
Centro de Estudios en Microelectrónica y Sistemas Distribuidos
Cemisid - Facultad de Ingeniería - Universidad de Los Andes

Título:

Exploration of the Syntactical Modeling Capabilities in
PROMELA / SPIN of Synergestic Distributed Systems based

on any type of ωω-automata

Autores:

Páez, Charles R. * y Ruiz, J.N.
Cemisid - Facultad de Ingenieria - Universidad de Los Andes

Contacto:
Páez, Charles.R. * Apartado 135 Merida - Venezuela 5101A

e-mail: paezc@ing.ula.ve o cemchp@faces.ula.ve

ABSTRACT

Syntactical modeling of synergestic distributed systems in high level specification languages like PROMELA, its
validation and simulation under state of the art tools like SPIN is an open field in computer science. We propose an
experimental and theoretical extension suitable for PROMELA/SPIN by using the semantic capabilities of PROMELA
to express the acceptance condition F of all types of ω-automata (Büchi, Muller, Rabin, Street, Kurshan and Manna-
Pnueli) with special never claims constructs. Some examples are illustrated.

Key Words : Distributed systems, modeling, validation, ω-automata, temporal logic, VLSI.

April - 1996
Mérida - Venezuela

Accepted in the International Conference on Information System Analysis and Synthesis ISAS-96 - Orlando USA July 1996.
Copyright 1996 by Alter Nature and University of Los Andes.

Exploration of the Syntactical Modeling Capabilities in PROMELA /
SPIN of Synergestic Distributed Systems based on any type of ωω-

automata

Páez, ChR. and Ruiz, J.N.
University of Los Andes - Cemisid

Mérida, 5101, Venezuela

ABSTRACT

Syntactical modeling of synergestic distributed
systems in high level specification languages like
PROMELA, its validation and simulation under state
of the art tools like SPIN is an open field in computer
science. We propose an experimental and
theoretical extension suitable for PROMELA/SPIN by
using the semantic capabilities of PROMELA to
express the acceptance condition F of all types of ω-
automata (Büchi, Muller, Rabin, Street, Kurshan
and Manna-Pnueli) with special never claims
constructs. Some examples are illustrated.

Key Words : Distributed systems, modeling,
validation, ω-automata, temporal logic, VLSI.

1. THEORETICAL SCENE IN ωω−−AUTOMATA

Holzman [1-2] designed a validation modeling
language PROMELA and a tool for analyzing and
validate the logical consistency of concurrent and
distributed systems named SPIN. PROMELA allows
the abstract modeling of synergestic distributed
system based on global processes and local and
global message channels and variables. Processes
in PROMELA specify behavior. Channels and
variable specify the enviroment in which processes
run. Process interaction and process coordination is
at the very basis of the language. Each process
models an infinite automaton as an ordered set of
statements. The execution of every statement is
conditional on its executability. So, statement are
blocked or executable. Executability is the basic
mechanism of sinchronization.
It is obvious, PROMELA/SPIN community can get
used to think that the only type of ω- automata we
can model are Büchi ones. We proceed to evaluate
PROMELA in order to expand its theoretical scope of
modeling capabilities to all six types of ω- automata
in literature.

2. ωω−−AUTOMATA

A non-deterministic ω-automaton M over an finite
alphabet Σ is a tuple (S, s0, δ,F), where S is a finite
set of states, s0 is an initial state, δ: S x S → P(S) is
a transition relation and F is an acceptance condition.

A ω-automaton M is deterministic if ∀ s ∈ S, ∀ a ∈ Σ :
|δ(s,a)| ≤ 1. The ω-automaton M is complete if ∀ s ∈
S, ∀ a ∈ Σ : |δ(s,a)| ≥ 1.
A path p in M is an infinite sequence of states
s0s1s2... ∈ S, that starts in the initial state s0 and has
the property that ∀ i ≥ 1, ∃ ai ∈ Σ : δ(s,a) ∋ si+1. A path
s0s1s2...∈ Sω in M is a run r of an infinite word
a0a1a2... ∈ Σω if ∀ i≥ 1 : δ(s,a) ∋ si+1.
An infinite word is accepted by an ω-automaton M if
it satisfies the F acceptance condition. The infinitary
set of sequences s0s1s2...∈ Sω, inf(s0s1s2 ...) is the
set of all the states that appears infinitely often in the
sequences.

3. CLASSIFICATION OF ωω−−AUTOMATA

There are six types of ω-automata depending of the
acceptance condition F : B-automaton (Büchi) [3],
M-automaton (Muller) [4], R-automaton (Rabin) [5],
S-automaton (Street) [6], L-automaton (Kurshan) [7]
and ∀ -automaton (Manna y Pnueli) [8].
If M is a B-automaton the F ⊆ S is a set of states.
Therefore, a run r is accepted by a B-automaton M if

inf(r) ∩ F ≠ φ (1)
Thus, some states sf ∈ S are specified as accepting
states. In order for a word to be accepted, these
accepting states must occur infinitely often during a
run r on the B-automaton M.

∃ sf ∈ F : sf ∈ inf(r) (2)
The acceptance condition of a M-automaton M is a
set F ⊆ P(S) of sets of states. Therefore, a run r is
accepted by a M-automaton M if

inf(r) ∈ F (3)
Thus, Muller´s acceptance condition consists of a set
in which element is a set of states. In order for a
word to be accepted by a M-automaton, the set of
states that occurr infinitely often during a run r of M
on the word must be one of the elements of the
acceptance set.
If M is a R-automaton, then the acceptance condition
has the form F = { (U1,V1),...,(Un,Vn)}, where Ui,Vi ⊆
S.
A run r is accepted by a R-automaton M if there
exists i ∈ {1,...,n} such that

inf(r) ⊆ Ui and (4a)
inf(r) ∩ Vi ≠ φ (4b)

For a S-automaton its acceptance condition has the
form F = { (U1,V1),...,(Un,Vn)}. A run r is accepted by
a S-automaton if for every i ∈ {1,...,n}

inf(r) ⊆ Ui or (5a)
inf(r) ∩ Vi ≠ φ (5b)

The acceptance condition for a L-automaton M is a
pair F = (Z,V), where Z ⊆ P(S) and V ⊆ S. A run is
accepted by a L-automaton if either :

inf(r) ⊆ U for some U ∈ Z, or (6a)
inf(r) ∩ V ≠ φ (6b)

In the case of a ∀ -automaton M its acceptance
condition is F = (U,V) ⊂ SxS. A run r is accepted by
the ∀ -automaton ,if either :

inf(r) ⊆ U , or (7a)
inf(r) ∩ V ≠ φ (7b)

4. ωω−−REGULAR LANGUAGES

The set of words accepted by an ω-automaton M is
called the ω-regular language of M and denoted by
Lω (M). The cardinality of Lω (M) is the number of R
words accepted by M.
Lω (M) = { a1a2... ∈ Σω | a1a2... is accepted by M } (8)

5. PROMELA CAPACITY FOR MODELING ALL
KINDS OF ωω−−AUTOMATON

First, PROMELA was designed for modeling Büchi
automata in mind. Our main target is to explore its
intrinsic capabilities for modelling the rest of other
types of ω-automata. Due the fact all of them differ
in the definition of their acceptace condicion F. We
summary the never claim construct for every kind of
F acceptance condition of each ω-automata.
PROMELA validation models are finite. So the
number of execution sequences that constitute its ω-
regular language are bounded and enumerable.
Therefore, there are terminating sequences and
cyclic sequences. The specification of correctness
requirement are defined by propositions on system
states. There are three ways in which a correctness
criteria on a model can be expressed in PROMELA :
assert statement, validation labels (accept,
progress, end) and temporal claims.
The acceptance conditions F of every type of ω-
automata must be expressed as a condition that
cannot happen infinitely often. In order to express
such a condition we can use PROMELA segments
based on acceptance state labels (proposed in
PROMELA to formalize that something cannot
happen infinitely often) within never-claims
constructs (proposed in PROMELA to formalize
linear time temporal logic formulae or behavior that
is claimed to be impossible). Therefore, a
correctness violation occurs if and only if a temporal
claim is matched by a system behavior and it occurs
infinitely often. In the following paragraphs we
propose the modeling of the corresponding F
acceptance condition of every type of ω-automata.

6. ACCEPTANCE CONDITION F OF ωω−−
AUTOMATON IN PROMELA:

For a Büchi automaton, F is a set of acceptance
states that must be reached infinitely often. So, we
define those states sf ∈ S and sf ∈ F as progress
states and proceed to validate searching for non-

progress states. If we find a non-progress cycle; then
there exist at least a run do not accepted for the B-
automaton.
In those cases where it is not appropiate to validate
the model using non-progress state approach, we
can use temporal claims in order to probe the no
existance of a ciclic sequence of states sj ∈ S and sj

∉ F. If we label correctly the states sf ∈ S and sf ∈
F, the body of the never-claim must be of the form
shown in Table 1. So, if in any run it is executed
infinitely often a a ciclic sequence of states sj ∈ S
and sj ∉ F will exist an error. This condition looks like
a typical non-progress condition.

Table 1 . PROMELA Never-claim for B-automaton

F Acceptance
Condition

PROMELA never-claim

F ⊆ S

inf(r) ∩ F ≠ ∅

never {
 accept:
 do
 ::!(process[pid]@F_1||
 ...|| process[pid]@F_n)
 od
 }

We propose to use an acceptance-state within a
never claim construct in order to satisfy the ω-
automata Muller’s F acceptance condition is a set F
⊆ P(S) of sets of states contained in a state
transition relation, as shown in Table 2.

Table 2. PROMELA Never-claim based on state
transition in a process for M-automaton

F Acceptance
Condition

PROMELA never-claim

F ⊆ S

inf(r) ∈ F

never {
 do
 :: skip
 :: process[pid]@STATE1
 -> break
 od;
accept1:
 do
 :: !(process[pid]@STATE2)
 :: process[pid]@STATE2
 -> break
 od;
accept2:
 do
 :: !(process[pid]@STATE3)
 od
}

The acceptance condition F = { (U1,V1),...,(Un,Vn)}, in
a Rabin automaton, is a set of pair of states Ui,Vi ⊆
S . So, in order to accept a run r, each R-automaton
must reach any state Ui and infinitely often must visit
those states Vi. This condition can ve validated in
two steps, as shown in Table 3.
First we verify the run r reached a Ui state by using a
monitor process that initialize a global variable to

TRUE. and making the variable FALSE whitin the
process when it reach a state Ui .
Then, the second part of the validation consist in to
verify that the run reach the Vi state infinitely often.
This can be made in a B-automaton style. We
propose an alternative way. Labeling the states Vi as
STATE_V and verifying an imposible temporal claim
The acceptance condition F of an Street automaton
consists of pairs (U,V) of states such that in order
the run r to be accepted by the automaton, it must
go through any state si ∈ U or through any state sj ∈
V infinitely often. In order to model this acceptance
condition F is enough to add an additional possibility
in the never claim that we used for the Muller
automaton : The option of that the run r have
circulated through any state si ∈ U. We use a binary
variable FLAG with value1 by default that change its
value to 0 whenever the run goes through any state
si ∈ U. All states sj ∈ V are labeled as STATE_V.
Thus we propose the following never claim
construct.

Table 3. PROMELA Never-claim for R-automaton

F Acceptance
Condition

PROMELA never-claim

F = { (U1,V1),...,
(Un,Vn)}, where

Ui,Vi ⊆ S

inf(r) ⊆ Ui and
inf(r) ∩ Vi ≠ φ

First of all:
byte flag = 1;/* global var.*/

...
inside process where is
STATE_U
 STATE_U:
 statement;
 statement;
 flag = 0;

...
proctype monitor()
 { accept: flag == 1 }

and as a second part :

never {
 do
 :: skip
 :: !(process[pid]@STATE_V)
 -> break
 od;
accept:
 do
 :: !(process[pid]@STATE_V)
 od;
}

For a Kurshan automaton, its acceptance condition F
is a pair (Z,V), where Z is a set of state transitions
and V a set of states. In order to be accept an infinite
run r in a L-automaton, it must goes infinitely often
through states si ∈ V or through states transitions in
Z. In order to model this condition as a impossible
assertion we may set a label STATE_V in any state
si ∈ V, and assuming that in any state transition in Z,
a binary variable VZ goes from 1 to 0.

Then we propose the following never claim
construct. Thus, if the variable VZ goes from 1 to 0
or if the run goes through any state labeled as
STATE_V; then the stablished condition in the never
claim it is impossible and we can assert that the
model of the L-automaton is correct.

Table 4 . PROMELA Never-claim for S-automaton

F Acceptance
Condition

PROMELA never-claim

F = {(U1,V1),...,
(Un,Vn)},
where

(Ui,Vi) ⊆ S

inf(r) ⊆ Ui

or
inf(r) ∩ Vi ≠ φ

never {
 do
 :: skip
 ::(Zf == 1) &&
 !(process[pid]@STATE_V)
 ->break;
 od;
accept:
 do
 :: !(Zf == 0) &&
 !(process[pid]@STATE_V)
 od;
}

Table 5 . PROMELA Never-claim for L-automaton

F Acceptance
Condition

PROMELA never-claim

F = (Z,V), where
 Z ⊆ P(S)

 and
V ⊆ S.

inf(r) ⊆ U
 for some

U ∈ Z,
or

inf(r) ∩ V ≠ φ

never {
 do
 :: skip
 ::(VZ==1) &&
 !(process[pid]@STATE_V)
 ->break;
 od;
accept:
 do
 :: !(VZ==0) &&
 !(process[pid]@STATE_V)
 od;
}

An automaton of Manna and Pnueli has an
acceptance condition F similar to the one exhibited
by a Street automaton. So, the following never claim
construct will be used, as shown in Table 6.

Table 6 . PROMELA Never-claim for ∀ -automaton

F Acceptance
Condition

PROMELA never-claim

F =
(U,V) ⊂ SxS.

inf(r) ⊂ U ,
or

inf(r) ∩ V ≠ φ

never {
 do
 :: skip
 ::(Zf==1) &&
 !(process[pid]@STATE_V)
 -> break;
 od;
accept:

 do
 :: !(Zf== 0) &&
 !(process [pid]@STATE_V)
 od;
}

7. EXPERIMENTAL EXTENTIONS OF SPIN

As the correctness criteria expressed by temporal
claims with acceptance statement in its interior do
not specify independent system behavior we can
exercise our PROMELA models, independently of
the type of ω-automata we used in its specification,
with the SPIN tool. We report the sucessfull
modeling and validation [10] of three examples
proposed in the literature : a producer/consumer
system[11], an HDLC communication protocol [12]
and a VLSI arbiter [13] based on different ω-
automata based on the proposed PROMELA
constructs.

9. ACKNOWLEDGEMENT

Thanks to G. Holzman at ATT, creator of PROMELA
language and the SPIN verification tool, for his kind
early review of the paper and for his opportune
comments.

10. REFERENCES

[1] Holzman GJ., Design and Validation of Protocols,
Prentice-Hall, Englewood Cliffs, NJ, 1990.
[2] Holzman, GL., Design and validation of protocols
: a tutorial, Computer Networks and ISDN Systems
(25):981-1017, 1993.
[3] Büchi, JR., On a decision method in restricted
second-order arithmetic. In Proceedings
International Congress on Logic Method and
Philosophy of Science, 1960, pp.1-12, Stanford
University Press, 1962.
[4] Muller, DE., Infinite sequences and finite
machines. In Switching Circuit Theory and Logical
Design, Proceeding Fourth Annual Symposium,
pp.3-16, 1963.
[5] Rabin, MO., Decidability of seco nd-order
theories and automata on infinite trees, Trans.
American Mathematical Society, 141:1-35, 1969.
[6] Street, RS., Propositional dynamic logic of
looping and converse in elementary decidable,
Information and Control, 54:121-141,1982.
[7] Kurshan, RP., Testing containment of ω-Regular
Languages, Technical Report 1121-861010-33-TM,
Bell Laboratories, 1986.
[8] Manna, Z. and Pnueli, A., Specification and
verification of concurrent programs by ∀ -automata,
In Proceeding, Fourteenth Annual ACM Symposium
on Principles of Programming Languages, pp.1-12,
1987.
[9] Clarke, EM., Draghicescu, LA. and Kurshan, RP.,
A unified approach for showing language
containment and equivalence between various types
of ω-automata, Technical Report CMU-CS-89-192,
Carnegie Mellon U. 1989.

[10] Ruiz, JN., Modelaje de Soluciones Digitales de
Hardware y de Protocolos de Comunicacion, RT-
Cemisid-53-1995, Tesis Ing. Sistemas, Universidad
de Los Andes, 1995.
[11] Schlichting, R. Schneider, F., Using message
passing for distributed programming: Proof rules ans
disciplines, ACM Trans on Programming Languages
and Systems , 6-3:402-431, July, 1984
[12] ISO 6225 Data communication - HDLC
balanced class of procedures
[13] Bochmann, G., Hardware specification with
temporal logic: An example, IEEE Trans on
Computers, C-31, 3:223-231, March, 1982.

