
Protocol Veri�cation with Reactive Promela/RSPIN

Elie NAJM*, Frank OLSEN*/**
(*) ENST (**) CNET

Ecole Nationale Sup�erieure des T�el�ecommunications Centre National d'Etudes des T�el�ecommunications
46, rue Barrault 38-40, rue du G�en�eral Leclerc
75013 Paris 92131 Issy-Les-Moulineaux

France France
E-mail: fnajm,olseng@ res.enst.fr E-mail: olsen@issy.cnet.fr

Abstract

Reactive Promela/RSPIN is an extension to the protocol validator Promela/SPIN. It en-
hances the simulation and veri�cation capabilities of SPIN by allowing modular speci�cations
to be analysed while alleviating the state-space explosion problem. Reactive Promela is a simple
reactive language. The tool RSPIN is a preprocessor for SPIN which translates a Reactive

Promela speci�cation into a corresponding Promela speci�cation. The main function performed
by RSPIN is to combine con�gurations of Reactive Promela automata into Promela proctypes.
The translated speci�cation can then be simulated and veri�ed using SPIN.

We demonstrate the language and tool by the speci�cation, translation, simulation and veri-
�cation of the LAP{B data link protocol. This protocol is quite complex, and bene�ts from
decomposition.

1 Introduction

When considering the problem of speci�cation, (de)composition is a central issue. Promela provides
for two styles of composition of automata: loosely coupled (communication is by FIFO queues) and
tightly coupled (communication is by rendezvous). A third style, the synchronous reactive style, has
been widely advocated and used in the literature and in industry.

In the synchronous reactive style, a con�guration of automata reacts to external events in a
synchronous way: a collection of external events is treated thoroughly by the con�guration before
another collection of events is taken and processed. In other words, the reactive con�guration reacts
to input events, and it is only at the end of the reaction that new inputs can be considered and
processed. This kind of processing is valid when the speed of a reaction is higher than the delay
between two consecutive input events.

The reactive style allows for powerful decomposition of speci�cations, beyond what is possible
with merely rendezvous between automata. Furthermore, it reduces the state space explosion by
constraining parallelism between automata.

Whereas Holzmann in [Hol91] proposes ways of reducing the complexity of systems (by incre-
mental composition, minimization, generalization, atomic sequences, layering and structuring tech-
niques, and so on), this is not a feature of the Promela language in itself. Instead it is a guideline
for how to use the language for large, complex systems.

This paper describes an extension to Promela, whereby reactive processes can be de�ned and
instantiated. A reactive process is a con�guration of synchronously composed automata. Besides
the linguistic extension, this paper also describes a translation mechanism of reactive processes into

1

Promela processes. This translation has been implemented in a preprocessor to SPIN, called RSPIN
which translates a speci�cation in Reactive Promela into an equivalent one in Promela.

We illustrate the language and the tool with the speci�cation and validation of LAP{B protocol.
We will show that errors in the speci�cation can be detected by using the SPIN tool to perform
exhaustive validation.

1.1 Organisation of the paper

The paper starts with an overview of Holzmann's Promela language and SPIN tool in section 2. It
is followed, in section 3, by an informal description of Reactive Promela, our proposed extension to
Promela and its associated tool RSPIN. In section 4 we show how we have used Reactive Promela

to specify and verify the LAP{B protocol. We have also included the formal semantics of Reactive
Promela and of a subset of Promela in appendix A. For completeness the full Reactive Promela code
for the LAP{B protocol is given in appendix B.

2 Overview of Promela/SPIN

In this section we give a brief overview of the Promela language and the associated SPIN tool. More
information can be found in [Hol91].

Promela is a language used to model communication protocols, and other kinds of distributed
systems, at an abstract level. A program in Promela consists of processes that communicate either
asynchronously over FIFO channels or by binary rendez-vous between processes. The processes are
extended Finite State Machines (EFSMs). Only simple data{types are available: integers of various
ranges and record types (similar to typedefs in the C language). The reason is that code{generation
is outside the scope of Promela: it is a pure validation language.

Promela does not have a formal semantics, although some authors have given the semantics of a
subset of Promela: one was in our paper at the TACAS'96 conference [NO96]; another, also presented
at TACAS'96, was given by S. Tripakis and C. Courcoubetis in [TC96].

Associated with the language is a tool called SPIN. It allows Promela systems to be simulated,
either step-by-step or randomly. Furthermore it is possible to perform an exhaustive simulation
by generating the complete state-space of the system. Properties like deadlock and livelock can be
detected automatically by checking the generated state-space. Detection of these properties rely on
special labels (end{state-, acceptance-, and progress labels) that are placed in the Promela code by
the user. Even more interesting is that other more speci�c properties can be expressed in linear
time temporal logic, and be veri�ed by exhaustive simulation. Unfortunately only one temporal logic
formula can be veri�ed at a time which is not convenient. All properties are veri�ed on{the{y, i.e.
it is not necessary to generate the whole state space to detect errors, (although to verify that the
speci�cation is error{free it is required to generate the whole state{space).

The veri�cation part of SPIN uses several di�erent state{space generation algorithms, including
normal depth{�rst search and Holzmann's Supertrace bitspace algorithm. More recent versions of
SPIN uses partial{order methods [God94] to perform exhaustive simulation on a reduced state-space.
The aim of this is to combat the state-explosion problem which limits the size of systems that can
be veri�ed.

3 Overview of Reactive Promela/RSPIN

We now go on to describe our Reactive Promela, our extension to Promela. It aims at enhancing
Promela in the following areas:

2

� decomposition: Promela gives the user a single level of decomposition: the process level. We
add a reactive process which can be decomposed into a set of communicating automata1.

� reactive composition: Promela processes can be composed in parallel via asynchronous
message channels or by binary rendez{vous. The automata that make up a reactive process
communicate using a synchronous reactive style of communication2

� state{space reduction: the automata that make up a reactive process are combined into
a single Promela process using the RSPIN tool. If these automata had been modelled as
Promela processes the SPIN tool would have created the full interleaving of their actions with
all other processes on the speci�cation. Our combination algorithm prevents this interleaving
by forbidding external inputs during a reaction.

� atomic reactions: when a reactive process accepts an input it reacts atomically by chan-
ging its state and by generating a set of outputs. This is simpler than using Promela's atomic
sequence statement, since the RSPIN tool automatically encapsulates reactions with this con-
struct. Hence, the user does not need to decide in each case whether to use atomic or not.

This section is organised as follows: we �rst give the concrete syntax for Reactive Promela in
section 3.1, before we give an informal overview of the language, expanding on the above introduction,
in section 3.2.1{3.2.6. Then in section 3.3 we discuss the accompanying RSPIN tool.

3.1 Syntax of Reactive Promela

The syntax ofReactive Promela strongly resembles that of Promela, since the aim is to make it as easy
as possible to use the extension. The only new keywords added in Reactive Promela are the following:

automaton in inport link

outport rproctype external

Below we present the parts of the Reactive Promela grammar where it extends the Promela gram-
mar. First, a few words on the notation. The new keywords are displayed in capitals (RPROCTYPE),
tokens and Promela keywords are enclosed within apostrophes (':' and 'goto'), names (references)
are displayed in lowercase letters within < ... > (<rproc_name>) and non-terminals in lowercase
letters (r_proc). Also, { ... }+ means one or more of the enclosed unit and { ... }* means zero
or more units. Units enclosed by [...] are optional.

In Reactive Promela, the old process de�nition: proc ::= PROCTYPE ... is replaced by:
proc ::= p_proc | r_proc, where p_proc is the usual Promela process, and r_proc is the Reactive
Promela process de�ned by:

r_proc ::= RPROCTYPE <rproc_name>
'(' r_interface ')' r_body

r_interface ::= {r_port_decl}*

r_port_decl ::= INPORT <port_name> | OUTPORT <port_name>

r_body ::= {automaton}+ links

automaton ::= AUTOMATON <autom_name>
'(' a_interface ')' a_body

a_interface ::= {a_port_decl}*

1We also consider providing arbitrary levels of decomposition.
2Note that neither reactive processes nor Promela processes communicate using the synchronous reactive style,

only automata do.

3

a_port_decl ::= EXTERNAL INPORT <port_name>
| EXTERNAL OUTPORT <port_name>
| INPORT <port_name> port_init
| OUTPORT <port_name> port_init

port_init ::= '=' '{' type_list '}'

a_body ::= '{' {one_decl | a_stmnt}+ '}'

a_stmnt ::= <port_name> '?' {<var_name>|const}+
| <port_name> '!' {a_expr}+
| <label_name> ':' a_stmnt
| 'goto' <label_name>
| <var_name> '=' aexpr
| 'if' options 'fi'
| 'do' options 'od'

links ::= LINK '{' {link}+ '}'

link ::= port '=>' {port}+

port ::= <port_name> IN <autom_name>

The body of an automaton is de�ned as a_body, which is the same as body in Promela except
that a_body only allows (for the time being) a subset of the rules of Promela (listed in the rule
for a_stmnt). We have not shown the rule for a_expr but it allows most of the usual Promela
expressions, at least for arithmetic and boolean operations.

3.2 The Reactive Promela language

In this section we describe Reactive Promela informally. For the interested reader we have included
the formal semantics in appendix A.

3.2.1 Reactive Promela speci�cations

A Reactive Promela speci�cation consists of two separate parts:

� a Reactive Promela part consisting of a set of rproctypes.

� a Promela part containing any valid Promela code. This is the pro-active part of the speci�c-
ation.

3.2.2 Ports and channels

The ports in Reactive Promela are typed and directional. A port is either an inport or an outport.
Ports are declared in the interfaces of rproctypes and automata. As for Promela channels, the types
of the message-parameters are declared within braces. The ports declared in the rproctype interface
are only references to Promela channels, declared globally.

3.2.3 Links

The link statement is used to create connections between outports and inports. A valid link connects
exactly one outport to one or more inports. A link statement contains a list of links (separated by a
semicolon). Refering to the rule for link in the grammar, we see that each link connects an outport
(to the left of the => separator) to one or more inports. The port name is quali�ed with the name of
automaton that it belongs to.

4

3.2.4 Rproctypes

An rproctype allows a collection of automata to be encapsulated as a single unit. It consists of:

� a set of synchronously communicating automata

� de�nition of links between the automata.

� de�nition of an interface (the ports over which the rproctype can communicate with its envir-
onment). We can think of this as an external interface since it is a subset of interfaces of the
automata contained in the rproctype. These ports are only redeclared in the interface|they
must be de�ned as Promela channels before they can be used in the rproctype.

3.2.5 Automata

The Reactive Promela construct used to specify dynamic behavior is the automaton. An automaton
de�nition consists of two parts:

� de�nition of an interface (the ports over which the automaton can communicate with its en-
vironment). Contains the name of each inport and outport together with a list of the types of
the arguments that each port can take. Ports that are also declared in the rproctype interface
are quali�ed as external ports. For these only the name is declared not the list of argument
types.

� de�nition of dynamic behavior. Given by a directed graph whose nodes are stable- or transitory
states and whose edges are transitions labeled by atomic actions. The actions (currently)
allowed are those listed under abody in the grammar (see section 3.1).

Stable states are the states in which an automaton is waiting for an input on one of its inports.
When it receives a message it goes through a reaction phase before ending up in another (possibly
the same) stable state. Each automaton has an initial state which is stable.

The participation of an automaton to a reaction starts with the execution of the receive statement.
The automaton then executes a series of elementary actions (assignments, conditional statements,
send statements, : : :). External input actions are not allowed during the reaction. The states
separating the actions of the reaction are called transitory states. The result of such a behavior is a
set of outputs to the automaton's environment, as well as an update of the state.

3.2.6 Reactions

Now let us explain how the behavior of the automata contained in an rproctype make up the behavior
of the rproctype itself. The initial state of an rproctype is a state vector containing the initial states
of each automaton it encapsulates (with all automata in stable states). When there is a message in
one of the channels referred to in the rproctype's interface, the rproctype can go through a reaction
phase which takes it from one stable state to another (possibly the same).

The reaction starts when one of the encapsulated automata executes an input action to consume
a message at the head of a channel. In the sequence of actions that follows one possible action is to
send a message to another automata within the same rproctype. This causes the reaction to spread to
some or all the automata. An important property of reactions is that all the encapsulated automata
are involved in it and that, notably, no external events are taken into account until the reaction
terminates. Termination of the reaction is when all the automata again �nd themselves in a stable
state.

Seen from the exterior, the rproctype reacts to an input by changing the state of one or more
of the automata it encapsulates, by changing the values of variables local to the automata and by
producing a set of messages appended to channels in its interface.

5

3.3 Reactive SPIN

In order to realistically check the correctness of a speci�cation, tool support is essential. Instead
of writing a simulator/veri�er from scratch we propose to perform a mapping of Reactive Promela
constructs into corresponding ones in Promela. For this purpose we present RSPIN, a preprocessor
tool that translates a Reactive Promela speci�cation into an equivalent Promela speci�cation.

The translation from a reactive process to a Promela process is based on an automata combination
algorithm which uses breadth{�rst search to create the state{space of the automata contained.

One of the most important aims we hope to achieve through the Reactive Promela extension is
to provide a way to reduce the state-space explosion problem. A property of an rproctype is that
its reaction to an input from the environment is atomic. This means that many interleavings of
actions from the reactive process with actions from other processes need not be calculated during
veri�cation. This means that only reactive process actions occuring at stable states are interleaved.
In the mapping from Reactive Promela to Promela we take advantage of Promela's atomic sequence
construct (atomic { ... }) to provide a way to implement this property. This also simpli�es
the use of atomic statements: instead of the user selecting manually which part of a speci�cation to
encapsulate in an atomic sequence RSPIN does this automatically.

One di�culty in preserving the semantics of Reactive Promela in the translation is that Promela
channels are �nite. This means that we cannot be certain that reactions are really atomic. We
emphasise that this is not a problem speci�c to Reactive Promela: anyone using the atomic sequence
in a Promela speci�cation might experience blocking in the middle of a supposedly atomic sequence.
One solution is to use SPIN's \loose messages to full queues" simulation option. In the RSPIN tool
we have also made generation of atomic encapsulation optional to give the user some more exibility.
This option is notably to be used if zero{lenght channels are used to communicate with a reactive
process (i.e. rendez{vous communication).

4 Specifying and validating the LAP{B protocol.

In this section we use the speci�cation of the LAP{B protocol3 to demonstrate the Reactive Promela
language on a nontrivial example. For more information on LAP{B we refer to most textbooks on
communications protocols, e.g. [Sch88]. In section 4.1 we �rst show how the protocol is modelled as
a Reactive Promela process through decomposition. Then, in section 4.2 we discuss the translation
to Promela. Finally, in section 4.3 we give the results from verifying the protocol using a suitable
test system.

4.1 Decomposing the LAP{B protocol

To model the LAP{B protocol in Reactive Promela we decompose it into the �ve automata4, playing
the following roles:

1. Transmitter: receives messages from a higher protocol layer and encapsulates each one in a
frame to be sent over a physical medium. It sends the frames to the Retransmitter process
(which will handle possible retransmissions) and the sequence number to theWindow, and then
waits for new messages.

2. Window: handles the sequence numbers and the sliding window. Once the Window is satur-
ated it noti�es the Transmitter and the upper protocol layer.

3The example is taken from a course in protocol speci�cation given by Elie Najm at ENST.
4This description is not complete, notably with respect to the use of timers; for more information we refer to

appendix B which is a complete listing of the Reactive Promela code for LAP{B.

6

3. Retransmitter: responsible for keeping a bu�er of the frames sent but not yet acknowledged.
When it receives an acknowledgment number from the Receiver it purges all acknowledged
frames (in case of reject), and demands the Acknowledger process to retransmit the other,
non-acknowledged frames.

4. Receiver: receives frames from the physical medium. Depending on the frame type it decides
whether the message is a new one which can be exteacted and sent to the upper protocol layer,
whether immediate retransmission is required or not, and so on.

5. Acknowledger: its role is to (re)transmit one or more frames as indicated by the Transmitter

or the Retransmitter.

This example shows the bene�t of decomposition: each automaton that make up the rproctype
(i.e. the protocol) have a simple and clearly de�ned role, but we can still treat and reason about the
protocol as a whole. This is because RSPIN translates it into a single Promela proctype.

This decomposition arose from an exercise that started with the simplest possible protocol: just a
sender and a receiver communicating over a simplex channel. When extending this to handle duplex
communication, �nally ending up with the LAP{B protocol, we thought that it might be a good idea
to reuse the speci�cations of the sender and the receiver and combine them into one process. However,
combining automata manually is not an easy exercise. If we keep the two processes separate we also
noticed that there may be a need for some coordination. An example is that the sender and receiver
need to coordinate their actions to decide whether an acknowledgement should be retransmitted as
a separate message or to be piggybacked. If both the sender and receiver may receive messages at
the same time, coordinating their actions may be di�cult. By using the synchronous reactive style
of communication we avoid this problem altogether by forbidding other external inputs while one
inputs is treated5

4.2 Translating LAP{B to Promela

Once we have modelled the LAP{B protocol in Reactive Promela we must use RSPIN translate it
to Promela before we can perform any simulation and veri�cation. We do not show the complete
Promela proctype produced, since it is far to big, but we will make a few remarks about it.

We note �rst that the Promela proctype resulting from running RSPIN on the �le containing the
Reactive Promela speci�cation of the LAP{B protocol is quite big. The original Reactive Promela
speci�cation is contained in a �le of approx. 5 kB (approx. 350 lines of code), whereas the resulting
Promela proctype is contained in a �le of about 200 kB (approx. 5000 lines of code). The resulting
proctype has 16 global stable states, which is what we would expect. The full crossproduct of
the �ve automata would give 32 states, but the Transmitter and the Window have a shared state,
corresponding to the case of a saturated window. This shows very clearly that decomposition is
essential for modelling complex protocols: we have tried to combine automata manually but gave up
after combining the three smallest ones.

Internal communication between automata is reduced to assignment to variables. An example
(see appendix B) is that the send statement F!VS in the Transmitter and the corresponding receive
statement in the Window T?VS is reduced to the assignment Window_VS=Transmitter_VS. Since the
variable VS exists in both the transmitter and in the window it is pre�xed with the automaton name in
the combined automaton. A more interesting case is where the Window noti�es both the Transmitter

and the upper protocol layer that it is saturated. This is an example of a communication with more
than one receiver. Between the transmitter and the window this is a pure synchronization which

5Note that in many of the other syncronous languages, e.g. Esterel [BG91] or SL [BdS95], processes react to a
collection of inputs. We consider making this possible in Reactive Promela as well.

7

takes the combined automaton to stable state s1 (the saturation state). But we still need to notify
the upper layer: therefore the combined automaton keeps the send action CF!Xoff. All external
communication actions are kept as is in the combined automaton.

4.3 Simulating and verifying the LAP{B protocol

To check that the speci�cation of the LAP{B presented above is correct we use SPIN to simulate
and verify the translated protocol. Note that in this section we only talk about normal Promela
processes.

We use a standard system to test the protocol: one process models a communication medium
which non-deterministically looses, corrupts or transfers correctly a frame; on each side of the link is
an instance of the LAP{B process. Each LAP{B instance communicates with a simple user process
(which sends a �nite number of messages using the protocol), and with two timer processes|one
for retransmissions if no acknowledgement arrives in time6 and one for keeping track of how long
to wait before acknowledging a message with a separate frame instead of waiting for a message to
piggyback the acknowledgement on.

We can now use SPIN to analyse the protocol. By random or step-by-step simulation we have
checked that the test system in the basic cases behaves as expected. However, when we used the
exhaustive simulation (veri�cation) mode, we detected an error in our speci�cation of the LAP{
B protocol. The problem occurs when the Windows on both sides of the communication link are
saturated. Saturation means that acknowledgements will not be piggybacked. If a frame is received
correctly by the saturated side and it sends an acknowledgement which is lost, it will not retransmit
the acknowledgement when the other side retransmits the frame. The other side retransmits after a
timeout period, but the acknowledgements are not retransmitted (unless they can be piggybacked).

It would of course be interesting to compare the size of the graph created during veri�cation
of our system with the graph for a corresponding system where everything is modelled as Promela
processes. Unfortunately we do not have a machine with enough memory available to achieve this.

In addition to the LAP{B protocol we have also modelled the Go{Back{N and the Selective
Reject protocols. So far we have only simulated them, but we will soon try to verify these protocols
as well.

5 Conclusion

In this paper we have presented the Reactive Promela language and its associated tool RSPIN
through the speci�cation of the data link protocol LAP{B. The language belongs to the family of
synchronous reactive formalisms and allows a system to be decomposed into a reactive part containing
con�gurations of synchronously communicating automata and a pro-active part containing Promela
proctypes.

The RSPIN tool translates rproctypes into Promela proctypes, so that a Reactive Promela

speci�cation can be simulated and veri�ed with SPIN. No modi�cations to the SPIN tool are needed
to do this. We saw that by translating a Reactive Promela speci�cation to a Promela speci�cations
using RSPIN, we could simulate and verify it using SPIN.

References

[AF90] C. Andr�e and L. Fancelli. A mixed (asynchronous / synchronous) implementation of a
real-time system. In Euromicro 90, Amsterdam, 1990.

6Of course, Promela doesn't model time|a timeout can only occur if no other action is possible|which makes it
di�cult to model this accurately. Therefore proposed timed extensions of Promela [TC96] are very interesting.

8

[BB91] G. Berry and A. Benveniste. The synchronous approach to reactive and real-time systems.
Another Look at Real Time Programming, Proceedings of the IEEE, 79:1270{1282, 1991.

[BCGH93] Albert Benveniste, Paul Caspi, Paul Le Guernic, and Nicolas Halbwachs. Data-ow
synchronous languages. Rapport de recherche 2089, INRIA, Unit�e de recherche INRIA
Sophia-Antipolis, France., October 1993.

[BdS95] Fr�ed�eric Boussinot and Robert de Simone. The sl synchronous language. Rapport de
recherche 2510, INRIA, Unit�e de recherche INRIA Sophia-Antipolis, France., Mars 1995.

[Ber93a] G. Berry. Communicating reactive processes. In Proc. 20th ACM Conf. on Principles of
Programming Languages, Charleston, Virginia, 1993.

[Ber93b] G. Berry. The semantics of pure esterel. In Proc Marktoberdorf Intl. Summer School on
Program Design Calculi, LNCS, to appear. Springer-Verlag, 1993.

[BG91] G. Berry and G. Gonthier. Incremental development of an hdlc entity in Esterel. Comp.
Networks and ISDN Systems, 22:35{49, 1991.

[BG92] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design,
semantics, implementation. Science Of Computer Programming, 19(2):87{152, 1992.

[BN83] S. Budkowski and E. Najm. Structured �nite state automata. a new approach for mod-
elling distributed communication systems. In H. Rudin and C. H. West, editors, Pro-
tocol Speci�cation, Testing and Veri�cation, III. Elsevier Science Publishers B.V (North-
Holland), 1983.

[Bou91] F. Boussinot. Reactive c: An extension of c to program reactive systems. Software-
Practice and Experience, 21(4):401{428, 1991.

[CPHP85] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre, a declarative language for
programming synchronous systems. In Proceedings of ACM Conference on Principles of
Programming Languages. ACM, 1985.

[dSdS95] Monica Lara de Souza and Robert de Simone. Using po methods for verifying behavioural
equivalences. In Proceedings of FORTE'95, pages 59{74, October 1995.

[Fer89] Jean-Claude Fernandez. Aldebaran: A tool for veri�cation of communicating processes.
Rapport SPECTRE C14, Laboratoire de G�enie Informatique| Institut IMAG, Grenoble,
September 1989.

[GKPP95] R. Gerth, R. Kuiper, R. Peled, and W. Penczek. A partial order approach to branching
time model checking. In Proceedings of ISTCS, pages 330{339, 1995.

[God94] Patrice Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Systems:
An Approach to the State-Explosion Problem. PhD thesis, UNIVERSITE DE LIEGE,
Facult�e des Sciences Appliqu�ees, 1994.

[Gue86] P. Le Guernic. Signal, a data-ow oriented language for signal processing. IEEE Trans.
ASSP, 34(2):362{374, 1986.

[Hal93] N. Halbswachs. Synchronous Programming of Reactive Systems. Kluwer Academic Press,
Netherlands, 1993.

[Hol91] Gerhard Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, Engle-
wood Cli�s, N.J., �rst edition, 1991.

9

[JLRM] M. Jourdan, F. Lagnier, P. Raymond, and F. Maraninchi. A multiparadigm language for
reactive systems.

[Mad92] E. Madelaine. Veri�cation tools from the Concur project. EATCS Bulletin, 47, 1992.

[MV89] E. Madelaine and D. Vergamini. Auto: A veri�cation tool for distributed systems using
reduction of �nite automata networks. In Proc. FORTE'89 Conference, Vancouver, 1989.

[NO96] Elie Najmand Frank Olsen. Reactive efsms { reactive promela/rspin. In TizianaMargaria
and Bernhard Ste�en, editors, Tools and Algorithms for the Construction and Analysis of
Systems: second international workshop ; proceedings / TACAS'96, Passau, Germany,
March 27{29, volume 1055 of Lecture Notes in Computer Science, pages 349{368, Berlin,
1996. Springer-Verlag.

[Pel94] D. Peled. Combining partial order reductions with on-the-y model-checking. In Pro-
ceedings of CAV'94, LNCS 818. Springer-Verlag, 1994.

[Plo81] G. Plotkin. A structural approach to operational semantics. Technical report, Comput.
Sci. Dept., Aarhus Univ., 1981.

[RdS90] V. Roy and R. de Simone. Auto and autograph. In R. Kurshan, editor, proceedings of
Workshop on Computer Aided Veri�cation, New-Brunswick, June 1990. AMS-DIMACS.

[Sch88] Mischa Schwarz. Telecommunications Networks: Protocols, Modeling and Analysis.
Addison{Wesley Series in Electrical and Computer Engineering. Addison-Wesley, Read-
ing, MA, USA, 1988.

[TC96] Stavris Tripakis and Costas Courcoubetis. Extending promela and spin for real time. In
Tiziana Margaria and Bernhard Ste�en, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems: second international workshop ; proceedings / TACAS'96,
Passau, Germany, March 27{29, volume 1055 of Lecture Notes in Computer Science,
pages 329{348, Berlin, 1996. Springer-Verlag.

[Val90] A. Valmari. A stubborn attack on state explosion. LNCS 531. Springer-Verlag, 1990.

[WG93] P. Wolper and P. Godefroid. Partial order methods for temporal veri�cation. In Proceed-
ings of Concur'93, LNCS 715. Springer-Verlag, 1993.

10

A Semantics of Reactive Promela

In order to reason about our extension and about the translation from Reactive Promela to Promela
we formalise an essential subset of Promela in section A.1, in terms of Promela State Machines
(PSM). In section A.2 we then formalise the reactive extension with the Reactive State Machine
(RSM) model7.

A.1 Promela State Machines

The subset of Promela that consider can be formally de�ned using the following settings. We consider
�rst a set L of elementary Promela instructions (with typical elements l):

L ::= [pred] j v = Exp j c!Exp j c?v

These instructions correspond to test, assignment, send, and receive instructions. The send
and receive instructions are to bounded channels c. We consider simple channels containing FIFO
sequences of simple values.

A.1.1 PSM processes

We consider PSM processes (with generic element P) as follows: P is a tuple (S; s; T;E) where:

� S is a set of states;

� s is either the initial state or the current state;

� T � S � L� S is a transition relation;

� E is the environment of variables in P . It consists of a set of (untyped) variables V (ranging
over values in the set V AL) and a mapping of each variable v 2 V to a value val 2 V AL.

We use a dot-notation to access elements of the tuple representing P . P:T is the transition
relation T of PSM process P and P:E is the environment of P .

A.1.2 Semantics of PSM processes

We give the semantics of a PSM process P by a translation function from PSM into a Labeled
Transition System (LTS) de�ned by: (PSM � � � PSM)8. A PSM transition (P; �; P 0), also

written P
�

����! P 0, means that P can perform action � to become P 0.
The following notations are used in the rules:

� E ` Exp! val denotes that the expression Exp evaluates to val in the environment E.

� E � (v : val) denotes an environment E obtained from E by updating variable v to val.

The translation from PSM to LTS is given by the following set of SOS rules:

7Note that this section is taken from our paper presented at TACAS'96 [NO96]. It is included here for completeness
and in order to resolve any ambiguities in our informal, but more intuitive description in section 3.

8where � ::= � j c!val j c?val, with a typical element �.

11

TEST

(s; [pred]; s0) 2 T E ` pred! True

(S; s; T;E)
�

���! (S; s0; T; E)

ASSIGNMENT

(s; v = Exp; s0) 2 T E ` Exp! val

(S; s; T;E)
�

���! (S; s0; T; E � (v : val))

SEND

(s; c!Exp; s0) 2 T E ` Exp! val

(S; s; T;E)
c!val

������! (S; s0; T; E)

RECEIVE

(s; c?v; s0) 2 T

(S; s; T;E)
c?val

�������! (S; s0; T; E � (v : val))

A.1.3 Atomic PSM processes

We now consider a larger subset of Promela containing the atomicf:::g construct. Consequently, our
model is extended to reect this construct. We de�ne atomic PSM processes9 (with typical element
Q) as a triple (P;�; �) where:

� P is a PSM process.

� � is a partioning of P:S into a set of disjoint non-empty sets of states, i.e. 8p1; p2 2 � :
p1 \ p2 = ; where p1 2 P:S; p2 2 P:S. Note that there may be some states in P:S that are not
in any partition p 2 �.

� � =# ; j # p j " p is the current atomic section of P . # ; denotes that P is not in an atomic
section, # p denotes that P has entered atomic section p but is not yet active, and " p denotes
that P is active (executing a sequence of atomic steps) in p.

A.1.4 Semantics of atomic PSM processes

The semantics of atomic PSM processes is given by two rules. We use the function �(s) de�ned by
�(s) = p 2 � (for s 2 p) and �(s) = ; (for s 62

S
p2� p).

DEACTIVATED{ATOMIC{SEQUENCE

9we do allow for non-atomic PSM processes as a special case where Q = (P; ;;# ;).

12

P
�

����! P 0 (�(P 0:s) 6= p _ �(P 0:s) = ;)

(P;�; # p)
�

����! (P 0;�; # �(P 0:s))

(P;�; " p)
�

����! (P 0;�; # �(P 0:s))

ACTIVATED{ATOMIC{SEQUENCE

P
�

����! P 0 p 6= ; �(P 0:s) = p

(P;�; # p)
�

����! (P 0;�; " p)

(P;�; " p)
�

����! (P 0;�; " p)

Figure 1 illustrates the rules and shows the di�erent cases for activation/deactivation of atomic
sequences. The transitions numbered (1) to (6) correespond to the �rst rule (DEACTIVATED{
ATOMIC{SEQUENCE), whereas transitions (7) and (8) correspond to the second rule (ACTIVATED{
ATOMIC{SEQUENCE).

(3) Non-atomic
step

p

p
sequence/(4)
Finish atomic

Exit atomic section

(2) section
Enter atomic

(1)
section
Leave atomic

(7) Start atomic
sequence

step
Atomic(8)

(5)
Change atomic
section

(6)
sequence/
Change atomic
section

Finish atomic

q

Figure 1: Allowable atomic transitions.

A.1.5 PSM speci�cations

We now turn to complete PSMs. A PSM speci�cation is a pair (Procs; Chans) where:

� Procs is a set of atomic PSM processes;

� Chans is a set of bounded FIFO channels. If the length of the channel is zero then communic-
ation is by rendez{vous, else it is by asynchronous message passing.

13

A.1.6 Semantics of PSM speci�cations

We use the following notations in the rules: Int(Q) means that Q is interruptible (i.e. for Q =
(P;�; �) : � = # ;), #c gives the current number of values (messages) in channel c, l(c) gives the
length of channel c, and head(c) gives the value at the head of the channel c.

SPEC{ASYNCH{SEND

Qi
c!v

�����! Q0

i 8j 6= i : Int(Qj) #c < l(c) l(c) 6= 0

(Chans; Procs) ���! (Chans0; P rocs0)�

�

�

where

Procs0 = (Procs� fProcs0g) [Q0

i

Chans0 = Chans� fc(v1; : : : ; vn)g [fc(v1; : : : ; vn; v)g

SPEC{ASYNCH{RECEIVE

Qi
c?v

�����! Q0

i 8j 6= i : Int(Qj) #c > 0 head(c) = v

(Chans; Procs) ���! (Chans0; P rocs0)�

�

�

where

Procs0 = (Procs� fProcs0g) [Q0

i

Chans0 = Chans� fc(v1; : : : ; vn; v)g [fc(v1; : : : ; vn)g

SPEC{RENDEZ-VOUS

Qi
c!v

�����! Q0

i Qj
c?v

�����! Q0

j 8k 6= i : Int(Qk) l(c) = 0

(Chans; Procs) ���! (Chans; Procs0)�
�

�
�where Procs0 = (Procs� fProcs0g) [Q0

i [Q0

j

SPEC{INTERNAL

Qi
�

���! Q0

i 8j 6= i : Int(Qj)

(Chans; Procs) ���! (Chans; Procs0)�
�

�
�where Procs0 = (Procs� fProcs0g) [Q0

i

A.2 Reactive State Machines

Here we present the Reactive State Machine (RSM), a formalisation of our proposed extension to
Promela.

Like we did for PSMs, we give the syntax and semantics in an incremental fashion, starting with
RSM automata, then RSM processes, and �nally we give the semantics of complete RSM speci�ca-
tions. The set of instructions L is the same as the set used in section A.1.

14

A.2.1 RSM automata

In the RSM model a process can be decomposed into a con�guration of RSM automata. An RSM
automaton, A, is a tuple (S; s; spred; T;E; I) where:

� S is a set of states partioned into two disjoint subsets10 :

{ SS � S a set of stable states

{ TS � S a set of transitory states

� s is either the initial state 2 SS or the current state.

� spred : s ! fTrue; Falseg is a function to determine if a give state is stable or transitory.
spred(s) = True if s 2 SS and spred(s) = False if s 2 TS.

� T � S � L� S is a transition relation

� E is the environment of variables in A.

� I is an interface11 consisting of:

{ Pin a set of inports

{ Pout a set of outports

A well{formed RSM automaton has the following restrictions:

� if (s; l; s0) 2 T and s 2 SS then l is an input action.

� if (s; l; s0) 2 T and l = c?x then c 2 Pin.

� if (s; l; s0) 2 T and l = c!val then c 2 Pout.

A.2.2 Semantics of RSM automata

The semantics of an RSM automaton is given by the same rules as for a PSM process.

A.2.3 RSM processes

An RSM process R is a tuple (A; I; L) where:

� A is a set of RSM automata fa1; : : : ; ang

� I is an interface12 consisting of:

{ Cin a set of input channels

{ Cout a set of output channels

� L is a set of links taking the following three forms:

10where S = SS [ST and SS \ ST = ;
11where Pin \ Pout = ;.
12where Cin \Cout = ;

15

{ Lint a set of internal links represented by the tuple ((ai; pi); (aj; pj)), where pi 2 ai:Pout

and pj 2 aj:Pin.

{ Lout a set of external output links represented by the tuple ((ai; pi); (�; pj)), where pi 2
ai:Pout and pj 2 Cout.

{ Lin a set of external input links represented by the tuple ((�; pi); (aj ; pj)), where pi 2 Cin

and pj 22 aj :Pin.

Some other de�nitions:

� the state of an RSM process R is the tuple R:s = (a1:s; : : : ; an:s), where:

{ the initial state is de�ned as the tuple (a1:s0; : : : ; an:s0)

{ a state s = (s1; : : : ; sn) is a stable state i� 8si : spredi(si) = True.

{ a state s = (s1; : : : ; sn) is a transitory state i� 9si : spredi(si) = False.

A.2.4 Semantics of RSM processes

We add the predicate stable(R) = R:s is a stable state. and give the SOS rules for RSM processes:

RSM{PROC{EXT-SEND

ai
g!val

������! a0i ((ai; g); (�; c)) 2 Lout c 2 Cout l(c) < #c #c 6= 0

(A; I; L)
c!val

������! (A0; I; L)�

�

�

where

A = a1; : : : ; ai; : : : ; an
A0 = a1; : : : ; a

0

i; : : : ; an

RSM{PROC{EXT-RECEIVE

ai
g?v

�����! a0i ((�; c); (ai; g)) 2 Lin c 2 Cin l(c) 6= 0 #c 6= o stable((A; I; L))

(A; I; L)
c?v

�����! (A0; I; L)�

�

�

where

A = a1; : : : ; ai; : : : ; an
A0 = a1; : : : ; a

0

i; : : : ; an

RSM{PROC{SYNCH

ai
g!val

������! a0i aj
h?v

�����! a0j ((ai; h); (aj; g)) 2 Lint #c = 0

(A; I; L)
�

���! (A0; I; L)�

�

�

where

A = a1; : : : ; ai; : : : ; aj; : : : ; an
A0 = a1; : : : ; a

0

i; : : : ; a
0

j; : : : ; an

16

A synchronisation between automata ai and aj is possible only if aI can send a message on
outport p, aI can receive a message on inport q, and there is a link between (ai; p) and (aj ; q).

RSM{PROC{INTERNAL{ACTION

ai
�

���! a0i

(A; I; L)
�

���! (A0; I; L)�

�

�

where

A = a1; : : : ; ai; : : : ; an
A0 = a1; : : : ; a

0

i; : : : ; an

A.2.5 RSM speci�cations

An RSM speci�cation is a triple (RProcs; Procs; Chans) where:

� RProcs is a set of RSM processes;

� Procs is a set of atomic PSM processes;

� Chans is a set of channels.

A.2.6 Semantics of RSM speci�cations

The semantics of RSM speci�cations can simply be given using the rules for PSM speci�cations where
the predicate Int(R) is de�ned on RSM process R by Int(R) = stable(R).

17

B Reactive Promela code for LAP{B protocol

Below follows a listing of the Reactive Promela speci�cation of the LAP{B data link protocol. We
do not show the code generated by RSPIN as it is far to big (approx. 5000 lines, as opposed to
approx. 350 for the Reactive Promela speci�cation).

#define QSIZE 10

#define Xoff 0

#define Xon 1

#define armer 1

#define desarmer 0

#define sonnerie 2

#define N 0

#define U 1

#define I 2

#define RR 3

#define REJ 4

#define cor 5

#define f 2

#define W 4

typedef Frame {

byte type;

byte D;

byte NS;

byte NR

}

/* for the inports */

chan UE[2] = [QSIZE] of { int };

chan T1r[2] = [QSIZE] of { byte };

chan T2r[2] = [QSIZE] of { byte };

chan LR[2] = [QSIZE] of { byte,byte,byte,byte };

/* for the outports */

chan UR[2] = [QSIZE] of { int };

chan CF[2] = [QSIZE] of { byte };

chan T1d[2] = [QSIZE] of { byte };

chan T2d[2] = [QSIZE] of { byte };

chan LE[2] = [QSIZE] of { byte,byte,byte,byte };

rproctype HDLC

(inport UE, T1r, T2r, LR;

outport UR, CF, T1d, T2d, LE)

(bit no)

{

automaton Tra

(external inport UE;

inport CF={bool};

outport RA={byte,byte,byte,byte},

F={byte})

(/* no fpars */)

{

byte VS=1, M;

Frame F;

tra0:

if

:: UE[no]?M ->

F.type=I;

F.D=M;

F.NS=VS;

VS=(VS+1)%W;

RA!F.type,F.D,F.NS,F.NR;

F!VS;

goto tra0

:: CF[no]?Xoff ->

goto tra1

fi;

tra1:

CF[no]?Xon ->

goto tra0

}

automaton Fen

(external outport CF={bool};

inport T={byte}, C={byte})

(/* no fpars */)

{

byte VS, VA, va;

bool x, y;

fen0:

if

:: T?VS ->

x = ((VS-VA > 0 && VS-VA <= f) || \

(VS-VA+W > 0 && VS-VA+W <= f));

if

:: (!x) ->

CF[no]!Xoff;

goto fen1

:: (x) ->

goto fen0

fi

:: C?va ->

y = ((va-VA>0 && va-VA<=f) || \

(va-VA+W<=f && va-VA+W>0));

if

:: (!y) ->

goto fen0

:: (y) ->

VA=va;

goto fen0

fi

fi;

fen1:

C?va ->

y = ((va-VA>0 && va-VA<=f) || \

(va-VA+W<=f && va-VA+W>0));

if

:: (!y) ->

goto fen1

18

:: (y) ->

VA=va;

CF[no]!Xon;

goto fen0

fi

}

automaton Ret

(external inport T1r;

external outport T1d;

inport C={byte,byte},

T={byte,byte,byte,byte};

outport A={byte,byte,byte,byte})

(/* no fpars */)

{

byte RT, ni, n, nf, i, j, b;

Frame Buf[f];

ret0:

if

:: T?Buf[ni].type,Buf[ni].D, \

Buf[ni].NS,Buf[ni].NR ->

n=1;

T1d[no]!armer;

goto ret1

:: C?b,RT ->

goto ret0

fi;

ret1:

if

:: T?Buf[(ni+n)%f].type,Buf[(ni+n)%f].D, \

Buf[(ni+n)%f].NS,Buf[(ni+n)%f].NR ->

nf=(ni+n)%f;

n++;

goto ret1

:: C?b,RT ->

i=0;

j=n;

do

:: (i == j) ->

n=j;

break

:: (i != j) ->

if

:: (Buf[(ni+i)%f].NS == RT) ->

ni=(ni+i+1)%f;

n--;

break

:: (Buf[(ni+i)%f].NS != RT) ->

i++;

n--

fi

od;

if

:: (n == 0) ->

T1d[no]!desarmer;

goto ret0

:: (n != 0) ->

if

:: b == N ->

goto ret1

:: b == U ->

i=0;

do

:: (i != n) ->

A!Buf[(ni+i)%f].type,Buf[(ni+i)%f].D, \

Buf[(ni+i)%f].NS,Buf[(ni+i)%f].NR;

i++

:: (i == n) ->

T1d[no]!armer;

goto ret1

od

fi

fi

:: T1r[no]?sonnerie ->

i=0;

do

:: (i != n) ->

A!Buf[(ni+i)%f].type,Buf[(ni+i)%f].D, \

Buf[(ni+i)%f].NS,Buf[(ni+i)%f].NR;

i++

:: (i == n) ->

T1d[no]!armer;

goto ret1

od

fi

}

automaton Rec

(external inport LR;

external outport UR;

outport A={byte,byte},

R={byte,byte},

F={byte})

(/* no fpars */)

{

Frame F;

byte VR=1, i;

bool x;

rec0:

LR[no]?F.type,F.D,F.NS,F.NR ->

if

:: (F.type == cor) ->

goto rec0

:: (F.type != cor) ->

F!F.NR;

if

:: (F.type == RR) ->

R!N,F.NR;

goto rec0

:: (F.type == REJ) ->

R!U,F.NR;

goto rec0

:: (F.type == I) ->

R!N,F.NR;

x = ((F.NS-VR > 0 && F.NS-VR < f) || \

(F.NS-VR+W < f && F.NS-VR+W > 0));

if

:: (!x && F.NS != VR) ->

i++;

if

:: (i != f) ->

19

goto rec0

:: (i == f) ->

A!U,(VR+W-1)%W;

i=0;

goto rec0

fi

:: (F.NS == VR) ->

UR[no]!F.D;

A!N,VR;

VR=(VR+1)%W;

i=0;

goto rec0

:: (x) ->

A!U,VR;

goto rec1

fi

fi

fi;

rec1:

LR[no]?F.type,F.D,F.NS,F.NR ->

if

:: (F.type == cor) ->

goto rec1

:: (F.type != cor) ->

F!F.NR;

if

:: (F.type == RR) ->

R!N,F.NR;

goto rec1

:: (F.type == REJ) ->

R!U,F.NR;

goto rec1

:: (F.type == I) ->

R!N,F.NR;

if

:: (F.NS != VR) ->

goto rec1

:: (F.NS == VR) ->

UR[no]!F.D;

A!N,VR;

VR=(VR+1)%W;

i=0;

goto rec0

fi

fi

fi

}

automaton Ack

(external inport T2r;

external outport T2d, LE;

inport C={byte,byte},

T={byte,byte,byte,byte},

R={byte,byte,byte,byte})

(/* no fpars */)

{

Frame F;

byte b,NA;

ack0:

if

:: T?F.type,F.D,F.NS,F.NR ->

F.NR=NA;

LE[no]!F.type,F.D,F.NS,F.NR;

goto ack0

:: R?F.type,F.D,F.NS,F.NR ->

F.NR=NA;

LE[no]!F.type,F.D,F.NS,F.NR;

goto ack0

:: C?b,NA ->

if

:: (b == N) ->

T2d[no]!armer;

goto ack1

:: (b == U) ->

F.type=REJ;

F.NR=NA;

LE[no]!F.type,F.D,F.NS,F.NR;

goto ack0

fi

fi;

ack1:

if

:: T?F.type,F.D,F.NS,F.NR ->

T2d[no]!desarmer;

F.NR=NA;

LE[no]!F.type,F.D,F.NS,F.NR;

goto ack0

:: R?F.type,F.D,F.NS,F.NR ->

T2d[no]!desarmer;

F.NR=NA;

LE[no]!F.type,F.D,F.NS,F.NR;

goto ack0

:: C?b,NA ->

if

:: (b == N) ->

goto ack1

:: (b == U) ->

T2d[no]!desarmer;

F.type=REJ;

F.NR=NA;

LE[no]!F.type,F.D,F.NS,F.NR;

goto ack0

fi

:: T2r[no]?sonnerie ->

F.type=RR;

F.NR=NA;

LE[no]!F.type,F.D,F.NS,F.NR;

goto ack0

fi

}

link {

A in Ret => R in Ack;

F in Tra => T in Fen;

RA in Tra => T in Ret, T in Ack;

CF in Fen => CF in Tra;

F in Rec => C in Fen;

R in Rec => C in Ret;

A in Rec => C in Ack

}

}

20

