However, using the ACL2 multiple value primi-
tives, mv and mv-let, allows the system to check for the right number of values at the time
a de�nition is processed. In this example, dog returns a multiple value, and cat uses an
mv-let to unbind the values. cat returns the sum of a number and its double. mv and
mv-let correspond to Common Lisp's values and multiple-value-bind.

(defun dog (x)

(declare (xargs :guard (integerp x)))

(mv x (* 2 x)))

(defun cat (y)

(declare (xargs :guard (integerp y)))

(mv-let (i j) (dog y)

(+ i j)))

Defthm. A defthm form proposes a theorem about previously introduced functions. The
mechanical proof checker within ACL2 attempts a proof of the proposed theorem. In this
example, we suggest the theorem that the function foo returns an even number.

(defthm evenp-foo

(implies (and (integerp x)

(integerp y))

(evenp (foo x y))))

Case-Match. case-match is a control-
ow and pattern matching construct. The �rst
argument of case-match is a variable. Remaining arguments are pairs of patterns and
expressions. The patterns are attempted in order, and when a match is found, the cor-
responding expression is evaluated. A pattern match dynamically binds variables from the
pattern to values from the form. The pattern & matches anything, and is used as the default.

(case-match form

(('and x y) (foo x y))

(('or x y) (bar x y))

(& nil))

De
ist. deflist is a macro de�ned by the author that generates a recursive function
which recognizes a list, all of whose elements satisfy a given unary predicate. Additionally,
it automatically generates a large number of defthm forms that inform the theorem prover
of important properties of the new function. The following example introduces a function
integer-listp that recognizes a list if integers.

(deflist integer-listp (l) integerp)

19

Defstructure. defstructure is a macro that provides a capability similar to Common
Lisp's defstruct. It allows one to de�ne a record structure, including its accessor, con-
structor and update functions. The following example de�nes a person record structure
consisting of height and weight �elds. The �elds are constrained to be numbers.

(defstructure person

(height (:assert (numberp height)))

(weight (:assert (numberp weight))))

The automatically generated functions include the following.

(make-person :height h :weight w) construct a person structure
(person-height p) access the height �eld of a person p

(person-weight p) access the weight �eld of p
(update-person p :weight w) update the weight �eld of p
(person-p p) a predicate that recognizes a person

structure, including type constraints on the
�elds

References

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design, a Foundation.
Addison Wesley, 1988.

[Hol91] Gerard Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1991.

[KM94] M.J. Kaufmann and J S. Moore. Design goals of ACL2. Technical Report 101,
Computational Logic, Inc., August 1994.

[Lam91] Leslie Lamport. The temporal logic of actions. Technical Report 79, DEC Systems
Research Center, December 1991.

[NH96] V. Natarajan and Gerard J. Holzmann. Outline for an operational-semantics de�-
nition of PROMELA. Technical report, Bell Laboratories, July 1996. Can be found
at http://netlib.bell-labs.com/netlib/spin/ws96/papers.html.

20

