
next �eld of second version. This split corresponds to the fact that pUq � q_

(p^
pUq). (The `nexttime' operator `
' is not supported in the translation,
as it is not compatible to the partial order reduction [3] implemented in SPIN
and its use in concurrent programs has been challenged [4]).

Whenever there are no new formulas, the node is added to the list of
currently existing nodes if a node with the same subformulas does not exist
there already. Then, a successor node is generated, with an edge from the
old one. The successor has initially its new subformulas set to the next

subformulas of the old node, and an empty set of old and next subformulas.
If such a node does already exists in the list of existing nodes, the old version
is updated by adding new incoming edges from the new version. Initially,
one starts the algorithm with a node that has the formula to be translated as
its only new subformula, one incoming edge from the dummy node init, and
no old or next subformulas. The details of the algorithm and its correctness
proof can be found in [1].

At the end, each node which has an edge from the dummy init node is an
initial node. An execution of the automaton starts from an initial state and
passes nodes which agree with the input on the values of atomic predicates
(p; q; : : :). An execution accepts i� for each subformula of the form pUq,
it passes in�nitely often either states that contain q or states that do not
contain pUq.

References

[1] R. Gerth, D. Peled, M. Vardi, P. Wolper, Simple On-the-
y Automatic
Veri�cation of Linear Temporal Logic, Protocol Speci�cation Testing
and Veri�cation, 1995, Warsaw, Poland,

[2] G. J. Holzmann, Design and Validation of Computer Protocols, Prentice
Hall Software Series, 1992.

[3] G. J. Holzmann, D. Peled, An Improvement in Formal Veri�cation,
7th International Conference on Formal Description Techniques, Berne,
Switzerland, 1994, Chapmann & Hall, 197{211.

[4] L. Lamport, What good is temporal logic, in R.E.A. Mason (Ed.), In-
formation Processing 83, Elsevier Science Publishers, 1983, 657-668.



Checking Linear Temporal Logic Properties

Doron Peled and Gerard J. Holzmann

AT&T Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07974, USA

A new version of SPIN is described, in which standard linear temporal
logic (LTL) notation, as developed by Manna and Pnueli, can be used for
expressing properties of PROMELA models. This allows asserting properties
of concurrent programs using the LTL operators such as 3 (eventually), 2
(always) and U (until), combined using the usual Boolean operations (and,
or, not, implies). For example, the property 23p ! 3q means that if p

happens always eventually, or in other words, in�nitely often, then q will
eventually happen.

An e�cient algorithm [1] translates LTL formulae directly into PROMELA's
`never claims', allowing immediate automatic veri�cation by SPIN. Although
in general the translation gives an exponential automaton, the algorithm de-
scribed in [1] performs quite well on the temporal formulas typically encoun-
tered in veri�cation.

The algorithm uses a data structure that includes six �elds for each au-
tomaton node:

1. The node's name.

2. The list of incoming edges from other nodes.

3. New unprocesses subformulas.

4. Old processes formulas.

5. Subformulas for the next node.

The algorithm takes each new subformula in its turn and checks its main
logical operator. Depending on the operator, the algorithm can split the
node to two or add subformulas to the new or next �elds. Then the processes
formula is moved from new to the old �eld (of both copies, if the node was
splited). For example, if the subformula is pUq, then the node will be splited,
with q added as a new subformula to the �rst versions, and p is added as a new
subformula to the second version. Also the subformula pUq is added to the


